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ABSTRACT Analyses of effects of mutants on many traits have enabled estimates to be obtained of the magnitude of pleiotropy, and
in reviews of such data others have concluded that the degree of pleiotropy is highly restricted, with implications on the evolvability of
complex organisms. We show that these conclusions are highly dependent on statistical assumptions, for example significance levels.
We analyze models with pleiotropic effects on all traits at all loci but by variable amounts, considering distributions of numbers of traits
declared significant, overall pleiotropic effects, and extent of apparent modularity of effects. We demonstrate that these highly
pleiotropic models can give results similar to those obtained in analyses of experimental data and that conclusions on limits to
evolvability through pleiotropy are not robust.

BIOLOGICAL organisms are complex structures, so it is
not surprising that their genes often show pleiotropic

effects over two or more traits. Evidence comes both from
observations on substitutions at individual loci and from
genetic correlations among the traits at a population level.
One view is that all genes are fully pleiotropic, at least at the
quantitative level, in view of the highly interdependent and
interactive nature of biological systems. Another view is that
such an argument is irrelevant to genetic understanding,
analysis, and application in that most loci are likely to affect
no more than a small minority of traits in any biologically
significant way (Stearns 2010).

The general degree of pleiotropy is important in several
areas, for example in understanding pathways of gene
action, in assessing potential side effects of genetic manip-
ulation of particular pathways, in assessing the impacts of
selective genetic improvement programs, and in considering
the opportunities for evolutionary change through new
mutations that may induce both favorable and unfavorable
effects on fitness.

In a recent perspectives paper Wagner and Zhang (2011)
discuss the magnitude of pleiotropy for complex or quanti-
tative traits. They argue that it is highly restricted, i.e.,
rather few traits are influenced by each gene, and conse-
quently conclude there is more opportunity for evolutionary
change according to Fisher’s (1930) geometric model than
suggested by the analyses of Orr (2000) and for finding
drugs specific for a particular genetic disease.

Different kinds of data sets were used by Wagner and
Zhang, many of them collected by them and their col-
leagues. One is based on mapping QTL using F2 crosses of
selected lines of mice (Wagner et al. 2008), but pleiotropy
and linkage of nonpleiotropic QTL cannot readily be disen-
tangled. The other is based on single mutant lines where this
complication does not arise. Wang et al. (2010) analyzed
four published data sets on mutants, two of which were very
large: One included 253 morphological traits, each recorded
on 2449 haploid lines of Saccharomyces cerevisiae, each mu-
tant for a different gene. The mean number of traits affected
by each line was 21.6 and the median, 7, was smaller be-
cause the distribution of the number per line was of expo-
nential form. In the other data set, for 4905 genes and 308
traits in mice, the mean was 8.2 and the median 6. Overall
a significant degree of pleiotropy was found for no more
than 10% of traits observed.

Wagner and Zhang’s second quantitative conclusion was
that genes affecting more traits have larger per-trait effects.
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They computed the Euclidean distance, a measure of the
total of individual trait effects detected to be significant
for that gene, and found that it increased more rapidly than
would be expected if there were no relation between overall
gene effects and number of traits affected (Wang et al. 2010,
Box 4).

Their third conclusion was that there was strong modu-
larity of effects, i.e., that genes differed in the suite of traits
they affected. The association between genes and traits was
represented by a bipartite network and the presence of
a modular structure detected by methods developed in phys-
ics (Barber 2007). A series of random networks was gener-
ated having the same marginal properties, i.e., numbers of
traits detected for each gene and correspondingly genes af-
fecting each trait, and the association of genes and traits was
found not to be randomly distributed.

Other data that indicate substantial pleiotropy have,
however, been published (Stearns 2010). For example,
many studies have been undertaken in Drosophila mela-
nogaster by Mackay and colleagues. Of the P-element muta-
tions they screened, 22% affected abdominal bristle number,
23% sternopleural bristle number, 41% starvation stress re-
sistance, 5.6% olfactory behavior, 22% wing shape, 37%
locomotor startle response, and 35% aggressive behavior
(Mackay 2010). Thus many genes affect each trait and each
gene affects many traits.

We consider there are a number of important assump-
tions in the analyses by Wagner, Zhang, and colleagues that
lead us to question their general conclusions on the degree
and modularity of pleiotropy. Most importantly, a gene or
line was declared to influence a trait if its observed effect
exceeded a threshold determined by statistical significance.
The power of detection of an effect then depends on its real
size, the amount of replication, and the statistical signifi-
cance level, typically set at a high threshold to allow for
multiple comparisons. Therefore many real effects were
likely to be missed. They recognize what they call “the vex-
ing problem of detection limits,” but argue first that effects
missed are likely to be smaller than those detected, which,
while true overall, is not necessarily so for any particular
mutant and trait.

To analyze pleiotropy, we take a radically different
starting point. We assume and simulate an alternative
model in which all genes affect all traits, but not necessarily
by the same real amount. We find this model can give the
appearance of restricted pleiotropy and modularity if data
are displayed and analyzed using published methods (Wang
et al. 2010).

Model and Methods

Model

The observed effects (zi) of a randomly sampled mutant on
the ith of the n traits recorded are assumed to be the sum
zi = ai + ei of a gene effect ai and a residual effect ei due to
sampling error of the estimate. The latter may be based on

many observations and its magnitude depends on the
amount of replication and experimental conditions. As sig-
nificance tests would be undertaken relative to the error SD,
the power to detect gene effects is a function of ai/SD(ei),
and so we standardize gene effects by the error SD and set
SD(ei) = 1. Gene effects on each trait are assumed to vary
among loci, with standard deviation sa = SD(ai)/SD(ei)
being the same for all traits.

As genes influence different pathways or systems, they
may have differing effects on associated traits, which we
describe by a correlation ra ($0) across traits. (We under-
take two-tail significance tests, so positive correlations are
not a limitation and simplify simulation.) Genes in the same
pathway may have differential but correlated effects on
a limited subset of traits, “modules”, within which we as-
sume there is a correlation rma ($0) of genetic effects. Sim-
ilarly errors may be correlated across all traits; for example,
if a common control is used, and these are defined by the
correlations re and similarly rme within modules assuming
the error deviations follow the same pathways as the gene
effects.

Simulation

Normally distributed gene effects ai on trait i were sampled
as the sum of effects common to all traits, N(0, rasa

2), and as
modular effects, independently for each module N(0,
rmasa

2), and independent within module effects N(0, (1 2
ra 2 rma)sa

2). Individual trait effects ai are therefore distrib-
uted as N(0, sa

2) with a block covariance structure, such
that covariances of effects are (ra + rma)sa

2 in the same
module and rasa

2 among different modules, with ra +
rma # 1. Components of the error effects, ei, distributed
N(0,1), were sampled similarly with variances ra, rma, and
(1 – re 2 rme), assuming the same modular structure as for
the gene effects.

The “phenotypic” correlation of sampled effects within
modules is given by rp = [(ra + ram)sa

2 + re]/(sa
2 + 1)

and between modules by rmp = (rasa
2 + re)/(sa

2 + 1).
Although these correlations and sa are sufficient to define
the model, for clarity results are labeled in terms of the
genetic and error correlations.

As mutant gene effects typically have a more leptokurtic
distribution than the normal (Keightley and Halligan 2009),
Wishart (gamma)-like gene, but not error, effects were also
simulated. This was done by squaring the components of the
correlated normal variates generated as above, attaching
a random sign to each, and scaling such that individual trait
effects had a reflected Wishart distribution with mean 0 and
variance sa

2. The actual correlations of these variables are
similar to, but not the same as, those for the normal: for
correlations of normal deviates of 0.00, 0.25, 0.50, 0.75, and
0.90, those constructed for the reflected Wishart are 0.00,
0.21, 0.44, 0.69, and 0.88, respectively.

Information is lost by comparing trait values to a thresh-
old and constructing a binary 0/1 variable denoting signif-
icance, particularly when only a small proportion of traits
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are declared significant. As Wang et al. (2010) and Wagner
and Zhang (2011) used only these binary results, we adopt
their analyses. Sampled phenotypic effects zi were “tested”
by comparison with thresholds expressed relative to the er-
ror SD, set at 61.96, 62.575, and 63.09, corresponding to
5%, 1%, and 0.2% significant under a null hypothesis of no
gene effect. As results for the middle threshold fell within
the range of the others, most are not presented.

Replicate simulations with the same model were re-
garded as samples of different genes, each with a different
array of effects, some of which were significantly different
from zero. This invokes simplifications in that genes are
regarded as independent and all are from the same modular
distribution. Typically 10,000 replicates were used for each
model, except to obtain randomized networks where much
more computation was needed and we were interested only
in the behavior of limited numbers of loci as in biological
data.

Analysis of gene trait networks—“modularity”

The strength of a modular structure can be revealed by an
increase in, for example, variation in number of traits
detected per module, but requires the modular structure
to be known a priori so that traits could be classified accord-
ingly. Detection in the absence of such information can uti-
lize a matrix in which, say, genes are rows and traits are
columns and elements are equal to estimated gene effects,
but we follow previous work and use binary 0/1 variables
denoting significance. The gene–trait bipartite network can
be represented by a modularity matrix with elements (bij 2
pij), where bij = 1 if trait j is significantly affected by gene i
and 0 otherwise. The pij = kidi/m are probabilities in the
null model network that an “edge” exists between gene i
and trait j, where ki is the number of traits significantly
affected by gene i, di is the number of genes that signifi-
cantly affect trait j, and m is the total number of significant
gene–trait pairs (edges).

Modularity (M) is defined as the extent, relative to the
null model network, to which edges are formed within mod-
ules instead of between modules. The modularity of each
gene–trait bipartite network was calculated from the mod-
ularity matrix with the BRIM algorithm (Barber 2007). This
is an iterative algorithm for maximizing M, with the sets of

gene and trait vertices each recursively drawing the other
into a modular structure. Randomly wired networks that
share the same marginal properties were generated with
the numerical algorithm of Maslov and Sneppen (2002).
First a pair of edges (A, B) and (C, D) were selected (i.e.,
trait A is significantly affected by locus B and C by D). The
two edges were then rewired in such a way that locus B
affects trait C and locus D trait A. If one or both of these
new edges already existed in the gene–trait network, this
step was aborted and a new pair of edges selected. Repeat-
ing this process led to a randomized version of the original
network, for each of which the modularity was computed.
For each network based directly on the simulated data,
the average (Em) and the standard deviation (SDm) were
obtained from 100 samples of randomized gene–trait
networks. The scaled modularity was then obtained as
(M – Em)/SDm.

Results

Distribution of number of pleiotropic traits

The mean numbers detected of 100 traits analyzed when
both the gene effects and the error effects are uncorrelated
are shown in Table 1 for three models of trait effect, namely
constant (sa = 0; i.e., ai = a, all i, included for reference),
normally distributed, and reflected Wishart-distributed gene
effects. There is a high probability that real effects are
missed even if ai or sa = 2, i.e., 2 SD(ei). With a leptokurtic
distribution of effects, relatively more are missed than for
the normal, particularly if the variance of effects is large and
the threshold is low because many more genes have small
effect. Absence of pleiotropy cannot be simply inferred
solely from the results of tests of significance.

If genes have correlated trait effects, whether overall or
within modules, the probability an individual trait is
detected and the mean number of traits detected is un-
changed. The distribution of the numbers detected depends
on the correlations, however (Figure 1). As the overall cor-
relation, ra, of effects increases, so the distribution of num-
bers detected widens, as it becomes increasingly likely that
very few or very many are detected. A correlation within
modules, rma, has a qualitatively similar but quantitatively

Table 1 Expected numbers of traits testing significant assuming 100 traits having constant effects (a) or uncorrelated normal or Wishart
distributed random effects with SD = sa (by simulation)

Threshold (P%)

1.96 (5%) 3.09 (0.2%)

a or sa Constant Normal Wishart Constant Normal Wishart

0 5.0 5.0 5.0 0.20 0.20 0.20
0.5 7.9 8.0 7.9 0.50 0.58 0.82
1 17.1 16.6 14.0 1.83 2.89 3.68
2 51.6 38.0 25.4 13.8 16.7 12.2
3 85.1 53.6 33.9 46.4 32.8 20.0

Both a and sa are expressed relative to the SD of sampling error. Error effects are uncorrelated. Two different thresholds (significant levels) are shown. Means of 10,000
replicates are shown.
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much smaller influence. Correlations among the errors have
less influence than among gene effects in these examples
because sa . 1.

The shape of the distribution and consequently its mode
are most affected when there is an overall correlation of
gene effects (Figure 1). With a modular structure, the de-
gree of skew of the distribution lessens as the number of
modules increases (Table A1). Skew as illustrated by the
mode becomes most extreme at high thresholds and with
the leptokurtic distribution.

Pleiotropic effects of detected loci

Wang et al. (2010) and Wagner and Zhang (2011) note that
the Euclidean distance, TEz

= O(Si=1,mzi2), i.e., the root sum
of squares of the m detected (i.e., significant) effects, would
be expected to be proportional to Om if there is no relation
between the magnitude of detected effects and the degree of
pleiotropy (i.e., the average effect of a locus on each trait is
constant). Under this assumption the coefficient of m in the
power curve TEz

= cmb would then be b = 0.5.
This curve was fitted to our simulated data, using both

untransformed data and a weighted linear regression of log
TEz

on m. Both yielded very good fits as measured by R2,
typically .0.95, but the actual curve can depart consistently
from the simple power curve (Figure 2). At high numbers
detected, the best-fitting power curve underpredicts, but
these infrequent points get little weight. Similar departures
are seen in some analyses of the real data (Wang et al. 2010,
Figure 3; and Wagner and Zhang 2011, Box 4).

The simulation results (Table 2) show that an exponent
(b) of TEz

in excess of 0.5 can be obtained if there is a cor-
relation of effects or of the error, whether they are overall
or within modules. Indeed, this statistic shows only that

pleiotropy is present but tells little about its structure be-
cause it is insensitive to the correlations unless they are
very small.

Pleiotropic effects of detected loci at the genotypic level:
Effects are detected when the phenotype (z) exceeds the
threshold, but the genotypic effect (a) for a significant trait
is expected to be lower than z because the expected envi-
ronmental deviation of those above the threshold is also
positive (equivalently, the regression baz , 1). The Euclid-
ean distance TEa

for the genotypic effects for each correlated
trait declared significant was also computed. The regression
of TEa

on m rises more rapidly than does TEz
and can exceed

1.0, whether the correlations are across or within modules
(data not shown), because the regression of a on z increases
as sa

2 increases.

Modularity

For the model used previously with 100 traits and 100 loci
in five modules of equal size, estimates of modularity and
scaled modularity are given in Table 3. These show that
correlations among all traits do not generate much modu-
larity; indeed, higher correlations can lead to lower modu-
larity. If correlations within modules are sufficiently high, in
these examples .0.5, substantial scaled modularity can be
generated. The modularity increases with the threshold and
kurtosis of distribution of gene effects. Both the modularity
and scaled modularity decrease as the correlation across
modules becomes higher, but scaled modularity increases
while modularity remains roughly unchanged if the correla-
tion is within modules. As the number of traits or the num-
ber of loci is increased (Table 4), modularity falls and scaled
modularity increases, with the latter reaching high values.

Figure 1 Distribution of numbers of traits declared to have a significant
effect. Model: 100 traits in five modules with 5000 replicates (loci). Gene
effects on traits follow a normal distribution with the threshold set at 3.09
(P = 0.2%). SD(ai)/SD(ei) = sa = 2. Correlations are ordered (ra, re, rma,
rme). The mean number of traits declared significant is 17 for all the
correlations displayed. The modes are 6 and 8 for (ra, re, rma, rme) =
(0.5 0.5 0 0) and (0.5 0 0 0), respectively, but are �16 for the other
examples.

Figure 2 The quality of the fit of the power curve of average total effect
size in Euclidean distance (TEz

) vs. the degree of pleiotropy (m) TEz = cmb.
The circles denote the average over samples and the red line is the best fit
of the power curve for which b = 0.72. The blue line is the frequency
distribution of pleiotropy. Model: 100 traits in 5 modules with 25,000
loci. Gene effects on traits follow a reflected Wishart distribution with
threshold set at 1.96 (5%). SD(ai)/SD(ei) = sa = 2. Correlations (ra, re, rma,
rme) = (0, 0, 0.5, 0).
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Discussion

We are not arguing here that there may not be restricted
pleiotropy or modularity of gene action, but that the sta-
tistical evidence has to be considered critically. In particular
we point out that a simple appearance of restricted numbers
of traits shown to be significant can simply be a consequence
of sampling error and high threshold on variable effects
among traits, and the threshold P-values used here are much
lower than if corrections were made for multiple testing.
Thus Wagner and Zhang (2011) give a theoretical example
for a study with 30 traits examined with a power of 80%. If
significant effects were found for 3 of them, the probability
that 27 effects of the same or larger size are missed is,(12
0.8)27 � 10219. So they conclude that, if the power is 80%
and few effects are detected, it is unlikely the true number is
much higher; i.e., the detection bias is likely to be small in
well-designed studies. We think this conclusion is overstated
and the potential bias is severe. In their example, if the
effects for all traits are actually the same and those missed

are due only to sampling error, the probability that no others
are missed is 0.827 � 0.0024, and the expected number of
traits missed is 27 · 0.2 � 5, i.e., more than the number
detected.

Hence the magnitude of actual pleiotropy is inevitably
underestimated unless some alternative steps are taken. The
use of basic trait data would considerably improve any
analysis and we recommend this be done rather than merely
judging significance, especially when thresholds are high so
the binary information is a small fraction of that in the actual
records. Information on sign can also be lost. We consider it
would be better to assume a joint distribution of effects of loci
on the traits and attempt to estimate parameters of it. This
would not be easy, but there is opportunity to set prior
distributions and test fit in some kind of iterative structure.
Any further analysis is well beyond the scope of this article,
however.

We also consider the evidence that the power curve of
effects as measured by Euclidean distance that shows the

Table 2 Mean Euclidean distance TEz
for total detected phenotypic effects for each mutant expressed in terms of number of significant

traits (m) for specified threshold levels

Threshold 1.96 3.09 1.96 3.09

Distribution N W N W N W N W
Correlations rma = rme= 0 ra = r e= 0

ra re b rma rme b

0.0 0.0 0.50 0.50 0.50 0.51
0.0 0.5 0.61 0.43 0.54 0.50 0.0 0.5 0.54 0.47 0.52 0.50
0.5 0.0 0.74 0.81 0.57 0.61 0.5 0.0 0.73 0.85 0.58 0.65
0.5 0.5 0.73 0.71 0.56 0.59 0.5 0.5 0.74 0.77 0.58 0.63
0.75 0.0 0.71 0.74 0.56 0.60 0.75 0.0 0.75 0.87 0.59 0.65
0.9 0.0 0.67 0.69 0.55 0.59 0.9 0.0 0.74 0.85 0.58 0.65

There are 100 loci in five modules with sa = 2 for normal (N) and for Wishart (W) distributed effects. Correlations of effects of gene and error effects are, respectively, ra and re
over all and rma and rme within modules. Results are expressed in terms of the parameter b of the best fit [estimated by weighted regression of log TEz

= logc + blogm (R2 .
0.97)] of TEz= cmb to the simulated data. Means of 10,000 replicates are shown.

Table 3 Influence on modularity (Mod) and scaled modularity (SMod) of distribution and correlations of effects for a model of 100 traits
and 100 loci in five modules, each of 20 traits

Threshold 1.96 3.09

Distribution Normal Wishart Normal Wishart

Mod SMod Mod SMod Mod SMod Mod SMod

ra re rma = rme = 0
0.0 0.0 0.109 0.11 0.151 0.05 0.198 0.18 0.240 20.27

0.002 0.85 0.003 0.92 0.005 1.23 0.006 0.94
0.5 0.0 0.105 20.77 0.141 20.05 0.185 20.07 0.215 20.34

0.004 0.86 0.006 0.92 0.014 1.02 0.016 0.81
0.9 0.0 0.090 23.80 0.117 21.94 0.146 21.00 0.135 21.50

0.005 0.85 0.012 1.39 0.012 1.39 0.018 1.60
rma rme ra = re = 0
0.5 0.0 0.110 0.58 0.149 0.04 0.200 0.29 0.243 0.51

0.003 1.11 0.003 0.91 0.006 1.30 0.007 1.22
0.5 0.5 0.109 0.23 0.150 0.35 0.200 0.55 0.242 0.72

0.002 1.06 0.004 1.04 0.007 1.17 0.007 0.86
0.9 0.0 0.111 1.80 0.154 2.55 0.203 1.17 0.253 3.12

0.003 1.65 0.004 1.77 0.005 1.20 0.006 2.06

sa = 2. Top rows are means and bottom rows are SD (italics), each computed from 20 replicates.
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magnitude of effects increases with the degree of pleiotropy
is not well founded. A gene that has a large effect correlated
across traits is likely to be detected for more traits, so there
is a nonrandom association between rate of detection and
mean effect. It does not imply that ones of larger effect show
more real pleiotropy as the degree of pleiotropy is the same
for all pairs of loci in the model used here. The relationship
between mean and mode of numbers detected is indicative
of widespread pleiotropy if the mode is much smaller than
the mean. This relationship is more extreme in the absence of
modularity. Thus the more extreme distributions noted by
Wagner and Zhang (2011) (e.g., their Figure 3B) are indic-
ative more of correlations of gene effects across all traits
than of correlations within modules.

The strongest evidence for modularity of gene action is
undoubtedly provided by the specific analysis of networks.
Correlation of effects as in a modular structure does indeed
generate such evidence, albeit simulated assuming a model
of universal pleiotropy with variable correlated effects. We
do not doubt that the results cited by Wagner and Zhang
(2011) show modularity of gene action, but we can simulate
such results merely by assuming there is a moderate corre-
lation of effects among loci, even though there is universal
pleiotropy. To assess the sampling properties of the modu-
larity and scaled modularity, sets of data were sampled using
the same parameter values (number of genes, traits, and
correlations). The results showed that the variation in the
modularity is rather low relative to its mean, whereas that in
the scaled modularity is relatively much larger. This indi-
cates that, though scaled modularity has high sampling error
when the system is small, the modularity is more robust.

Therefore our results indicate that large values of scaled
modularity (e.g., .10) as obtained by Wang et al. can arise
with large data sets with a fully pleiotropic model, even if the
correlation within modules is #0.5. The simulations show
that the high values of modularity they obtained (.0.2 say)
are more likely in our model if there are large correlations
within modules, high threshold values, high kurtosis of dis-
tribution of gene effects, and low variance of gene effects
(i.e., low sa).

Taken together with the lack of evidence for a relation-
ship between the degree of pleiotropy and significance of
effects, it implies that we have to be wary of drawing con-
clusions about lack of evolutionary constraints. A deeper
analysis is required.
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Appendix

Table A1 Influence of correlations across and within modules on the mode of numbers detected

Distribution of gene effects Normal Wishart

Threshold 1.96 2.575 3.09 1.96 2.575 3.09

sa = 2
Mean no. detecteda 38.0 24.9 16.7 25.4 16.7 12.2
ra re rp rma = 0, rme = 0

0.0 0.0 0.0 37 25 17 26 17 12
0.0 0.5 0.1 38 24 15 23 15 12
0.5 0.0 0.4 28 15 8 16 8 4
0.5 0.5 0.5 23 12 6 12 7 3
0.6 0.1 0.5 24 12 6 12 5 2
0.4 0.9 0.5 25 12 6 12 7 4
0.75 0.0 0.6 19 8 3 9 3 1
0.9 0.0 0.72 12 3 1 7 1 1
No. modules ra = 0, re = 0, rma = 0.5, rme = 0.5
20 39 24 16 24 16 11
10 37 23 16 26 15 11
5 37 22 12 22 13 9
2 28 14 7 14 8 5

sa = 1, rma = 0, rme = 0
Mean no. detecteda 16.6 6.9 2.9 14.0 6.6 3.7
ra re rp

0.0 0.0 0.0 17 6 2 14 6 3
0.5 0.0 0.25 12 4 1 9 3 1
0.75 0.25 0.5 6 1 0b 4 0b 0b

sa = 3, rma = 0, rme = 0
Mean no. detecteda 53.6 41.6 32.8 33.4 25.1 20.0
ra re rp

0.0 0.0 0.0 53 42 34 35 25 20
0.5 0.0 0.45 43 29 21 23 14 9
0.75 0.25 0.7 30 16 9 10 4 2

There are 100 traits. ra, re, and rp = (rasa
2 + re)/(sa

2 + 1) are correlations across modules of gene, error, and “phenotypic” effects, and similarly rma, rme, and rmp are
correlations within modules.
a The mean number detected (numbers in italics) does not depend on the correlations. If, however, the correlations across module (ra, re) are high, the probability that no
traits are detected to be significant rises, and the mean conditional on at least one trait detected may be much higher than shown.

b Mode of number detected is 0. Mode conditional on at least 1 trait detected is .0.

Analysis of Pleiotropy of Quantitative Traits 1137


