
Hindawi Publishing Corporation
International Journal of Hypertension
Volume 2012, Article ID 127910, 12 pages
doi:10.1155/2012/127910

Review Article

Novel Insights into the Vasoprotective Role of Heme Oxygenase-1

Emanuela Marcantoni,1, 2 Luigia Di Francesco,2, 3 Melania Dovizio,1, 2 Annalisa Bruno,1, 2

and Paola Patrignani2, 3

1 Department of Medicine and Aging, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
2 Center of Excellence on Aging (CeSI), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
3 Department of Neuroscience and Imaging, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy

Correspondence should be addressed to Paola Patrignani, ppatrignani@unich.it

Received 31 October 2011; Accepted 12 December 2011

Academic Editor: David Sacerdoti

Copyright © 2012 Emanuela Marcantoni et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Cardiovascular risk factors contribute to enhanced oxidative stress which leads to endothelial dysfunction. These events trigger
platelet activation and their interaction with leukocytes and endothelial cells, thus contributing to the induction of chronic
inflammatory processes at the vascular wall and to the development of atherosclerotic lesions and atherothrombosis. In this
scenario, endogenous antioxidant pathways are induced to restrain the development of vascular disease. In the present paper,
we will discuss the role of heme oxygenase (HO)-1 which is an enzyme of the heme catabolism and cleaves heme to form biliverdin
and carbon monoxide (CO). Biliverdin is reduced enzymatically to the potent antioxidant bilirubin. Recent evidence supports
the involvement of HO-1 in the antioxidant and antiinflammatory effect of cyclooxygenase(COX)-2-dependent prostacyclin in
the vasculature. Moreover, the role of HO-1 in estrogen vasoprotection is emerging. Finally, possible strategies to develop novel
therapeutics against cardiovascular disease by targeting the induction of HO-1 will be discussed.

1. Introduction

For many years, atherosclerosis was considered an age-
related process characterized by the passive accumulation of
lipids in the vessel wall. However, the most recent lines of
evidence have clearly shown that it is a complex process in
which multiple pathogenic factors contribute to trigger and
sustain vessel wall damage, leading to myocardial infarction,
stroke, and sudden death [1]. In particular, there is an
increasing appreciation of atherosclerosis as a dynamic and
progressive disease starting with endothelial dysfunction
which may trigger platelet activation and their interaction
with leukocytes and endothelial cells. This process may
contribute to the induction of chronic inflammation at the
vascular wall [2].

Several lines of evidence suggest that oxidative stress
may promote endothelial dysfunction through increased
production of reactive oxygen species (ROS). Increased
levels of diverse ROS are produced in the vessel wall and
they individually or in combination may contribute to

the pathogenesis of vascular disease. Thus, increased lipid
peroxidation has been identified as a key mechanism for the
development of atherosclerosis and inflammatory vascular
damage. In fact, intracellular oxidative signals may induce
the expression of a selective set of vascular inflammatory
genes thus linking oxidative stress and inflammation in
atherogenesis [3, 4].

Endothelial cells generate several protective mediators to
regulate the functions of underlying vascular smooth muscle
cells and circulating cells [5]. Among them, cyclooxygenase
(COX)-2-dependent prostacyclin (PGI2) plays a central role
[5]. COX-2 is among endothelial genes upregulated by
steady laminar shear stress (LSS) [6], which characterizes
“atherosclerotic lesion-protected areas” [7]. COX activity
of the enzyme catalyzes the conversion of free arachidonic
acid to prostaglandin (PG)G2, which is then converted to
PGH2 through its peroxidase activity [8]. Endothelial cells
may transform PGH2 to a different array of the prostanoids
(i.e., PGD2, PGE2, and PGI2) along the vascular beds;
however, robust evidence sustains that PGI2 is the dominant
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prostanoid produced in the macrocirculation [4, 9]. PGI2

exhibits properties of relevance to atheroprotection. In fact,
it acts as a general restraint on endogenous stimuli to platelet
activation, vascular proliferation and contraction, and cell
adhesion [4]. It has been reported that PGI2 has antioxidant
function before and in the early stage of atherogenesis
through the induction of the antioxidant enzyme heme
oxygenase (HO)-1 [10].

Recently, we provide evidence that COX-2-dependent
PGI2 (induced by steady LSS) upregulates HO-1, which
halts the proatherogenic cytokine, tumor necrosis factor
(TNF)-α, in human endothelial cells [11]. Altogether, these
data strongly support the key role of HO-1 pathway in the
vasoprotective phenotype induced by PGI2.

In this paper we aim (i) to summarize the major features
of the biology of HO-1 system by relating them to the
role of this antioxidant enzyme in normal and pathological
states, such as vascular inflammation and angiogenesis; (ii)
to shed some light on the molecular mechanisms involved in
the interplay between HO-1 system and the vasoprotective
PGI2.

2. Biology of HO

HO plays a central role in regulating the levels of intracellular
heme by catalyzing the oxidative degradation of heme to
liberate free iron, carbon monoxide (CO), and biliverdin in
mammalian cells [20]. Biliverdin is metabolized to bilirubin
by biliverdin reductase. Excess free heme catalyzes the forma-
tion of ROS, which leads to endothelial dysfunction as seen in
numerous pathologic vascular conditions including systemic
hypertension and diabetes, as well as in ischemia/reperfusion
injury. The HO system, through its products, may cause
different effects on the vascular system: (i) prevention of
endothelial cell apoptosis; (ii) attenuation of the inflam-
matory response in the vessel wall; (iii) regulation of
the vascular tone; (iv) participation in angiogenesis and
vasculogenesis. Among all products of HO-1, bilirubin and
biliverdin are the most potent endogenous scavengers of ROS
[21] and CO exerts antiapoptotic and anti-inflammatory
effects through the induction of soluble guanylyl cyclase.
It suppresses the production of TNF-α, interleukin (IL)-1β
and CCL4 chemokine (macrophage inflammatory protein-
1β) and induces the synthesis of anti-inflammatory IL-
10 [22]. Finally, free iron, despite participation in Fenton
reaction that leads to formation of highly reactive hydroxyl
radicals, activates Fe-ATPase. It is a transporter that removes
intracellular iron as well as induces expression of ferritin
heavy chains which sequester free iron and exert specific
cytoprotective roles [23].

Three isoforms of HO have been described: an inducible
isoform, HO-1, and two constitutively expressed isoforms,
HO-2 and HO-3. HO-1 is a 32 kDa microsomal protein
considered to be a protective, early stress-response agent
that may have additional nonenzymatic activities related
to its mitochondrial localization and nuclear translocation.
The expression of HO-1 is generally very low in normal
tissues, apart from liver and spleen, where it participates
in the processing of senescent or damaged erythrocytes

and in protection against oxidative damage caused by free
porphyrins [24]. In all tissues, low basal expression of HO-1
can be upregulated by a wide variety of stimuli that cause
oxidative stress, including its substrate heme, heavy metals,
cytokines, ultraviolet rays, lipopolysaccharide, hydrogen per-
oxide, growth factors, nitric oxide (NO), and also CO [25].
HO-2, a 36-kDa protein which is constitutively expressed,
is localized primarily in the brain, testis, and vascular
endothelium [26, 27]. Recently it has been postulated a
novel role for HO-2 in the regulation of the inflammatory
and reparative response to injury, which is a cytoprotective
mechanism typically associated with HO-1 induction. HO-2
may constitute an essential protective circuit responsible of a
basal tone of anti-inflammatory signals critical to the exe-
cution of self-resolving inflammatory-reparative processes
[28]. HO-3, a lastly cloned 33-kDa protein, which is a
pseudogene derived from HO-2 transcript, has been found
only in rats [29].

3. Regulation of HO-1 Gene Expression

There are different mechanisms involved in the modulation
of HO-1 expression.

It has been reported that mitogen-activated protein
kinases (MAPKs), phosphatidyl inositol 3-kinase/Akt, pro-
tein kinase (PK)A, PKC, and PKG [30], nuclear factor E2-
related factor 2 (Nrf2), Bach1 (bric-a-brac, tramtrack, and
broad complex and cap “n” collar homology 1), activator
protein-1 (AP-1), nuclear factor-κB (NF-κB), cyclic adeno-
sine monophosphate-responsive element-binding protein,
and activating transcription factor 2 (ATF-2) [31] participate
in HO-1 gene regulation. The transcription factor Nrf2 plays
a central role in the transcriptional activation of HO-1
and many other genes encoding phase II drug-metabolizing
enzymes in response to oxidative stress. Activation of Nrf2
is regulated by the cytosolic protein Keap1 that negatively
modulates the nuclear translocation of Nrf2 and facilitates
degradation of Nrf2 via the proteasome. Upon activation,
Nrf2 enters the nucleus where it binds to the AU-rich
elements (AREs) in the HO-1 promoter to trigger gene
expression [17]. Nrf2 has been recently reported to regu-
late the induction of HO-1 in response to various forms
of cellular stress, including hemodynamic, oxidative, and
endoplasmic reticulum stress [32–34]. Moreover, fibroblasts
and lung tissue from Nrf2-deficient animals express reduced
levels of HO-1 [35, 36], further implicating Nrf2 in the
induction of HO-1 [37].

Other transcription factors have been identified, such as
the transcription factor Yin Yang (YY)1 that is a downstream
effector of CO produced by HO-1 [38] and hypoxia-
inducible factor (HIF)-1. It has been found that the increase
in the transcription factor YY1 is involved in the inhibition
of neointimal hyperplasia in vivo by HO-1 [38] and that
the HIF-1 stabilization induces cardioprotection via HO-1
expression [39]. The results of Dawn and Bolli [39] show
that HIF-1-mediated upregulation of HO-1 is beneficial to
the ischemic myocardium.

In addition to the transcriptional regulation, it has been
reported that a posttranslational mechanism may exist to
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attenuate HO-1 expression. It has been demonstrated that
two miRNAs, miR-217 and miR-377, combine to attenuate
HO-1 protein expression, resulting in a significant reduction
in HO-1 enzyme activity. The knockdown of both miR-217
and miR-377 increases HO-1 protein expression, while the
overexpression of the same miRNAs leads to attenuation of
protein expression [40]. Recently, Lin et al. show that HO-1
is subjected to posttranslational regulation by the ubiquitin-
proteasome system through an endoplasmic reticulum-
associated degradation pathway [41]. Proteasome inhibition
significantly decreased HO-1 protein degradation. Increased
HO-1 expression by MG-132, a proteasome inhibitor, has
been shown to protect astrocytes from heme-mediated
oxidative injury [42].

4. Polymorphisms in HO-1 Gene

Three polymorphisms in the 5′ flanking region of the HO-1
gene have been described: a (GT)n dinucleotide length poly-
morphism [43] and two single-nucleotide polymorphisms
(SNPs), G(-1135)A and T(-413)A [44]. Only two, the (GT)n
repeat polymorphism and the T(-413)A SNP, have been
reported to exert functional importance by influencing the
level of HO-1 expression in different organ systems. Thus,
they may enhance or suppress the susceptibility to various
disease conditions, including the maintenance of pregnancy
[44, 45] and various cardiovascular (CV) disease [44].

In view of the apparently beneficial effects of placental
HO-1 expression for the pregnancy outcome, the relation-
ship between idiopathic recurrent miscarriage and a (GT)n
repeat microsatellite polymorphism of HO-1 gene has been
investigated [45]. The results from this study firstly showed
the association between the HO-1 (GT)n microsatellite
polymorphism in the human HO-1 promoter regulatory
region and women with idiopathic recurrent miscarriage
in a relatively large Caucasian population, supporting the
hypothesis that HO-1 polymorphisms among human pop-
ulation might contribute to some unexplained cases of
pregnancy disorders, such as fetal growth retardation and
preeclampsia [46].

HO-1 plays a critical role in protecting the CV system
from the damaging effects of oxidative stress. The two func-
tional polymorphisms of HO-1 gene have been associated
with CV disease and have different frequency distributions
based upon ethnicity [44]. In particular, a significant associ-
ation between the AA genotype of a T(-413)A polymorphism
and arterial hypertension in Japanese women, but not in
men, was observed [47]. This polymorphism was suggested
to be associated with a higher expression of HO-1 and
the authors suggest that an interaction between estrogen-
induced expression of NO synthase and HO-1-derived CO,
which attenuates NO-induced vasodilation, may explain
their findings [47]. However, the inconsistency between men
and women raises some doubts on the reproducibility of
these data. Moreover, the same authors demonstrated that
the AA genotype of the T(-413)A polymorphism may reduce
the incidence of ischemic heart disease, even if it may
potentially increase the risk of hypertension [48].

(GT)n dinucleotide repeat in the HO-1 gene promoter
shows a length polymorphism that modulates the level
of gene transcription [43]. Compared with long (GT)n
repeats, short (GT)n repeats in the human HO-1 gene
promoter were shown to have higher transcriptional activity
in response to oxidative stress [49]. It has been shown
that length polymorphism in the HO-1 gene promoter is
related to coronary artery disease susceptibility in Japanese
people, but this association was found only in patients with
hypercholesterolemia or diabetes mellitus or in smokers [50],
thus suggesting that HO-1 may play an antiatherogenic role
in Japanese patients with these coronary risk factors.

Moreover, (GT)n microsatellite polymorphism was
reported to be associated with emphysema, restenosis after
percutaneous transluminal angioplasty, and coronary artery
disease [49, 51, 52]. However, in some studies the asso-
ciation between HO-1 polymorphisms and CV disease
was not confirmed. A study based on a large number of
1807 patients showed that the (GT)n dinucleotide repeats
length polymorphism located in the promoter region of the
human HO-1 gene is not associated with the development
of restenosis and major adverse clinical events following
coronary stenting [53]. Similarly, Turpeinen et al. [54]
showed that HO-1 gene polymorphisms have no significant
role in outcome of kidney transplantation in the Finnish
population. A recent prospective case-control study of more
than 3000 participants showed that neither the (GT)n
dinucleotide repeat nor the T(-413)A polymorphism in the
HO-1 promoter is associated with angiographic coronary
artery disease, myocardial infarction, or survival rate in
Caucasians undergoing coronary angiography [55]. Thus,
altogether these studies leave still open the debate about the
functional relevance of both variants of polymorphisms in
HO-1 promoter. It is not unusual that studies of genetic
polymorphisms produce divergent results, especially if small
numbers of cases and controls are examined; often positive
associations seen in small studies have been disproven
in subsequent larger studies. In conclusion, even if the
regulation of HO-1 gene may be determined, at least in part,
by genetics, neither the (GT)n dinucleotide repeat nor the
T(-413)A polymorphism of the HO-1 gene can be considered
reliable genetic markers for CV disease.

5. Role of HO-1 in Vascular Inflammation

HO-1 represses inflammation by removing the proinflam-
matory molecule heme and by generating CO and the bile
pigments, biliverdin, and bilirubin. These HO-1 reaction
products are capable of blocking innate and adaptive
immune responses by modifying the activation, differentia-
tion, maturation, and/or polarization of numerous cell types,
including endothelial cells, monocytes/macrophages, den-
dritic cells, T lymphocytes, mast cells, and platelets. These
cellular actions by CO and bile pigments result in diminished
leukocyte recruitment and infiltration, and proinflammatory
mediator production within atherosclerotic lesions [56].

The role of HO-1 in inflammation is demonstrated in
HO-1 knockout mice, in which HO-1 deficiency leads to
increased production of proinflammatory cytokines [57].
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In patients subjected to bypass surgery, a higher activity
of HO-1 resulted in a lower concentration of IL-6 [58].
HO-1 has been reported to reduce inflammatory cell rolling,
adhesion, and migration from the vascular compartment,
by downregulating the function and expression of adhesion
molecules on the vessel wall [59, 60]. In contrast, inhibition
of HO-1 increases adhesion molecule expression [61–63].

Preclinical and clinical evidence clearly suggests that the
progression of atherosclerosis is associated with inflamma-
tion [64]. Different studies have been performed to under-
stand whether HO-1 can be protective in the pathogenesis
of this disease. Experimental evidence demonstrates that
the induction of HO-1 in vascular cells suppresses oxidized
low-density-lipoprotein (LDL)-induced monocyte transmi-
gration and inhibits atherosclerotic lesion formation in LDL
receptor (LDLR) knockout mice [65, 66]. Interestingly, the
levels of bilirubin in the normal human population correlate
inversely with the incidence of atherosclerotic events [67]
and it has been shown that bilirubin attenuates vascular
endothelial activation and dysfunction in vitro [12].

Recent interest has also focused on peroxisome pro-
liferator-activated receptor δ (PPARδ) ligands and induction
of HO-1 expression. Ali et al. showed for the first time in
vivo that PPARδ ligands induce vascular endothelial HO-
1 expression, thus supporting the hypothesis that PPARδ
represents an important potential target for the treatment
of endothelial dysfunction and atherogenesis [13]. Finally, it
has been shown that, in human monocytes, HO-1 activity is
involved in attenuation of TNF-α production [68].

6. Cross-Talk between HO-1 and PGI2

PGI2 is considered a major prostanoid generated in the
macrocirculation (both in endothelial cells and vascular
smooth muscle cells) [5, 9], where it inhibits platelet
activation, vascular smooth muscle cell contraction and pro-
liferation, leukocyte-endothelial cell interactions [69], and
cholesteryl ester hydrolase and induces thrombomodulin,
an important inhibitor of blood coagulation [70, 71]. PGI2

acts mostly through I prostanoid receptor (IP), a rhodopsin-
like class A, 7-transmembrane-spanning G-protein-coupled
receptor (GPCR), which activates membrane-bound adeny-
lyl cyclase and the subsequent formation of the second
messenger cyclic adenosine monophosphate (cAMP) [14].
Recently, studies in animal experimental models have shown
that COX-2-derived PGI2 confers atheroprotection in female
mice lacking the LDLR (an animal model of atherosclerosis),
through the induction of HO-1 [10]. However, the possible
contribution of endothelial COX-1 to PGI2 biosynthesis and
of endothelial COX-2 to the generation of other prostanoids,
in particular PGE2 [72], has not been completely clarified.
In fact, recent results suggest a cardioprotective role of PGE2

via E prostanoid receptors (EP)2 and EP4 [73, 74]; on the
other hand, it is important to underline that PGE2, due its
important role in inflammation, may enhance plaque burden
and plaque destabilization in humans [75].

Thus, recently, we performed a study in human umbilical
vein endothelial cells (HUVECs) exposed a physiological
fluid mechanical stimulus in vitro [11] (Figure 1(a)) with the

aims to (i) distinguish between the vasoprotective function
of COX-2 and COX-1 and (ii) evaluate the contribution
of different prostanoids to endothelial vasoprotection. In
this study, we showed that in HUVECs exposed to uniform
LSS of 10 dyn/cm2 (characteristically associated with lesion-
protected areas), COX-2, but not COX-1 and downstream
synthases, was significantly induced, and this translated into
enhanced biosynthesis not only of PGI2, but also of other
prostanoids, such as PGE2 and PGD2 (Figure 1(b)). Phar-
macological studies, using a selective COX-2 inhibitor (NS-
398) and a nonselective COX inhibitor (aspirin), showed
that both COX-2 and COX-1 contributed to PGI2 generation
while only COX-1 contributed to PGE2 and PGD2. In
the same study, we found that steady LSS reduces the
synthesis and release of TNF-α (a known mediator of
endothelial dysfunction and atherogenesis) [76, 77] from
endothelial cells. Interestingly, we found that LSS-dependent
reduction of TNF-α generation was completely countered
by NS-398, aspirin, or the specific PGI2 receptor (IP)
antagonist RO3244794 [78] (Figure 1(b)). Altogether, these
results support the role of COX-2-dependent PGI2 in LSS-
dependent reduction of endothelial TNF-α generation. Since
LSS induced the expression of HO-1 and this effect was
inhibited by NS-398, aspirin, or the IP antagonist, we
hypothesized that the induction of HO-1, as a consequence
of COX-2-dependent PGI2 generation, is involved in LSS-
dependent reduction of endothelial TNF-α biosynthesis.
This hypothesis was confirmed by the use of the novel
imidazole-based HO-1 inhibitor QC15 [79]. In fact, we
showed that the inhibition of HO-1 activity was associated
with a complete abrogation of LSS-dependent inhibition of
TNF-α biosynthesis (Figure 1(b)). Altogether these results
support the contribution of LSS-induced PGI2 in the anti-
inflammatory effect of HO-1 in endothelial cells. This seems
to be a novel protective action of endothelial PGI2 which may
work in physiological conditions [11].

Further specific studies have to be performed to clarify
the molecular pathways involved in the regulation of the
vasoprotective gene HO-1 by COX-2-dependent PGI2 in
endothelial cells. We proposed that IP receptor signalling,
through the activation of PKA, may induce the phosphoryla-
tion of glycogen synthase kinase (GSK)-3 [15], thus causing
its inactivation and the loss of the capacity to phosphorylate
Nrf2 [16]. This might translate into the stabilization of Nrf2
and its translocation into the nucleus, where it promotes the
transcription of antioxidant and phase II genes, including
HO-1 [11] (Figure 2). Furthermore, it has been shown that
the Kruppel-like factor(KLF)-2 is increased in endothelial
cells exposed to LSS [18]. This transcription factor may
enhance antioxidant activity of Nrf2 by increasing its nuclear
localization and activation [19]. The synergistic activity of
the 2 transcription factors (Nrf2 and KLF-2) represents the
major contribution to the shear-stress-elicited transcriptome
in endothelial cells (Figure 2). Altogether our study provides
evidence that COX-2-dependent PGI2 (induced by steady
LSS) upregulates HO-1 which halts TNF-α generation in
human endothelial cells [11]. This vasoprotective effect is
abrogated by COX inhibitors, thus suggesting that inhibition
of COX-2-dependent PGI2 might contribute to acceleration
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Figure 1: Exposure of endothelial cells to steady laminar shear stress (LSS). (a) HUVECs (0.8 to 1× 106 cells per glass slide) are shear stressed
using a parallel plate flow chamber connected to a constant pressure drop flow loop, maintained at 37◦C and gassed continuously with a
humidified mixture of 5% CO2 in air. Endothelial monolayers are continuously perfused in a closed circuit at an estimated shear stress of
10 dyn/cm2 (flow rate of 2.53 mL/min; shear rate of 1400 sec−1) with 7 mL of perfusion DMEM-medium199 (50% vol/vol), supplemented
with 5% fetal calf serum, 1% glutamine, and antibiotics for 6 hours [11]. (b) In HUVEC, steady LSS activates cPLA2, thus releasing free
arachidonic acid (AA) from cell membrane phospholipids, the substrate of cyclooxygenase isoenzymes (COX-1 and COX-2). In addition,
LSS upregulates COX-2 expression in HUVEC, without affecting the expression of COX-1 and downstream synthases (such as cPGES,
mPGES2, PGIS, LPGDS, PGFS) [11]. Both COX-1 and COX-2 participate in the biosynthesis of PGE2, PGI2, PGD2, and PGF2α as suggested
by the finding that aspirin (a nonselective COX inhibitor) affects the levels of all these prostanoids. Differently, the selective COX-2 inhibitor
(NS-398) affected only PGI2 in HUVECs exposed to LSS which overexpressed COX-2. COX-2-dependent PGI2, induced by LSS, through the
interaction with a specific receptor (IP), causes the induction of HO-1. It constrains TNF-α biosynthesis in HUVECs under this experimental
condition. In fact, LSS-dependent reduction of TNF-α generation is completely countered by the selective COX-2 inhibitor NS-398, the
nonselective COX inhibitor aspirin, or the specific PGI2 receptor (IP) antagonist RO3244794 [11, 12]. Finally, by the use of the novel
imidazole-based HO-1 inhibitor QC15 [13], it has been shown that HO-1 induction in response to COX-dependent PGI2 plays a role in
LSS-dependent reduction of TNF-α biosynthesis [11].

of atherogenesis in patients taking traditional (t) nons-
teroidal anti-inflammatory drugs (NSAIDs) and NSAIDs
selective for COX-2 (coxibs).

7. Role of HO-1 in Angiogenesis

Angiogenesis involves the formation of new blood vessels
and is critical for fundamental events such as development
and repair after injury [80]. Recently, it has been shown that

HO-1 and its gaseous product CO have potent proangiogenic
properties in addition to well-recognized anti-inflammatory,
antioxidant, and antiapoptotic effects [80]. Angiogenic fac-
tors, such as vascular endothelial growth factor (VEGF)
and stromal cell-derived factor-1 (SDF-1), mediate their
proangiogenic effects through induction of HO-1, making
it an attractive target for therapeutic intervention [80]. It
has been reported that the role of HO-1 in angiogenesis
regulation could be “good” or “bad.” The role of HO-1 in
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Figure 2: Postulated molecular mechanism involved in the induction of HO-1 by COX-2-dependent PGI2, in endothelial cells exposed to
steady laminar shear stress (LSS). In endothelial cells exposed to uniform LSS (characteristically associated with atherosclerotic lesion-
protected areas), COX-2 is overexpressed [11]. PGI2, mainly produced by the combined activity of COX-2 and PGI2-synthase (PGIS),
interacts with its specific receptor, IP [14]. This interaction may lead to the activation of adenylate cyclase (AC), causing an increase of
intracellular levels of cyclic AMP (cAMP) and subsequently to the activation of protein kinase A (PKA) [14]. PKA may phosphorylate
glycogen synthase kinase(GSK)-3 [15], causing its inactivation and the loss of the capacity to phosphorylate nuclear factor E2-related factor 2
(Nrf2) [16]. Reduced phosphorylation of Nrf2 causes its stabilization and translocation into the nucleus, where it promotes the transcription
of antioxidant and phase II genes, including HO-1 [11, 17]. In addition to Nrf2, Kruppel-like factor(KLF)-2 is increased in endothelial cells
exposed to LSS [18]. KLF2 enhances antioxidant activity of Nrf2 by increasing its nuclear localization and activation [19]. The synergistic
activity of these two transcription factors forms a major contribution to the shear-stress-elicited transcriptome in endothelial cells. The
overexpression of HO-1 in endothelial cells by LSS exerts an anti-inflammatory action through its capacity to inhibit the biosynthesis and
release of TNF-α [11].

favoring angiogenesis responses is crucial for proper placen-
tal vascularization, wound healing, and neovascularization of
ischemic heart. However, it may have detrimental outcomes
in diseases where new blood vessel formation is undesirable,
such as in tumor neovascularization [80].

Zhao and collaborators recently showed that a partial
deficiency of maternal HO-1 resulted in the malformation
of fetomaternal interface, alteration of the placental vascula-
ture, insufficiency of spiral artery remodeling, and alteration
of uterine natural killer cell differentiation and maturation
[46]. These changes were independent of the fetal genotype,
but relied on the maternal HO-1 level, which determined
the balance of expression levels of pro- and antiangiogenic
factors in the deciduas region [46]. According to these results
a reduction in HO-1 placental expression was associated
with recurrent miscarriages, spontaneous abortions, and
preeclampsia [81]. These findings are in agreement with
the results that HO-1 polymorphisms (as described above)
are associated with idiopathic recurrent miscarriage in a
relatively large Caucasian population of women [45].

The replacement of damaged capillaries and reestab-
lishment of the normal oxygen amounts to a wound are
accomplished by neovascularization. Wound-healing process
includes a coagulation phase (characterized by endothelial
dysfunction and platelet activation), an early extracellular
matrix deposition, the release of factors by platelets, an
inflammatory phase, and the resulting granulation, which
are all events that rely on angiogenesis [82]. Growth factors
including VEGF, chemokines like SDF-1, and hypoxia-
inducible factors (HIFs) also coordinate the multifaceted

events involved in wound healing [83, 84]. Interestingly,
compared with wild-type littermate mice, HO-1-deficient
mice exhibit impaired wound healing due, in part, to
reduced recruitment of endothelial progenitor cells (EPCs)
and capillary formation at the site of injury [85]. In addition,
the induction of HO-1 in wounded skin was relatively weak
and delayed in diabetic mice, in which also angiogenesis and
wound closure were impaired. In such animals, local delivery
of HO-1 transgene, using adenoviral vectors, accelerated the
wound healing and increased the vascularization [86].

It has been recognized that HO-1 has a protective effect
in ischemic myocardium by the increasing of expression of
angiogenic growth factors in the infarcted tissue [87]. VEGF
is a strong therapeutic reagent by inducing angiogenesis in
ischemic myocardium [88], and it can mediate the ischemia-
induced mobilization of EPCs from bone marrow [89].
Lin et al. showed that HO-1 gene transfer after myocardial
infarction provides protection at least in part by pro-
moting angiogenesis through inducing angiogenic growth
factors [90]. In addition, preclinical and clinical studies
have demonstrated that mesenchymal stem cells (MSCs)
transplantation can attenuate ventricular remodeling and
augment cardiac function when implanted into the infarcted
myocardium. In HO-1-transfected MSCs-treated hearts, the
myocardial apoptosis was marked with significantly reduced
fibrotic area and the cardiac function and remodeling were
also significantly improved [87].

It is important to point out that in addition to the
numerous lines of evidence supporting the positive role of
HO-1 in angiogenesis regulation, several authors reported
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of the negative effects of this enzyme in tumor angiogenesis.
In particular, it has been shown that several human tumors,
including renal cell and prostate cancer, express high levels
of HO-1 [91, 92]. HO-1 may promote tumor cell survival
[93], hindering the effectiveness of anticancer therapies [94].
In contrast, inhibition of HO-1 has been shown to enhance
tumor regression in animal models [95], suggesting that the
HO-1 pathway may be a therapeutic target in carcinogenesis
[80].

However, in prostatic cancer cells (PC3), HO-1 seems to
be antiangiogenic. In fact, Ferrando et al. [96] identified a
set of inflammatory and proangiogenic genes downregulated
in response to HO-1 overexpression, in particular VEGFA,
VEGFC, HIF1α, and α5β1 integrin. An in vivo angiogenic
assay showed that intradermal inoculation of PC3 cells
stably transfected with HO-1 (PC3HO-1) generated tumors
less vascularized than controls, with decreased microvessel
density and reduced CD34 and MMP9 positive stain-
ing. Interestingly, longer-term grown PC3HO-1 xenografts
displayed reduced neovascularization with the subsequent
downregulation of VEGFR2 expression. Additionally, HO-
1 repressed NF-κB-mediated transcription, which strongly
suggests that HO-1 may regulate angiogenesis through this
pathway. Taken together, these data support a key role
of HO-1 as a modulator of the angiogenic switch in
prostate carcinogenesis ascertaining it as a logical target for
intervention therapy [96].

8. Interplay between HO-1 and Estrogen

Estrogen has both rapid and longer-term direct effects
on CV tissues mediated by the two estrogen receptors,
ER-α and ER-β [97]. Estradiol promotes endothelial cell
growth, protects endothelial cells against damage by oxidants
and cholesterol, and induces the generation of endothelial-
derived vasodilators, such as NO and prostanoids [98].
In fact, premenopausal women are less susceptible to
myocardial infarction and stroke than are males of the
same age group, an advantage that is lost after menopause
[99]. Several animal studies and some small clinical trials
support a cardioprotective action of estrogens [100, 101]. E2

retards atherogenesis in animal models [102] and improves
endothelial disfunction in hyperlipidemic women [103].

Recently, Egan et al. [10] found that deletion of PGI2

receptor (IP) removes the atheroprotective effect of estrogen
in ovariectomized female mice. The atheroprotective role
of estrogen, in this setting, seems to be mediated by the
induction of PGI2 biosynthesis. PGI2 activates its plasma
membrane receptor IP which causes the induction of the
antioxidant HO-1 in the vasculature. In fact, in vitro exper-
iments, in mouse aortic smooth muscle cells (MASMCs),
showed that estrogen acts on ER-α to upregulate the produc-
tion of atheroprotective PGI2 through the induction of COX-
2 [10]. MASMCs lacking the PGI2 receptor (IP/KO) showed
an increased oxidative stress suggesting that IP modulates
oxidant stress under basal conditions. In addition, cicaprost,
an IP agonist, increased HO-1 protein expression in wild-
type MASMCs but not in IP/KO MASMCs. The involvement
of IP signalling in the induction of vascular HO-1 was shown

also in vivo. Thus, IP deletion decreased aortic HO-1 protein
expression in female mice lacking both the IP and the LDL
scavenger receptor (LDLR) (IP/LDLR DKO) [10]. These
data showed that the atheroprotective role of estrogen is
mediated by enhanced generation of COX-2-dependent PGI2

and suggest that chronic treatment of patients with NSAIDs
selective for COX-2 (coxibs) or tNSAIDs could undermine
the estrogen-mediated protection from CV disease in pre-
menopausal females. A study was performed to estimate the
interaction, in a general population setting (using informa-
tion from the UK’s General Practice Research Database),
between tNSAIDs and hormone therapy on the occurrence of
acute myocardial infarction and death from coronary heart
disease [101]. The researchers found that current use of
hormone replacement therapy was associated with a lower
risk of heart attack than nonuse. However, when looking at
women who used tNSAIDs at the same time as hormone
replacement therapy, the researchers found no suggestion of
a reduction in risk of heart attack. These findings suggest that
hormone therapy and NSAIDs might interact, with NSAIDs
acting against a role for hormone replacement therapy in
preventing heart attacks. This pharmacodynamic interaction
might play a role, at least in part, in the uncertain results
regarding the effect of postmenopausal hormone therapy on
heart disease in women [104].

9. Cross-Talk between HO-1 and Cytochrome
P-450-Derived Epoxyeicosatrienoic Acids

A molecular crosstalk between the cytochrome P-450-
derived epoxyeicosatrienoic acids (EETs) and HO-1 gene
expression was studied by Sacerdoti and coworkers [105,
106]. EETs induce HO-1 expression and signalling cascade
[107], including activation of AMP-activated kinase (AMPK)
and pAKT, thus reducing adiposity and insulin resistance
in animal model of obesity and diabetes. In addition, EETs
decrease MSC-derived adipocyte stem cell differentiation
by the upregulation of HO-1-adiponectin-AKT signalling,
suggesting that EET agonist may have potential therapeutic
role in the treatment of dyslipidemia, diabetes, and the
metabolic syndrome [108]. The potential action of EETs as
intracellular lipid signalling modulators of adipogenesis was
further supported by the recent finding that the treatment
with EET agonists inhibits adipogenesis and decreases the
levels of inflammatory cytokines. Interestingly, these effects
are associated with the increase of HO-1 expression, which
occurs through the inhibition of a negative regulator of HO-
1 expression, Bach-1 [109].

10. Conclusions and Perspectives

Vascular health depends on a delicate balance in the vascular
wall of prooxidative and antioxidant cellular mechanisms
[10, 11]. Several lines of evidence have shown that HO-1
plays a central role in the vasoprotection effects of PGI2.
COX-2-dependent PGI2 (induced by steady LSS) upregulates
HO-1 which halts TNF-α generation in human endothelial
cells [11]. Thus, clinical conditions associated with reduced
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generation of vascular PGI2 or the inhibition of COX-2-
dependent PGI2 by coxibs and tNSAIDs may cause CV
hazard [5], at least in part, through downregulation of HO-1
expression. In fact, HO system could attenuate/block the
progression of vascular diseases via its antioxidant, anti-
inflammatory, and antiproliferative effects.

Due to several beneficial effects of HO-1 for the CV
system, it has emerged as a promising therapeutic target in
the treatment of vascular disease. Pharmacological induction
or gene transfer of HO-1 ameliorates vascular dysfunction in
animal models of atherosclerosis, postangioplasty restenosis,
vein graft stenosis, thrombosis, myocardial infarction, and
hypertension, while inhibition of HO-1 activity or gene
deletion exacerbates these disorders [110].

Gene therapy and gene transfer, including site- and
organ-specific targeted gene transfer have become powerful
tools for studying the potential role of HO-1 in the treatment
of CV diseases. HO-1 induction by pharmacological agents
or the in vitro gene transfer of human HO-1 into endothe-
lial cells increases cell cycle progression and attenuates
angiotensin II, TNF-α, and heme-mediated DNA damage. In
addition, administration of human HO-1 to rats in advance
of schemia/reperfusion injury considerably reduces tissue
damage [111]. On the other hand, it should be point out that
overexpression of human HO-1 may lead to some possible
side effects. In particular, it may accelerate tumor growth,
stimulates early stages of angiogenesis [80], increases the
occurrence of metastasis and resistance to chemotherapy and
photodynamic therapy [112].

Currently, gene therapy with the use of antioxidant genes,
such as HO-1, is emerging as a promising approach for
selecting CV pathologies, in particular for patient groups
not suitable for conventional therapies [113]. However, in
this area a further improvement of gene transfer vectors and
transfer protocols to more efficiently transduce different cell
types of the CV system is still required and diagnostic means
for better identification of patients most likely to benefit from
gene therapy interventions are lacking.
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Ylä-Herttuala, “Antioxidant gene therapy for cardiovascular
disease: current status and future perspectives,” Circulation,
vol. 117, no. 16, pp. 2142–2150, 2008.


	Introduction
	Biology of HO
	Regulation of HO-1 Gene Expression
	Polymorphisms in HO-1 Gene
	Role of HO-1 in Vascular Inflammation
	Cross-Talk between HO-1 and PGI2
	Role of HO-1 in Angiogenesis
	Interplay between HO-1 and Estrogen
	Cross-Talk between HO-1 and Cytochrome P-450-Derived Epoxyeicosatrienoic Acids
	Conclusions and Perspectives
	Authors' Contribtion
	References

