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ABSTRACT The transition density function of the Wright–Fisher diffusion describes the evolution of population-wide allele frequencies
over time. This function has important practical applications in population genetics, but finding an explicit formula under a general
diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this
classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with
the Wright–Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral
representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation
involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard
linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled
selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our
work, we obtain the rate of convergence to the stationary distribution under mutation–selection balance.

DIFFUSION processes, which are continuous-time Mar-
kov processes with almost surely continuous sample

paths, have been successfully applied in various population
genetic analyses in the past. Examples include finding the
stationary distribution of allele frequencies and approximat-
ing fixation times and probabilities (see Karlin and Taylor
1981; Ewens 2004; Durrett 2008 for other applications of
diffusion processes). This success is largely due to the fact
that the diffusion approximation captures the key features of
an evolutionary model while ignoring unimportant details,
thereby arriving at a simpler process that facilitates compu-
tation. However, when a reasonably complex model of evo-
lution is considered, one is faced with unwieldy equations
even under the diffusion approximation. In particular, for
Wright–Fisher diffusions with general diploid selection,
finding an explicit analytic transition density function,
which characterizes the evolution of population-wide allele
frequencies over time, has remained a challenging open
problem. The diffusion theory allows one to write down

a partial differential equation (PDE) satisfied by the transi-
tion density, but solving the PDE analytically has proved to
be difficult.

The transition density has several practical applications,
including the following: Recently, there has been growing
interest in analyzing samples taken from the same or related
populations at different time points. For example, such data
arise from experimental evolution of model organisms in the
laboratory (e.g., bacteria, see Lenski 2011), from viral/
phage populations (Shankarappa et al. 1999; Wichman
et al. 1999), or from ancient DNA (Hummel et al. 2005);
see also Bollback et al. (2008) and references therein. In
particular, the recent sequencing of Neanderthal (Green
et al. 2010) and Denisova (Reich et al. 2010) genomes
should provide new opportunities for studying the evolution
of allele frequencies over time, possibly under the influence
of natural selection. In applying the diffusion process to
study the evolution of the populations underlying such sam-
ples, it is important to find the transition density accurately.
Bollback et al. (2008) analyzed samples from multiple time
points by using a hidden Markov model in which the hidden
states are the population-wide allele frequencies. To approx-
imate the evolution of the allele frequencies, they applied
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finite difference methods to obtain approximate numerical
solutions to the PDE satisfied by the transition density. Finite
difference methods were also employed by Gutenkunst et al.
(2009) to obtain numerical approximations of the transition
density in Wright–Fisher diffusions with population sub-
structure, which the authors applied to develop a useful tool
for demographic inference. When employing such numerical
methods, however, one needs to exercise caution in choos-
ing appropriate discretization grid points. Which discretiza-
tion is appropriate may depend strongly on the parameters
(e.g., the selection coefficient) of the model, and it is difficult
to predict a priori whether a particular discretization will
produce accurate solutions. Also, in a numerical approach,
note that the PDE needs to be solved afresh if the initial or
the final frequency is changed. It would be useful to have
a solution that is analytic in those variables.

Since the transition density of the Wright–Fisher diffu-
sion with selection has practical applications, finding an ex-
plicit formula has significant merit and several researchers
have considered the problem. As detailed later in the text,
the so-called spectral representation of the transition density
can be found if the eigenvalues and eigenfunctions of the
diffusion generator are known. Indeed, this is the approach
taken by Kimura (1955a, 1957), first for a diallelic model
with genic selection (i.e., the case with the dominance pa-
rameter h = 1/2, as described shortly) and later for the case
of complete dominant selection (i.e., with h = 1), assuming
no recurrent mutation in both cases. More precisely, Kimura
proposed perturbation expansions of the eigenvalues and
eigenfunctions in powers of the population-scaled selection
coefficient s (defined more precisely later). Although this
method is valid for s, 1, the expansions fail to converge for
s substantially .1 [say, s . 10, which is not so unusual for
adaptive alleles (Eyre-Walker and Keightley 2007)]. Fur-
thermore, the perturbation expansion scheme described in
Kimura’s work is not entirely transparent.

For a neutral parent-independent mutation model, an ex-
plicit spectral representation of the transition density for the
one-locus Wright–Fisher diffusion has been known for some
time (Shimakura 1977; Griffiths 1979). Griffiths and Li
(1983) and Tavaré (1984) showed that this spectral repre-
sentation can be interpreted in terms of a stochastic process
dual to the diffusion. The time dependency of the transition
density is solely given through the probability distribution of
this dual process (see Griffiths and Spanò 2010 for an over-
view). Barbour et al. (2000) extended this duality approach
to include a general selection model, but the transition rates
of the dual process depend on the moments of the stationary
distribution, and under selection these moments are difficult
to compute (Donnelly et al. 2001). Hence, while being of
theoretical interest, their method does not readily lead to
efficient computation of the transition density.

In this article, we develop a new, simple computational
method with which to find analytic transition density func-
tions of diallelic Wright–Fisher diffusions under recurrent
mutation and arbitrary diploid selection. In contrast to the

aforementioned mathematical work based on duality, our
method explicitly finds the eigenvalues and eigenfunctions
of the diffusion generator associated with the diffusion, thus
leading to an explicit spectral representation of the transi-
tion density function. Specifically, the eigenfunctions are
found as a series of orthogonal functions. Although some-
what advanced mathematical concepts are needed to derive
the necessary system of equations, the resulting algorithm is
quite simple to describe and easy to implement, involving
only standard linear algebra. Furthermore, unlike previous
approaches (Kimura 1955a, 1957) based on perturbation,
which is applicable only when the population-scaled selec-
tion coefficient s is small, our method is nonperturbative
and is valid for a broad range of parameter values, including
large values of s and an arbitrary dominance parameter h.
As an application of our work, we obtain the rate of conver-
gence to the stationary distribution under mutation–selection
balance.

The rest of this article is organized as follows. We begin
with a brief review of the Wright–Fisher diffusion and de-
scribe the notion of spectral representation. Orthogonal pol-
ynomials, which we extensively employ in our work, are also
introduced. Then, we illustrate the key ideas behind our
method in the simple case of genic selection and no recur-
rent mutation. Afterward, we apply our method to the gen-
eral case of arbitrary diploid selection and recurrent
mutation and show how the results for the no-mutation case
can be recovered as a special case. We then assess the per-
formance of our method and end with discussions on possi-
ble applications and extensions.

Background

In this section, we review useful facts about diffusion pro-
cesses. In particular, we highlight some key properties satisfied
by backward generators of one-dimensional diffusions. We
also introduce the relevant orthogonal polynomials that we
utilize in our method.

Wright–Fisher diffusions

We consider a Wright–Fisher diffusion process with two
alleles, denoted A0 and A1. The population-wide frequency
of A1 is denoted by x; hence, the frequency of A0 is 1 2 x.
The genotype fitness scheme considered in this article is as
follows:

  Genotype : A0=A0 A0=A1 A1=A1

Relative fitness : 1 1þ 2  h  s 1þ 2  s

We refer to the case with the dominance parameter h = 1/2
as genic selection. The population-scaled selection coeffi-
cient is defined as s = 2Ns, where N corresponds to the
diploid population size, which is assumed to remain con-
stant over time. The rate of mutation from A0 to A1 is given
by a = 4Nu01 and from A1 to A0 by b = 4Nu10, where u01
(respectively, u10) denotes the per-generation probability of
mutation from A0 to A1 (respectively, from A1 to A0).
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Note that the genotype fitness scheme introduced above
does not include the case in which the homozygotes have
a relative fitness of 1 and the heterozygote has a relative
fitness unequal to 1. However, by choosing s close to zero
and h large, we can mimic such a scheme in our framework.
More generally, it is straightforward to apply the technique
developed in this article to a selection scheme in which the
heterozygote has relative fitness 1 + s1 and the homozygote
A1/A1 has relative fitness 1 + s2. However, to conform to the
convention widely adopted in the literature, we use the
above-mentioned parameterization of relative fitnesses.

Throughout, we use f to denote a twice continuously
differentiable bounded function over [0,1]. The backward
generator L of a one-dimensional diffusion process on [0,1]
with diffusion coefficient n2(x) and drift coefficient m(x) acts
on f as

L f ðxÞ ¼ 1
2
n2ðxÞ @2

@x2
f f   ðxÞg þ mðxÞ @

@x
f f   ðxÞg:

In the Wright–Fisher diffusion, n2(x) = x(1 2 x). The con-
tribution to m (x) from selection is

2sx   ð12 xÞ  ½x þ h  ð12 2  xÞ�;

while the contribution from recurrent mutation is

1
2  ½a  ð12 xÞ2b  x�:

See Ewens (2004, Chap. 5.1) for a more detailed description.

Self-adjointness and the spectrum of a generator

Let L2([0,1],r) denote the space of real-valued functions on
[0,1] that are square integrable with respect to some real
positive density r(x). We refer to r as the weight function.
Define the inner product h�,�ir as

hf ; gir ¼
Z 1

0
f ðxÞgðxÞrðxÞdx; (1)

for f, g 2 L2([0,1], r).
For a diffusion process with diffusion coefficient n2(x)

and drift coefficient m(x), the scale density j(x) is defined as

jðxÞ ¼ exp
�
2

Z x

x0

2  m  ðzÞ
n2   ðzÞ   d  z

�
; (2)

and the speed density p(x) is defined as

p  ðxÞ ¼ g

n2   ðxÞ  j  ðxÞ; (3)

where g is some positive constant and x0 is an arbitrary state
in [0,1]. For the results derived in this article it is crucial to
establish that L is self-adjoint with respect to p. To this end,
let f, g 2 L2([0,1], p) satisfy appropriate boundary condi-
tions relevant to the boundary behavior of the correspond-
ing diffusion. The diffusions considered in this article exhibit

exit, regular reflecting, or entrance boundaries. If 0 is an
exit boundary, then the appropriate boundary condition is
LimxY0 f(x) = 0. If 0 is either a regular reflecting or an
entrance boundary, the appropriate boundary condition is
limxY0ð1=jðxÞÞðdf ðxÞ=dxÞ ¼ 0: Similar boundary conditions
apply as x[1. See Durrett (2008) or Ewens (2004) for
more details. For the diffusions considered in this article,
their corresponding boundary conditions and integration
by parts imply

hL   f ; gip ¼ hf ;L   gip;

thus establishing that L is self-adjoint.
The key property (known as the spectral theorem) that

we utilize in our work is the following: Suppose B and B9 are
eigenfunctions of L that satisfy the requisite boundary
conditions of the diffusion process. If their eigenvalues L

and L9 are distinct, then the self-adjointness of L (i.e.,
hB;L   B9ip ¼ hL   B;B9ip) implies hB, B9ip = 0. Hence, eigen-
functions of L with distinct eigenvalues are orthogonal
with respect to the weight function p(x).

That L is a self-adjoint negative semidefinite differential
operator implies that its eigenvalues are all real and non-
positive. Furthermore, for many boundary conditions, in-
cluding the ones considered in this article, solutions of
L B  ðxÞ ¼ 2L  B  ðxÞ satisfying the requisite boundary con-
ditions exist for countably many distinct values of L. Thus,
for the diffusion processes considered in this article, there is
a unique sequence

0# L0, L1, L2,⋯;

with Ln / N as n / N (Karlin and Taylor 1981, Chap.
15.13). These eigenvalues f2LngNn¼0 are called the “spec-
trum” of L ; and it can be shown that their associated eigen-
functions fBn   ðxÞgNn¼0; which satisfy

L   Bn   ðxÞ ¼ 2Ln   Bn   ðxÞ;

form a basis of L2([0,1], p).

Spectral representation of the transition density

For any subset S 3 [0,1], the transition density function of
a diffusion process is the function p: ℝ$0 · [0,1] · [0,1] /
ℝ$0 such that

ℙ½Xt 2 S jX0 ¼ x� ¼
Z
S
pðt; x; yÞdy:

The transition density p(t; x, y) satisfies the Kolmogorov
backward equation

@p  ðt; x; yÞ
@t

¼ L p  ðt; x; yÞ

¼ 1
2
  n2   ðxÞ  @

2

@x2
  fp  ðt; x; yÞg

þ m  ðxÞ  @
@x

  fp  ðt; x; yÞg;
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and the appropriate boundary conditions, see Karlin and
Taylor (1981, Chap. 15.5). Here, the differential operator
L is the backward generator of the diffusion and it acts
on x.

Let {Bn(x)} be the eigenfunctions of L that satisfy
the proper boundary conditions of the diffusion process.
Further, let 2Ln denote the eigenvalue of Bn(x). Then,
fn   ðt; xÞ ¼ e2Ln   t   Bn   ðxÞ satisfies the partial differential
equation

@fn   ðt; xÞ
@t

¼ L   fn   ðt; xÞ; (4)

and the requisite boundary conditions. Furthermore, since
L is a linear differential operator, a linear combination of
e2LntBnðxÞ is also a solution to (4). The spectral representa-
tion of p(t; x, y) is given by

p  ðt; x; yÞ ¼
XN
n¼0

cn   ðyÞ  e2Ln   t   Bn   ðxÞ;

where the coefficients cn(y) depend on y and are set to
satisfy the initial condition. For p(0; x, y) = d(x 2 y), the
Dirac-delta distribution, we obtain

pðt; x; yÞ ¼
XN
n¼0

e2Ln   t   p  ðyÞBnðxÞBnðyÞhBn;Bnip
; (5)

where p is the speed density defined in (3) and h�,�ip is the
inner product defined in (1). See Karlin and Taylor (1981,
Chap. 15.13) for further details and examples.

In summary, the transition density function of a diffusion
process can be determined if the eigenvalues and the
eigenfunctions of L are known. The orthogonal polyno-
mials described in the following two subsections are such
eigenfunctions for certain neutral Wright–Fisher diffusion
processes, and we make extensive use of them in our work
to solve the eigenvalue problem in the presence of selection.

In practice, we do not need to sum over infinitely many
terms in (5). Since Ln / N as n / N, the exponential
term e2Ln   t will be negligibly small for n sufficiently large.
Hence, we can obtain accurate approximations of p(t; x, y)
for t . 0 by summing over n from 0 to some reasonable
finite cutoff. In Empirical transition densities and station-
ary distributions and Rate of convergence to the stationary
distribution we provide explicit examples illustrating this
property.

Jacobi polynomials

An excellent treatise on orthogonal polynomials can be
found in Szegö (1939) and a concise collection of related
formulas can be found in Abramowitz and Stegun (1965,
Chap. 22). Here, we briefly review some key facts about
a particular type of classical orthogonal polynomials.

For z 2 [21,1], the Jacobi polynomials Pða;bÞn   ðzÞ satisfy
the differential equation

�
12 z2

� d2f   ðzÞ
dz2

þ ½b2 a2 ðaþ bþ 2Þz� df ðzÞ
dz

þ n  ðnþ aþ bþ 1Þ  f ðzÞ ¼ 0: (6)

For fixed a, b . 21, fPða;bÞn   ðzÞg form an orthogonal system
with respect to the weight function (1 2 z)a (1 + z)b on the
interval [21,1]. Since the domain and the parameters of
Pða;bÞn   ðzÞ are not suitable for our purpose, we define the
following modified Jacobi polynomials, for x 2 [0,1] and
a, b . 0:

Rða;bÞ
n   ðxÞ ¼ Pðb21;a21Þ

n   ð2x2 1Þ:

Griffiths and Spanò (2010) use a slightly different, although
related, convention.

For x 2 [0,1], the modified Jacobi polynomials Rða;bÞ
n   ðxÞ

satisfy the differential equation

x   ð12 xÞ  d
2   f   ðxÞ
dx2

þ ½a2 ðaþ bÞ  x�   df ðxÞ
dx

þ n  ðnþ aþ b2 1Þ  f   ðxÞ ¼ 0; (7)

which follows immediately from (6). For fixed a, b . 0,
fRða;bÞ

n   ðxÞg is an orthogonal system with respect to the
weight function xa21(1 2 x)b21 on [0,1]. More precisely,

Z 1

0
Rða;bÞn   ðxÞ  Rða;bÞm ðxÞ xa21ð12xÞb21   dx ¼ dn;mDn   ða; bÞ;

(8)

where dn,m denotes the Kronecker delta and the coefficient
Dn(a,b) is defined as

Dn   ða; bÞ ¼ Gðnþ aÞGðnþ bÞ
ð2  nþ aþ b2 1Þ  G  ðnþ aþ b2 1Þ  G  ðnþ 1Þ:

(9)

Furthermore, fRða;bÞ
n   ðxÞg form a complete basis of the Hil-

bert space L2([0,1], xa21(1 2 x)b21).

For n $ 1, it can be shown that Rða;bÞ
n   ðxÞ satisfies the

recurrence relation

x  Rða;bÞ
n   ðxÞ ¼ ðnþ a21Þ  ðnþ b2 1Þ

ð2  nþ aþ b2 1Þ  ð2  nþ aþ b22Þ   R
ða;bÞ
n21   ðxÞ

þ
�
1
2
2

b2 2 a2 2 2  ðb2 aÞ
2  ð2  nþ aþ bÞ  ð2  nþ aþ b2 2Þ

�
  Rða;bÞn   ðxÞ

þ ðnþ 1Þ  ðnþ aþ b21Þ
ð2  nþ aþ bÞ  ð2  nþ aþ b21Þ   R

ða;bÞ
nþ1   ðxÞ;

(10)

while, for n = 0,

x   Rða;bÞ0   ðxÞ ¼ a
aþ b

  Rða;bÞ
0 ðxÞ þ 1

aþ b
  Rða;bÞ1   ðxÞ: (11)

Also, note that Rða;bÞ
0   ðxÞ[1. The above recurrence relations

plays an important role in our work.
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Gegenbauer polynomials

The classical Gegenbauer polynomials are a special case of
the classical Jacobi polynomials, namely Pð1;1Þn   ð2x21Þ. In
our work, we define Gn(x) as

Gn   ðxÞ ¼ 2 x   ð12 xÞ  Pð1;1Þn   ð2x2 1Þ ¼ 2 x   ð12 xÞ  Rð2;2Þn   ðxÞ

and refer to them as modified Gegenbauer polynomials.
The minus sign will prove convenient later. Using (7), it
can be shown that Gn(x) satisfies the differential equation

x   ð12 xÞ  d
2f ðxÞ
dx2

þ ðnþ 2Þ  ðnþ 1Þ  f ðxÞ ¼ 0: (12)

Further, {Gn(x)} form an orthogonal system of polynomials
with respect to the weight function x21(1 2 x)21:

Z 1

0
Gn   ðxÞ  Gm   ðxÞ  x21   ð12xÞ21   dx ¼ dn;m  

nþ 1
ðnþ 2Þ  ð2nþ 3Þ:

Using the completeness of the Jacobi polynomials, it can
be shown that {Gn(x)} form a complete basis of L2([0,1],
x21(1 2 x)21).

For n $ 1, Gn(x) satisfies the recurrence relation

xGn   ðxÞ ¼ nþ 1
2  ð2nþ 3Þ   Gn21   ðxÞ þ 1

2
  Gn   ðxÞ

þ ðnþ 1Þ  ðnþ 3Þ
2ðnþ 2Þð2nþ 3Þ   Gnþ1   ðxÞ;

(13)

while, for n = 0,

x   G0   ðxÞ ¼ 1
2
  G0   ðxÞ þ 1

4
  G1   ðxÞ:

These relations follow from (10) and (11). Furthermore, we
have G0(x) [ 2x(12x).

Diffusions with Genic Selection and No Mutation

As described earlier, to obtain the spectral representation of p
(t; x, y), we need to solve the eigenvalue problem for the
diffusion generator. In this section, we illustrate the key ideas
underlying our method by considering the simple case of no
mutation and genic selection (h = 1/2), in which case the
involved algebra simplifies significantly. Incidentally, the
genic selection case has been considered by many other
researchers in the past; for example, see Kimura (1955a,
1957), Etheridge and Griffiths (2009), and Griffiths (2003).
The modified Gegenbauer polynomials introduced above will
play an important role in this section. The case with both
recurrent mutation and general diploid selection (i.e., h not
necessarily equal to 1/2) is addressed in the next section.

Description of the main idea

Let L 0 denote the diffusion part of the backward generator:

L 0 f ðxÞ ¼ 1
2
  x   ð12 xÞ  @

2

@x2
  f f   ðxÞg: (14)

As is well known (Kimura 1955a,b, 1957; Karlin and Taylor
1981), it follows from Equation 12 that the modified Gegen-
bauer polynomials Gn(x) are eigenfunctions of L 0,

L 0Gn   ðxÞ ¼ 2 ln   Gn   ðxÞ;

where

ln ¼
�
nþ 2
2

�
:

With genic selection, the full backward generator is

L   f   ðxÞ ¼ 1
2
  x   ð12 xÞ  @

2

@x2
  ff ðxÞg þ s  x   ð12 xÞ  @

@x
  ff   ðxÞg:

(15)

The speed density corresponding to this diffusion process is

p  ðxÞ ¼ e2  s  x

x   ð12 xÞ; (16)

where we used x0 = 0 and g= 1 in (2) and (3), respectively.
Our goal is to find the eigenfunctions Bn(x) and the as-

sociated eigenvalues 2Ln of the full generator L :

L Bn   ðxÞ ¼ 2Ln   Bn   ðxÞ: (17)

As discussed in Background, L is self-adjoint with respect to
the weight function p(x), which implies that its eigenfunc-
tions Bn(x) and Bm(x), for n 6¼ m, are orthogonal with re-
spect to p(x); i.e.,

Z 1

0
Bn   ðxÞ  Bm   ðxÞ  p  ðxÞ  dx} dn;m;

where p(x) is shown in (16). In addition to the eigenfunc-
tions, there may exist other sets of functions that are orthog-
onal with respect to the same weight function p(y). For
example, consider

Hn   ðxÞ ¼ e2s  x   Gn   ðxÞ: (18)

We can verify that Hn(x) and Hm(x), for n 6¼ m, are orthog-
onal with respect to the weight function p(x):

R 1
0 Hn   ðxÞ Hm   ðxÞ  p  ðxÞ  dx ¼ R 1

0 Gn   ðxÞ  Gn   ðxÞ  x21   ð12xÞ21   dx

¼ dn;m  
nþ 1

ðnþ 2Þ  ð2nþ 3Þ:

However, by directly applying L to Hn(x), one can check
that Hn(x) are not eigenfunctions of L . But, since both
{Hn(x)} and {Bn(x)} are orthogonal with respect to the same
weight function p(x), and {Hn(x)} form a basis of
L2([0,1],p), we can represent Bn(x) as a linear combination
of Hm(x),
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Bn   ðxÞ ¼
XN
m¼0

un;m   Hm   ðxÞ; (19)

where un,m are constants to be determined. In the absence of
mutation, states 0 and 1 are absorbing states (exit bound-
aries), so, as discussed in Background, Bn(x) must satisfy the
boundary conditions limxY0Bn(x) = limx[1Bn(x) = 0. Indeed,
our proposed eigenfunctions satisfy those conditions since
Hm(0) = Hm(1) = 0 for all m $ 0.

Now, one can show

L Hn   ðxÞ ¼ e2s  x   ½L 0   Gn   ðxÞ2Q  ðx;sÞ  Gn   ðxÞ�
¼ 2 e2s  x   ½ln   Gn   ðxÞ þ Q  ðx;sÞ  Gn   ðxÞ�; (20)

where

Q  ðx;sÞ ¼ 1
2
s2   x   ð12 xÞ: (21)

For small s, Kimura (1955a) employed an equation similar
to (20) to obtain perturbation expansions in powers of s for
the eigenvalues and the eigenfunctions of the forward dif-
fusion generator. Here, we proceed along a different avenue.
The key difference is that our approach is nonperturbative
and that it is valid for all parameter values.

Using (20) together with (17) and (19), we obtain

XN
m¼0

un;m   ½lm þ Q  ðx;sÞ�  Gm   ðxÞ ¼ Ln  
XN
m¼0

un;m   Gm   ðxÞ:

(22)

Now, for m $ 0, (13) can be used to show

Qðx;sÞGmðxÞ ¼ að22Þ
m Gm22ðxÞ þ að0Þm GmðxÞ þ aðþ2Þ

m Gmþ2ðxÞ;

where

að22Þ
m ¼ 2s2  

1
8
 

m  ðmþ 1Þ
ð2mþ 1Þ  ð2mþ 3Þ   1fm$2g;

að0Þm ¼ þs2  
1
4
 

ðmþ 1Þ  ðmþ 2Þ
ð2mþ 1Þ  ð2mþ 5Þ;

aðþ2Þ
m ¼ 2s2  

1
8
 

ðmþ 1Þ  ðmþ 4Þ
ð2mþ 3Þ  ð2mþ 5Þ:

(23)

In the first line of (23), 1{Y} denotes an indicator function
that is equal to 1 if statement Y is true or 0 otherwise. For
a nonnegative integer k, multiplying (22) by Gk(x) and in-
tegrating over [0,1] with respect to the weight function
x21(1 2 x)21 yields

lk   un;k þ að22Þ
kþ2   un;kþ2 þ að0Þk   un;k þ aðþ2Þ

k22   un;k22 ¼ Ln   un;k;

(24)

where we define aðþ2Þ
22 ¼ aðþ2Þ

21 ¼ 0: Note that (24) specifies
a linear system of equations with un,0,un,1,un,2,. . ., as
variables.

Algorithm 1 (genic selection)

The eigenvalues and eigenfunctions of the backward gener-
ator L (15) for the genic selection case can be obtained as
follows. In matrix form, (24) can be written as
0
BBBBBBBB@

l0 þ að0Þ0 0 að22Þ
2 0 0 ⋯

0 l1 þ að0Þ1 0 að22Þ
3 0 ⋯

aðþ2Þ
0 0 l2 þ að0Þ2 0 að22Þ

4 ⋯
0 aðþ2Þ

1 0 l3 þ að0Þ3 0 ⋯
0 0 aðþ2Þ

2 0 l4 þ að0Þ4 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

1
CCCCCCCCA
 

0
BBBBBB@

un;0
un;1
un;2
un;3
un;4
⋮

1
CCCCCCA

¼ Ln

0
BBBBBB@

un;0
un;1
un;2
un;3
un;4
⋮

1
CCCCCCA
:

(25)

Let M denote the infinite-dimensional matrix on the left
hand side of (25). The key fact is that the eigenvalues Ln

of M correspond to the eigenvalues of L (up to a sign), and
the associated eigenvectors un = (un,0, un,1, un,2,. . .) of M
determine the eigenfunctions of L via (19). Now, we con-
sider a sequence of approximations by truncating (25). For
a positive integer D, we let M[D] be an D-by-D matrix
obtained by taking the first D rows and the first D columns
of M, and let uðDÞ

n ¼ ðu½D�n;0; u
½D�
n;1; . . . ; u

½D�
n;D21Þ. Then, we approx-

imate (25) by

M½D�   u½D�n ¼ L½D�
n   u½D�n

and solve this finite-dimensional linear system to obtain
eigenvalues L½D�

n and eigenvectors u½D�
n : This linear algebra

problem can be easily solved using standard software pack-
ages such as Matlab, Mathematica, or the freely available
LAPACK library (http://www.netlib.org/lapack/). We show
in Empirical Results that L½D�

n and u½D�n;m converge very rapidly
as the truncation level D increases.

The eigenvectors u½D�
n come in two types: Either u½D�n;m ¼ 0

for all m even or u½D�n;m ¼ 0 for all m odd. In fact, the linear
system M½D�   u½D�

n ¼ L½D�
n   u½D�

n can be decomposed into two
subsystems, one involving only the even rows and even
columns of M[D] acting on un,m for m odd, and the other
involving only the odd rows and odd columns of M[D] act-
ing on un,m for m even. Hence, the eigenvalues and eigen-
vectors of M[D], for D = 2D9, can be determined by solving
two D9-dimensional linear systems.

In the case of genic selection with no recurrent mutation,
the eigenfunctions Bn(x) of the backward generator L are
also known as the oblate spheroidal functions in mathemat-
ical physics, and they have received considerable amounts of
attention previously (e.g., see Stratton et al. 1941). Note
that the algorithm presented in this section provides an ef-
ficient way to evaluate these functions, a problem that
remained difficult in the past.

Due to the exponential weighting factors in the speed density
(16) and in the basis functions (18) for the eigenfunction
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expansion, evaluation of the transition density for large selection
coefficients involves combining quantities with substantially
different orders of magnitude. Thus, to obtain accurate numer-
ical values of the transition density under strong selection, the
coefficients u½D�

n must be determined with high precision.

Diffusions with General Diploid Selection
and Recurrent Mutation

In this section, we generalize the method developed in the
previous section by incorporating recurrent mutation and
general diploid selection into the diffusion process. The same
overall strategy described above applies here as well. The main
computational differences are that general diploid selection
leads to more involved algebra and that, to handle recurrent
mutation, we need to deal with general Jacobi polynomials
instead of the modified Gegenbauer polynomials.

Neutral diffusion with recurrent mutation

For a neutral diallelic model with recurrent mutation, the
backward generator L 0 is given by

L 0   f ðxÞ ¼ 1
2
  x   ð12 xÞ  @

2

@x2
  ff   ðxÞg þ 1

2
  ½a  ð12 xÞ2b  x�   @

@x
  ff   ðxÞg:

(26)

See Background for the definitions of a and b. By appropri-
ately choosing the constants x0 and g in (2) and (3), the speed
density corresponding to this diffusion can be defined as

p0   ðxÞ ¼ xa21   ð12xÞb21; (27)

which is the unnormalized Beta distribution. It can be shown
(see Karlin and Taylor 1981, Chap. 15.13, or compare with
Equation 7) that the Jacobi polynomials Rða;bÞ

n   ðxÞ are eigen-
functions of the backward generator L 0 with eigenvalues
2lða;bÞn , where

l
ða;bÞ
n ¼ 1

2
  n  ðnþ aþ b2 1Þ: (28)

Furthermore, the Jacobi polynomials Rða;bÞ
n ðxÞ form an or-

thogonal system with respect to the weight function p0(x).
Under recurrent mutation, the diffusion exhibits either reg-
ular or entrance boundaries (e.g., see Karlin and Taylor
1981, Chap. 15.6, Example 8). The respective conditions
given in Background for x = 0 and x = 1 imply that the
eigenfunctions u(x) of L 0 need to satisfy

lim
xY0

xa  
@

@x
  ff  ðxÞg ¼ 0 and lim

x[1
ð12xÞb   @

@x
  ff  ðxÞg ¼ 0;

and the modified Jacobi polynomials Rða;bÞ
n ðxÞ obey these

conditions.

Adding general diploid selection

The backward generator of the diffusion process with
recurrent mutation and general diploid selection is

L f   ðxÞ ¼ L0 f   ðxÞ þ 2  s  x  ð12 xÞ  ½x þ h  ð122  xÞ� @

@x
ff   ðxÞg;

(29)

where L0 fðxÞ is the selectively neutral part shown in (26).
With appropriate constants x0 and g in (2) and (3), the
speed density for this diffusion can be defined as

p  ðxÞ ¼ e�s  ðxÞ   p0   ðxÞ; (30)

where p0(x) is given in (27) and �s ðxÞ is the mean fitness
function given by

�s  ðxÞ ¼ 2  h  s � 2  ð12 xÞ  x þ 2  s � x2 ¼ 2  s  x   ½x þ 2  h  ð12 xÞ�;
(31)

which simplifies to the linear function 2sx for h = 1/2. The
discussion in Background implies that the full backward gen-
erator L is self-adjoint with respect to the weight function
p(x), and that its eigenfunctions {Bn(x)} form an orthogonal
system with respect to the same weight function. Now, if we
define Kn(x) as

Kn   ðxÞ ¼ e2�s  ðxÞ=2   Rða;bÞn   ðxÞ; (32)

then (8) implies that {Kn(x)} is a complete system of orthog-
onal functions with respect to the weight function p(x).
However, by applying the generator L to Kn(x), one can
show that Kn(x) is not an eigenfunction of L . Rather, we
obtain

L   Kn   ðxÞ ¼ e2�s  ðxÞ=2  
n
L 0   R

ða;bÞ
n   ðxÞ2Q  ðx;a;b;s; hÞ  Rða;bÞ

n   ðxÞ
o

   ¼ 2 e2�s  ðxÞ=2  
h
l
ða;bÞ
n   Rða;bÞ

n   ðxÞ þ Q  ðx;a;b;s; hÞ  Rða;bÞn   ðxÞ
i
;

where Q(x;a,b,s,h) is the following degree-4 polynomial
in x:

Q  ðx;a;b;s; hÞ ¼ s 
�
h  aþ ½1þ a2 ð2þ 3  aþ bÞ  h�  x2 ð1þ aþ bÞ  ð122  hÞ  x2	

þ 2  s2   x   ð12 xÞ  ðhþ x22  hxÞ2:
(33)

For no recurrent mutation (a = b = 0) we get (1 2 x)xs
[1 2 2h + 2(h + x 22hx)2s], and for h = 1/2 (genic
selection), (33) reduces to a degree-2 polynomial:
1
2  fs  ½2b  x þ a  ð12xÞ� þ s2   x   ð12xÞg In the case of just
drift and genic selection, we obtain 1

2  s
2   x   ð12xÞ as in

(21).
Again, {Bn(x)} and {Kn(x)} are orthogonal with respect

to the same weight function p(x), and {Kn(x)} form a basis
of L2([0,1],p), where p is defined in (30). Hence, we pose
a representation for the eigenfunctions of the form

Bn   ðxÞ ¼
XN
m¼0

wn;m   Km   ðxÞ ¼
XN
m¼0

wn;m   e2�s  ðxÞ=2   Rða;bÞm   ðxÞ;

(34)

where wn,m are constants to be determined. It can be
checked that Km   ðxÞ ¼ e2�s  ðxÞ=2   Rða;bÞ

m   ðxÞ, for all m $ 0,
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satisfies the proper regular reflecting or entrance boundary
conditions, and hence so does Bn(x).

Now, L BnðxÞ  ¼  2LnBnðxÞ implies the following alge-
braic equation:

XN
m¼0

wn;m  
h
l
ða;bÞ
m þ Q  ðx;a;b;s; hÞ

i
  Rða;bÞm   ðxÞ ¼ Ln  

XN
m¼0

wn;m   R
ða;bÞ
m   ðxÞ:

(35)

Using (10), we can represent Q  ðx;a;b;s; hÞ  Rða;bÞ
n   ðxÞ as

a finite linear combination of Rða;bÞ
j   ðxÞ:

Q  ðx;a;b;s; hÞ  Rða;bÞ
m   ðxÞ ¼ bð24Þ

m   Rða;bÞ
m24   ðxÞ þ bð23Þ

m   Rða;bÞ
m23   ðxÞ

þ⋯þ bðþ3Þ
m   Rða;bÞmþ3   ðxÞ þ bðþ4Þ

m   Rða;bÞ
mþ4   ðxÞ;

(36)

where the coefficients bðiÞm are constants that depend on m,
a, b, s, and h.

For a nonnegative integer k, multiplying (35) by Rða;bÞ
k   ðxÞ

and integrating over [0,1] with respect to the weight func-
tion p0(x) yields

l
ða;bÞ
k  wn;k þ bð24Þ

kþ4  wn;kþ4 þ bð23Þ
kþ3   wn;kþ3 þ⋯þ bðþ3Þ

k23  wn;k23

þ bðþ4Þ
k24   wn;k24¼Ln  wn;k;

(37)

where we define bðiÞj ¼ 0 if j , 0.

Algorithm 2 (recurrent mutation and general
diploid selection)

We can now describe our algorithm for finding the eigen-
values and eigenfunctions of the backward generator L de-
fined in (29) for the case with recurrent mutation and
general diploid selection. From (37), we arrive at a linear
system M wn = Ln wn, where wn = (wn,0,wn,1,wn,2,. . .) is an
infinite-dimensional vector of variables and M is an infinite-
dimensional matrix given by

M ¼

0
BBBBBBBBBBBBBB@

l
ða;bÞ
0 þ bð0Þ0 bð21Þ

1 bð22Þ
2 bð23Þ

3 bð24Þ
4 0 0 ⋯

bðþ1Þ
0 l

ða;bÞ
1 þ bð0Þ1 bð21Þ

2 bð22Þ
3 bð23Þ

4 bð24Þ
5 0 ⋯

bðþ2Þ
0 bðþ1Þ

1 l
ða;bÞ
2 þ bð0Þ2 bð21Þ

3 bð22Þ
4 bð23Þ

5 bð24Þ
6 ⋯

bðþ3Þ
0 bðþ2Þ

1 bðþ1Þ
2 l

ða;bÞ
3 þ bð0Þ3 bð21Þ

4 bð22Þ
5 bð23Þ

6 ⋯
bðþ4Þ
0 bðþ3Þ

1 bðþ2Þ
2 bðþ1Þ

3 l
ða;bÞ
4 þ bð0Þ4 bð21Þ

5 bð22Þ
6 ⋯

0 bðþ4Þ
1 bðþ3Þ

2 bðþ2Þ
3 bðþ1Þ

4 l
ða;bÞ
5 þ bð0Þ5 bð21Þ

6 ⋯
0 0 bðþ4Þ

2 bðþ3Þ
3 bðþ2Þ

4 bð1Þ5 l
ða;bÞ
6 þ bð0Þ6 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

1
CCCCCCCCCCCCCCA

Closed-form formulas for bðiÞm can be found easily using sym-
bolic computation software such as Mathematica. In the Ap-
pendix, we provide a dynamic programming algorithm for
computing bðiÞm which is useful for implementation in an im-
perative programming language such as C/C++. If h = 1/2,
bð24Þ
m ¼ bð23Þ

m ¼ bðþ3Þ
m ¼ bðþ4Þ

m ¼ 0 for all m $ 0, and there-
fore only the innermost five diagonals of M will be nonzero.
As in Algorithm 1, we approximateMwn = Ln wn by a finite-
dimensional truncated linear system

M½D�  w½D�
n ¼ L½D�

n  w½D�
n ;

where wðDÞ
n ¼ ðw½D�

n;0;w
½D�
n;1; . . . ;w

½D�
n;D21Þ and M[D] is the subma-

trix of M consisting of its first D rows and D columns. This
finite-dimensional linear system can be easily solved to ob-
tain the eigenvalues L½D�

n and the eigenvectors w½D�
n of M[D].

We show in Empirical Results that L½D�
n and w½D�

n;m converge
very rapidly as the truncation level D increases.

Note that the same cautionary remark mentioned at the
end of Algorithm 1 also applies here.

Special case: No recurrent mutation

Let L 0 denote the diffusion generator defined in (14),
which can be obtained from (26) by setting a = b = 0.
Since Rða;bÞ

0   ðxÞ[1, it satisfies L 0B  ¼  2lB with l = 0.
However, for a = b = 0, the boundaries are exit boundaries,
and therefore Rða;bÞ

0   ðxÞ does not satisfy the requisite bound-
ary conditions. Furthermore, Rða;bÞ

1   ðxÞ ¼ bx2a  ð12xÞ/0
as a, b / 0, so it is not of interest. In contrast, for n $ 0,
Rða;bÞ
nþ2   ðxÞ converges to Gn(x) as a, b/ 0, and, as established

in Background, Gn(x) satisfies L 0B  ¼  2lB with l ¼ l
ð0;0Þ
nþ2

and satisfies the requisite boundary conditions for a = b =
0. In summary, as a, b / 0, the first two modified Jacobi
polynomials become irrelevant, while the rest converge to
the appropriate eigenfunctions of L 0. These facts have been
noticed before (e.g., see Griffiths and Spanò 2010), and they
allow us to embed the model with no recurrent mutation
conveniently into the model with recurrent mutation as de-
scribed below.

If a = b = 0, let Ln and wn = (wn,0,wn,1,. . .), respectively,
denote the eigenvalues and eigenvectors of M9, the subma-
trix ofM obtained by omitting the first two rows and the first
two columns. Defining Km   ðxÞ :¼ e�s�  ðxÞ=2  Gm   ðxÞ (instead of
Equation 32) yields the eigenvalues Ln and the eigenfunc-
tions Bn(x) for the backward diffusion generator with a gen-
eral diploid selection model but no recurrent mutation.
Indeed, under genic selection (h = 1/2) and a = b = 0,
one can show that bð24Þ

mþ2 ¼ bð23Þ
mþ2 ¼ bð21Þ

mþ2 ¼ bðþ1Þ
mþ2 ¼ bðþ3Þ

mþ2 ¼
bðþ4Þ
mþ2 ¼ 0, while bð22Þ

mþ2 ¼ að22Þ
m , bð0Þmþ2 ¼ að0Þm , and bðþ2Þ

mþ2 ¼ aðþ2Þ
m ,

where aðiÞj are defined in (23). The cases a . 0, b = 0 and
a = 0, b . 0 can be treated along similar lines.

Empirical Results

In this section we study the convergence behavior of the
eigenvalues and eigenvectors of the submatrix M[D] as its
dimension D increases. Further, we show how the spectral
representation of the transition density can be employed to
characterize the convergence rate of the diffusion to statio-
narity, i.e., mutation–selection equilibrium.

Convergence of the eigenvalues and eigenfunctions

As the dimension D of the submatrix M[D] increases, we gen-
erally observe rapid convergence of the eigenvalues L½D�

n and
the entries w½D�

n;m of the eigenvectors, for fixed n,m , D. For
example, the convergence behavior of L½D�

0 ;L
½D�
5 ;L

½D�
10 is shown

in Figure 1, A and B, for s = 10 and s = 100, respectively,
with mutation parameters a = 0.01, b = 0.01 and the
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dominance parameter h = 1/2. Figure 1, A and B, illustrates
that, for both s= 10 and s= 100, L½D�

0 converges rapidly to 0
as D increases, consistent with our expectation (see below).
The figures illustrate that in general L½D�

n converges rapidly for
a wide range of s values, but that the convergence rate slows
down as s increases. For a and b in biologically relevant
ranges (say, 1023 to 1021), we generally observe that chang-
ing the mutational parameters does not affect the conver-
gence behavior significantly. Also, the dominance parameter
h has little influence on the convergence rate provided that
0 # h # 1.

The typical convergence behavior of the eigenvector entries
w½D�

n;m is illustrated in Figure 1, C and D, for s= 10 and s=100,
respectively. As Figure 1C shows, the rate of convergence is very
fast for small s. For large s, as in Figure 1D, w½D�

n;m may fluctuate
for small values of D, but they stabilize rapidly as D increases. In
general, we observe that the convergence of L½D�

n and that of
w½D�

n;m are roughly synchronized; i.e., for a fixed n, Ln and w½D�
n;m

stabilize near similar values of D.
Figure 2 shows the dependence of L½D�

n on s, h, and n.
Observe that L½D�

n increases rapidly as n increases, which
implies that using a finite number of terms in the spectral
representation of the transition density should yield an ac-
curate approximation of the true transition density. Increas-
ing s or choosing h significantly different from 0.5 (the
genic selection case) shifts the entire spectrum upward,
but in all cases we observe that L½D�

n increases rapidly with n.

Empirical transition densities and
stationary distributions

For given mutation and selection parameters, the eigenval-
ues 2Ln and the eigenfunctions Bn(x) found by our method
can be used to obtain the transition density via the spectral
representation (5), for arbitrary t . 0 and x, y 2 [0,1]. This

representation includes the stationary density, which admits
a more explicit analytic form. To this end, note that a diffu-
sion generator L maps constant functions to zero. In the
case with recurrent mutation, we have either regular reflect-
ing or entrance boundaries, and constant functions actually
satisfy the requisite boundary conditions. Hence, constant
functions are valid eigenfunctions of L with eigenvalue
zero. That is, L0 = 0 and B0(x) = C, where C is some
constant, for all x 2 [0,1]. Thus, the density of the stationary
measure is given by

lim
t/N

p  ðt; x; yÞ ¼ p  ðyÞ  B0   ðxÞ  B0   ðyÞhB0;B0ip
¼ p  ðyÞ  C2

hC;Cip
¼ p  ðyÞR 1

0 p  ðzÞ  d  z
;

where p  ðyÞ ¼ e�s  ðyÞ   p0   ðyÞ is the speed density defined in
(30). The integral in the denominator (which corresponds to
a normalization constant for the stationary density) can be
solved efficiently using our approach: Since B0 is a constant
function, we can express the integral as

Z 1

0
p  ðzÞ  d  z ¼ hB0;B0ip

B0   ð1Þ  B0   ð1Þ:

Then, using the representation

B0   ðxÞ ¼
XN
m¼0

w0;m   e2�s  ðxÞ=2   Rða;bÞm   ðxÞ;

and the facts �s  ð1Þ ¼ 2  s [cf., (31)] and
Rða;bÞ
n   ð1Þ ¼ G  ðnþ bÞ=½G  ðnþ 1Þ  G  ðbÞ�, we obtain

Figure 1 Convergence of the eigenvalues L½D�
n

and coefficients w½D�
n;m with increasing truncation

level D. The mutation rates are set to a ¼ b ¼
0.01 and the dominance parameter h ¼ 0.5. (A)
L

½D�
0 ;L

½D�
5 ;L

½D�
10 for s ¼ 10. (B) L½D�

0 ;L
½D�
5 ;L

½D�
10 for

s ¼ 100. (C) w½D�
5;3;w

½D�
5;5;w

½D�
5;8 for s ¼ 10. (D)

w½D�
5;3;w

½D�
5;5;w

½D�
5;8 for s ¼ 100.
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R 1
0 p  ðzÞ  d  z ¼

PN
m¼0

�
w0;m

�2
 
D
Rða;bÞm ;Rða;bÞm

E
p0

e2�s  ð1Þ  
hP

N
k¼0w0;k   R

ða;bÞ
k   ð1Þ

i2

¼
PN

m¼0
�
w0;m

�2
  Dm   ða;bÞ

e22s  

�P
N
k¼0w0;k  

G  ðkþ bÞ
G ðkþ 1Þ  G ðbÞ

�2 ; (38)

where Dm(a,b) is the combinatorial coefficient defined in
(9). Thus, the integral can be evaluated purely algebraically.
For a fixed n, wn,m / 0 as m / N, so we can obtain an
accurate approximation of (38) by truncating the infinite
sums and by computing w0,m using the method described
in this article. In special cases, the integral

R 1
0 p  ðzÞ  d  z can

be evaluated numerically using other methods (e.g., see
Wakeley and Sargsyan 2009), but, for general s and h,
standard numerical integration techniques do not seem to
provide accurate answers.

Figure 3 shows some examples of the time evolution of
the transition density function, with the t = N case corre-
sponding to the stationary distribution. Specifically, three
different types of selection schemes are illustrated:

1. Illustrated in Figure 3A are the densities for strong posi-
tive selection (s = 100, h = 0.5), when starting with
a small initial frequency of x = 0.0005. As expected,
for small t there is still some probability mass near 0,
but already a substantial amount has moved to 1. At
stationarity, the mass is concentrated at the boundaries,
with the concentration near 1 being far more pronounced
than that near 0.

2. Figure 3B shows the dynamics of balancing selection (s =
0.01, h = 10000), starting from initial frequency x =
0.0005. As time evolves, the mass gets shifted from the
boundary at 0 to an intermediate frequency of y = 0.5,
where a large fraction of probability mass resides at
stationarity.

3. In Figure 3C, the allele A1 exhibits weakly deleterious
selection (s = 21, h = 0.5), with the initial frequency
being x = 0.5. Initially most of the probability mass is
concentrated around frequency y = 0.5. As the density
evolves with time, it spreads out over the interval, and
the peak of the density moves to lower frequencies. At
stationarity, most of the mass is concentrated around the
boundary at 0.

Rate of convergence to the stationary distribution

The spectral representation also allows us to obtain the rate
of convergence to the stationary density. The difference d(t;
x, y) between the transition density and the stationary den-
sity is given by

d  ðt; x; yÞ :¼ p  ðt; x; yÞ2 p  ðyÞR 1
0 p  ðzÞ  d  z

¼
XN
n¼1

e2Ln   t   p  ðyÞ  Bn   ðxÞ  Bn   ðyÞhBn;Bnip
:

Define kfk1=p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hf ; fi1=p

q
. Then, by orthogonality of the

eigenfunctions, we obtain

kdðt; x; �Þk21=p ¼ PN
n¼1

e22 Ln   t ½Bn   ðxÞ�2
hBn;Bnip

¼
XN
n¼1

e22 Ln   t
e2�s  ðxÞ  

hP
N
k¼0wn;k   R

ða;bÞ
k   ðxÞ

i2
P

N
m¼0

�
wn;m

�2
  Dm   ða;bÞ

; (39)

which can be approximated by truncating the infinite sums.
Figure 4 shows the dependence of ∥dðt; x; �Þ∥21=p on time t, for
a = 0.01, b = 0.01, h = 0.5, s2{1,10,100}, and initial
frequency x = 0.0005. As expected, the distance to the sta-
tionary distribution decreases over time, and the rate of
convergence is faster for larger s. We note that the spectral
representation can also be readily employed to study con-
vergence rates measured by other metrics such as the total
variation distance or relative entropy.

Discussion

In this article, we developed a simple method for finding
the eigenvalues and eigenfunctions of the diffusion gen-
erator associated with the Wright–Fisher diffusion with
recurrent mutation and general diploid selection. As de-
scribed in Background, these eigenvalues and eigenfunc-
tions can be used to construct a spectral representation
(5) of the transition density. Since the eigenvalues 2Ln

tend to 2N as n / N, and the contribution of the nth
eigenfunction to the transition density is proportional to
e2Ln   t, we can truncate the series (5) at some appropriate
level and obtain a highly accurate approximation of the
transition density. The mathematical derivation of our
work invokes the theory of self-adjoint operators and or-
thogonal functions, but the resulting algorithm involves
only standard linear algebra, which is straightforward to

Figure 2 Magnitude of the eigenvalues {2Ln} of the diffusion generator
L for a = 0.01, b = 0.01, and various values of the selection coefficient s
and the dominance parameter h. The truncation level D was set to 400.
Note that Ln gets larger with increasing n, a general trend that holds for
other parameter settings. Also, Ln increases when selection gets stronger.
For s = 0, note that Ln ¼ lða;bÞn , defined in (28).
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implement. For a given set of parameters, computing the
first 500 eigenvalues and eigenfunctions using our method
takes only a few seconds in Mathematica.

An accurate transition density enables one to estimate the
parameters of Wright–Fisher diffusions, perhaps most inter-
estingly the selection parameters. As mentioned in the In-
troduction, Bollback et al. (2008) suggested a hidden
Markov model framework for estimating the selection co-
efficient s by analyzing samples taken from multiple time
points. The analytic transition density obtained from our
method can be incorporated into that framework and
thereby ameliorate potential numerical problems that may
arise from trying to solve the Kolmogorov equation using
discretization. Furthermore, our approach can be applied
to devise an algebraic method for computing the sampling
probability at stationarity under a general selection model.

There are several interesting extensions of our work to
explore. It is known (Shimakura 1977; Griffiths 1979; Griffiths
and Spanò 2010) that multivariate Jacobi polynomials, orthog-
onal with respect to the Dirichlet distribution, are eigenfunc-
tions of multiallelic diffusions under parent-independent
mutation models. We believe that the technique developed
in this article can be extended to find the spectral representa-
tion of the transition density of a multiallelic diffusion with
parent-independent mutation and general diploid selection.

For a neutral diallelic Wright–Fisher model with subdi-
vided population structure, Lukić et al. (2011) recently
obtained numerical approximations of the transition density
by using a certain class of orthogonal polynomials. We re-
mark that the orthogonal polynomials used in that approach
are not eigenfunctions of the diffusion generator. Further,
the system of ordinary differential equations (ODEs) satis-
fied by the coefficients of the basis functions does not admit
a simple solution, so Lukić et al. (2011) employed a finite
difference method with which to solve the ODEs numeri-

cally. Note that their method does not provide a proper spec-
tral representation of the transition density, since it does not
find the eigenvalues and eigenfunctions of the diffusion gen-
erator. It might be possible to extend the technique devel-
oped in this article to obtain a spectral representation of the
transition density in the case with subdivided population
structure and general diploid selection.

In this article, we considered only one-locus Wright–Fisher
diffusions. It is generally acknowledged that inference of evo-
lutionary parameters, especially regarding selection, can be im-
proved significantly by taking into account additional data at
closely linked loci. Hence, it would be desirable to extend the
approach described here to handle the dynamics of multilocus
diffusions. However, our current technique relies on the fact
that the eigenfunctions are known for the diffusion generator
under neutrality. Therefore, to be able to apply our approach to
multilocus diffusions with recombination and selection, one

Figure 3 The transition density p(t;x,y) as
a function of y. Various times, selection param-
eters, and initial frequencies were considered.
The mutation rates were set to a = b = 0.01 in
all examples. The t = N case corresponds to the
stationary distribution. A truncation level of D =
1000 was used in the computation, and Equa-
tions 5 and 34 were approximated by summing
over 0# n # 300 and 0# m # 500. (A) Strong
positive selection: s = 100, h = 0.5, x = 0.0005.
(B) Balancing selection: s = 0.01, h = 10000, x =
0.0005. (C) Weakly deleterious selection: s =
21, h = 0.5, x = 0.5.

Figure 4 Convergence of the transition density to stationarity as time
evolves, for initial frequency x = 0.0005. Deviation from the stationary den-
sity is measured by ∥dðt; x; �Þ∥21=p, defined in (39). The mutation and selection
parameters were set to a = 0.01, b = 0.01, h = 0.5, and s 2{1,10,100}. A
truncation level of D = 1000 was used in the computation, and (39) was
approximated by summing over 0 # n # 300 and 0 # k, m # 500.

Transition Densities of Diffusion Processes 1127



would have to know the eigenfunctions in the neutral case. To
our knowledge, no such eigenfunctions are known.

Since diffusion processes also arise in other disciplines
(e.g., physics and mathematical finance), several approaches
have been proposed to obtain efficient approximations of the
transition densities for diffusions more general than the
Wright–Fisher diffusion (see Srensen 2004; Aït-Sahalia
2008, for example). It would be interesting to investigate
whether one could borrow techniques from those fields to
the population genetics applications mentioned above.

Finally, we note that Mano (2009) recently employed the
representation of the transition density given by Kimura
(1955a) and the moment duality used in Barbour et al.
(2000) to investigate the dynamics of the number of line-
ages in the ancestral selection graph dual to the Wright–
Fisher diffusion. The representation of the transition density
found in this article can be employed to include recurrent
mutation into that framework.
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Appendix

Here, we describe the computation of the coefficients bðiÞm in Equation (36). Recall that the polynomial Q(x; a,b,s,h) defined
in (33) is of degree 4. Represent this polynomial as

Q  ðx;a;b;s; hÞ ¼
X4
l¼0

qlx
l; (40)

where ql are coefficients that depend on a, b, s, and h. As shown in (10) and (11), x   Rða;bÞ
m   ðxÞ satisfies a three-term

recurrence relation of the form

x   Rða;bÞm   ðxÞ ¼ g  ðm;m2 1Þ  Rða;bÞ
m21   ðxÞ þ g  ðm;mÞ  Rða;bÞm   ðxÞ

þ g  ðm;mþ 1Þ  Rða;bÞmþ1   ðxÞ;

where g(m, m21), g(m, m), g(m, m+1) are coefficients that depend on m and a, b. Note that (11) implies g(0, 21) = 0.
Using the recurrence relation inductively gives

xlRða;bÞm   ðxÞ ¼
Xmþl

k¼m2 l

h  ðm; l; kÞ  Rða;bÞk   ðxÞ; (41)

where

h  ðm; l; kÞ :¼

dm;k;
if l ¼ 0;

1fjm212kj#l21g   g  ðm;m21Þ  h  ðm21; l21; kÞ
þ1fjm2kj#l21g   g  ðm;mÞ  h  ðm; l2 1; kÞ
þ1fjmþ12kj#l21g   g  ðm;mþ 1Þ  h  ðmþ 1; l2 1; kÞ;
if l.0:

8>>>>>><
>>>>>>:

(42)

Now, (40) and (41) imply

Q  ðx;a;b;s; hÞ  Rða;bÞm   ðxÞ ¼ P4
l¼0

ql  
Xmþl

k¼m2 l

h  ðm; l; kÞ  Rða;bÞk   ðxÞ ¼
Xmþ4

k¼m24

2
4 X4

l¼jk2mj
ql   h  ðm; l; kÞ

3
5  Rða;bÞk   ðxÞ:

Thus, the coefficients bðiÞm in (36) are given by

bðiÞm ¼
X4
l¼jij

ql   h  ðm; l; kÞ;

where h(m, l, k) can be computed efficiently using the dynamic programming in (42).
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