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Abstract: The purpose of this study is to get more efficient gold
nanoparticles, for necrosis of cancer cells, in photothermal therapy. There-
fore a numerical maximization of the absorption efficiency of a set of
nanoparticles (nanorod, nanoshell and hollow nanosphere) is proposed,
assuming that all the absorbed light is converted to heat. Two therapeutic
cases (shallow and deep cancer) are considered. The numerical tools used
in this study are the full Mie theory, the discrete dipole approximation and
the particle swarm optimization. The optimization leads to an improved
efficiency of the nanoparticles compared with previous studies. For the
shallow cancer therapy, the hollow nanosphere seems to be more efficient
than the other nanoparticles, whereas the hollow nanosphere and nanorod,
offer comparable absorption efficiencies, for deep cancer therapy. Finally,
a study of tolerance for the size parameters to guarantee an absorption
efficiency threshold is included.
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1. Introduction

Photothermaltherapy (PTT) is based on the interaction of a suitable light source with gold
nanoparticles embedded in cells, which produces a sufficient elevation of temperature to in-
duce their necrosis. The predominating benefits of such treatment are both safety and efficiency
as PTT limits the possible damage of healthy cells (unlike microwave ablation, magnetic ther-
mal ablation, and focused ultrasound therapy) [1]. Moreover, the gold nanoparticles, which are
biocompatible and nontoxic, can be easily conjugated to antibodies. Hence, once injected into
the body, they get fixed on the cancer cells as represented in Fig. 1(a). Then under suitable
illumination they absorb a large amount of light (Fig. 1(b)). Almost all the absorbed light is
converted to heat via a series of nonradiative processes [2]. Therefore the cancer cells contain-
ing gold nanoparticles receive sufficient heat to induce their necrosis [3] with minimal damage
to their surrounding (localized heat delivery).

(a) Nanoparticles fixed to cancer cells (b) Absorption of light by nanoparticles

Fig. 1. Photothermal therapy using gold nanoparticles.

The choice of the illumination conditions is dictated by the therapeutic application. Two
optical windows exist in tissue, as it is mainly transparent within these regions of wavelengths.
The main one lies between 600 and 1300 nanometers (nm) and a second one from 1600 to 1850
nm [4]. In these windows, the gold nanoparticles absorb the light millions of times more than
the organic molecules [1]. PTT in the visible region is suitable for shallow cancer (e.g. skin
cancer). Whereas for in vivo therapy of tumors deeply seated under skin, Near Infra Red (NIR)
light is required because of its deep penetration. In fact, the hemoglobin and water molecules
in tissue have minimal absorption and a limited attenuation of scattering in this spectral region.
Both the visible (VIS) and NIR regions are therefore investigated (the wavelengths of 633 nm
and 800 nm are considered).

The purpose of this study is to compare the efficiencies of nanoparticles for photothermal
therapy. Their therapeutic efficiency depends not only on their shape but also on their size. The
shape of the gold nanoparticles, commonly used for PTT, are spheres, shells (with silica core),
hollow spheres and rods.

In 2003, Hirsch et al. [5] demonstrated the NIR PTT, both in vitro and in vivo, using gold
nanoshells. While in the visible range, nanospheres are of interest only for skin cancer [2]. The
advantages of spherical shape were demonstrated. In fact, the non spherical nanostructures can
exhibit a broad spectrum absorption. A plasmon tunability and a narrow absorption band are
preferred to get a better coupling with the illumination [6]. Hollow nanospheres and nanoshells
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can guarantee such tunable behavior at different wavelengths ranging from VIS to NIR, by
adjustingtheir size parameters [7]. Nevertheless, hollow nanospheres are synthesized with great
precision and controlled dimensions [7] whereas, forming a uniform shell on the silica core
remains challenging [2].

Some advantages of nanorods are reported in Ref. [2]. For instance, using nanorods illu-
minated by pulsed laser source, the destruction of a single cell can be achieved (selectivity
improvement), the nanorods being reshaped into nanospheres (in situ) [8, 9]. This degradation
of the nanorod prevents further death of cell [8] (as nanospheres have very limited absorption
in NIR). Moreover, in most comparative studies, the nanorods were shown to be more efficient
than the nanoshells and therefore require lower laser intensity for photothermal therapy [2].
However these studies [10, 11] covered some samples of nanoshells, which had not been opti-
mized (the absorption efficiencyQabs is restricted to 18 whereas it could achieve 30 using Ag
nanoshells). In these comparisons, the incoming light is assumed to be linearly polarized along
the nanorod longitudinal axis, whereas in therapeutic applications the nanorods are randomly
oriented. This random orientation prevents to achieve the maximum absorption efficiency. To
enhance the treatment efficiency, a circular polarization is used to activate as many nanorods
as possible [12]. Therefore both the circular polarization and the linear polarization are consid-
ered in this study. We propose to find the size parameters that enable the maximum absorption
efficiency for each type of nanoparticle, and to compare them (only few previous studies were
devoted to the numerical optimization of nanoshells [13]).

Consequently the target is to maximize the absorption efficiency for nanoshell, hollow
nanosphere and nanorod in two therapeutic cases: the treatment of shallow cancer under VIS
irradiation and of deep cancer under NIR irradiation. For this, numerical methods are required
to compute the absorption efficiencyQabs for different shapes. To computeQabs, we use the
Mie theory for nanoshells and hollow nanospheres [14], and the discrete dipole approxima-
tion (DDA) for nanorods. Moreover, an optimization algorithm must be used to maximize it.
A specific particle swarm optimization (PSO) algorithm is chosen, based on the results of the
comparison between different methods of optimization for plasmonic applications [15].

The paper is organized as follows: in the second section, the numerical methods used to
compute the absorption efficiency and the optimization algorithm are described. In the third
section, the different therapeutical cases and the assumptions for simulations are presented,
before carrying comparisons and computing the tolerance for the geometrical parameters of the
nanoparticles. Finally, concluding remarks are given in the fourth section.

2. Numerical and optimization tools

In this section brief overviews of the numerical methods used to compute the absorption ef-
ficiency Qabs and the optimization algorithm are presented. The numerical methods used to
computeQabs are the full Mie theory for nanoshells and hollow nanospheres (as they present
spherical symmetry) and the discrete dipole approximation (DDA) for nanorods. Then,Qabs

can be maximized using an adequate optimization algorithm [15] which is the adaptive particle
swarm optimization (APSO).

2.1. Absorption efficiency for spherical nanoparticle

The computation of the absorption efficiencyQabs could be achieved analytically for spherical
shapes (hollow nanosphere and nanoshell). This analytical solution is derived by solving the
scalar Helmholtz equation using separation of variables in spherical coordinate system [14].
Then, the electromagnetic fields are expanded using the spherical vectors (solutions of the vec-
tor Helmholtz equation). The coefficients of the expansion are determined by fitting the bound-
ary conditions and the radiation condition. For spherical nanoparticle, the absorption efficiency
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Qabs is related to the absorption cross sectionCabs and is given by

Qabs=
Cabs

πr2
2

=
2
y2

∞

∑
n=1

[

(2n+1)
{ (

ℜ(an +bn)− (|an|
2 + |bn|

2)
) }]

, (1)

wherean andbn are two of the coefficients associated to the expansion of fields. They are com-
plex functions depending on the size variables:x = kr1, y = k(r1 +e), with r1 the inner radius,
e= r2− r1 the shell thickness (Fig. 2),k = 2π/λ , andλ the wavelength of the monochromatic
illumination (equations and further details could be found in [14]).

Fig. 2. Spherical nanoparticle: nanoshell or hollow nanosphere (inner radiusr1, outer radius
r2 and shell thicknesse= r2− r1)

2.2. The discrete dipole approximation (DDA)

When the analytical solution of Maxwell’s equations is unknown, it is necessary to use nu-
merical methods. Several numerical methods were introduced such as the DDA, the method
of moments, the finite difference time domain method and the finite element method. Each of
these methods presents some advantages and drawbacks. However the DDA is widely used for
absorption and scattering calculations by nanoparticles used in PTT, the computing time (main
drawback of DDA) remaining short for small size targets. Moreover, the accuracy of the method
was checked by comparison to analytical solutions for spherical nanoparticle [16], ellipsoid [16]
and infinite cylinder [17]. Therefore we use the DDA in this study, for non-spherical particles.
In what follows, a brief description of this method and of the numerical tool are given.

The method was firstly developed by Devoe [18, 19], and Purcell and Pennypacker [20]. The
main idea is to discretize the geometry of the naoparticle into a set ofN elements (j = 1..N)
with polarizabilitiesα j , located atr j . Each dipole has a polarizationP j = α jE j , whereE j is the
electric field atr j induced by the incident wave and the sum of the dielectric fields induced by
interaction with other dipoles. A system of 3Ncomplex linear equations (see [21] for details)
must be solved to find polarizationsP j and evaluate the absorption cross section following:

Cabs=
4πk
|E0|2

N

∑
j=1

{

Im
[

P j .(α−1
j )∗P∗

j

]

−
2
3

k3|P j |
2
}

. (2)

TheFortran code DDSCAT 7.1, developed by Draine and Flatau, is used for calculating scat-
tering and absorption of light by irregular particles based on the DDA [22]. DDSCAT enables
to deal with many shapes such as cylinder, ellipsoid or cylinder with capped ends. It also offers
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the possibility of editing new shapes. We edit some shapes to ensure flexible orientation of the
nanoparticlerelative to the incident polarization of light. Then the inter-dipole distance should
be chosen. For this, the DDA results are compared to those of Mie theory for a sphere of radius
40 nm. The results are reported in Fig. 3 and show that an inter-dipole distanced equal to 1 nm
is sufficient to achieve reasonable accuracy in this size range.

(a) Extinction efficiency (b) Absorption efficiency (c) Scattering efficiency

Fig.3. Comparison of DDA with Mie theory for different values of the inter-dipole distance
d for a sphere of radius 40 nm.

2.3. The optimization algorithm: the adaptive PSO

The optimization goal is to maximize the fitness functionQabswithin a search space of the size
parameters. The computing time ofQabsusing the DDA can sometimes exceed half an hour for
a unique wavelength depending on some parameters: the size of the target, the discretization
used, the error tolerance, the optical index, and the performance of the computer. Therefore
a deterministic sweep of the search space may be prohibitive, and an adequate optimization
algorithm must be used.

A comparison of four optimization algorithms [23, 24, 25, 26] reveals different performances
depending on the problem [15]. Nevertheless, they are faster than the systematic study through
simple loops on the size parameters. Based on the “no free lunch” theorems [27], showing
that learning algorithms cannot be universally good and that any elevated performance over
one class of problems is exactly paid for in performance over another class, we need to ensure
the efficiency of algorithms on plasmonic biomedical applications. Therefore a benchmark was
introduced: the cases of plane biosensors, and of the absorption within the shell of hollow
nanospheres [15]. These problems were shown to be multimodal in addition to have various
topologies. Therefore the optimization algorithm must converge rapidly to the global optimum
solution, avoiding the local optima.

As suggested in [15], we use the adaptive PSO [26] to which some improvements were added
[28]. Let us introduce firstly the standard PSO proposed by Kennedy and Eberhart in 1995 [25].
The PSO mimics the behavior of a swarm of bees in search of pollen. In this algorithm, vectors
of decision variablesx (in this case, the size parameters) are randomly generated at the begin-
ning of the algorithm. These vectors are considered as the positions of bees (or particles) of a
swarm. We should note the difference between the nanoparticles used in PTT and the “parti-
cle” used in PSO to denote a vector of decision variablesx(t). The particles communicate good
positions to each other and adjust their own positionx(t) and velocityV(t) following:

V(t +1) = ωV(t)+U1c1(p(t)−x(t))+U2c2(g(t)−x(t)), (3)

x(t +1) = x(t)+V(t +1), (4)
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whereUi (i = 1,2) are independent random uniform variables between 0 and 1,p(t) is the
particle best position over previous generations up to stept, g(t) is the global best ofp(t),
ω is the inertia weight andci (i = 1,2) are the acceleration coefficients. Equation 3 is used
to calculate the particle new velocity using its previous velocity and the distances between its
current position and its own bestp(t) and the global bestg(t). Then the particle moves toward
a new position following Eq. 4.

The success of PSO strongly depends on values taken byc1, c2 andω. Zhan et al. outlined
the necessity of updating these coefficients at each step following the evolutionary state (ex-
ploration, exploitation, convergence or jumping out from a local optimum). They estimate the
evolutionary state at each step using the previous state and the value of the “evolutionary fac-
tor” which is computed using distance between particles. Then based on this estimation, APSO
updates the inertia weight and acceleration coefficients. Finally to avoid local optima, APSO
performs elitist learning in the convergence state which helps jumping out of the local optima.

The population size is set to 20 as in many PSO studies and in previous work [23]. In that
benchmark study, similar problems require 200(±30) evaluations for convergence (results over
one thousand realizations). To ensure convergence, the number of evaluations should exceed the
maximum reported for similar problems. Therefore a maximum of 300 evaluations is chosen as
stop criterion. Furthermore, the convergence state is checked at the end of each loop. Finally,
optimizations are repeated twice to confirm the obtained results.

3. Assumptions, results and discussion

3.1. Assumptions and therapeutic cases

The gold nanoparticles should be small enough to penetrate small capillaries and get fixed to
cells, typically 10-100 nm or smaller [29, 30]. Therefore we consider nanorods of length within
the range 10-100 nm, and nanoshell or hollow nanosphere with maximal inner radiusr1 of 100
nm and maximal shell thicknesse of 50 nm (a discussion is held if the optimal sizer1 + e
exceeds 100 nm). The lower bounds should take account of fabrication control achievement
to get realistic and feasible samples. Otherwise, as some improvements of the control in the
fabrication process are awaited, the lower bounds can slightly surpass the current fabrication
limitations (a discussion is held if the optimal setting does not fit these limitations). The hollow
nanospheres can be produced with sizes ranging from 12 nm in outer radius (r1 + e) and 3
nm in shell thickness with a precision of 0.6 nm [7]. Therefore, to be less restrictive, we can
consider nanoshells having minimal size parameters of 5 nm for inner radiusr1 and 1 nm for
shell thicknesse. For small nanorods, the aspect ratio (AR) of fabricated samples are up to
six [31]. For flexibility, we choose an aspect ratio between 1 and 8. To sum up, we optimize the
size parameters to get the maximal absorption efficiency for the following gold nanoparticles
and bounds:

• hollow nanospheres and nanoshells (silica core and gold shell) of radiusr1 ∈ [5,100]and
shell thicknesse∈ [1,50] (Fig. 2)

• nanorods with the following shapes (as reported in previous studies):

– spheroids of long diameterD1 and short diameterD2 (Fig. 4(a)), whereD1 ∈
[10,100]nm and the aspect ratioAR= D1/D2 ∈ [1,8]

– cylinders of lengthL and diameterD (Fig. 4(b)), whereL ∈ [10,100]nm and the
aspect ratioAR= L/D ∈ [1,8]

– cylinders with hemispherical end caps of length (not including caps)L and diameter
D (Fig. 4(c)), whereL ∈ [10,100]nm and the aspect ratioAR= D/(L+D) ∈ [1,8]
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(a) Spheroid (b) Cylinder (c) Capped cylinder

Fig. 4. Different shapes for modeling nanorods.

The choice of the gold optical index may effect the results. This issue was discussed by Un-
gureanu et al. [32] with comparison to some experiments. However they show dependency on
the aspect ratio, and that the optical indexes in classical references are not suitable for all cases.
Thus, more detailed comparative studies between theory and experiment should be conducted
to resolve this issue. Nevertheless, in a previous sensitivity study on hollow nanospheres, we
found that a wide range of wavelengths (difference of 29 nm) ensures 99% of maximal absorp-
tion [33]. Therefore the optical index, which depends on wavelength, seems to be a non critical
parameter for the maximal absorption and we use the gold optical index of Johnson and Christy
[16, 34].

The direction of the linear polarization of light does not influence the level ofQabs for spher-
ical shape because of its symmetry. For the nanorods, on one hand, they are highly sensitive to
the polarization along their axis because of their antenna behavior and their plasmonic prop-
erties. On the other hand, the nanorods are randomly oriented in cells; therefore a circular
polarization is preferred to activate as many nanorods as possible [12]. Consequently, both the
circular polarization and linear polarizations are investigated in this study to be closer to thera-
peutics and to compare with previous results [2, 10, 11].

The diffusion and the depolarization of light in tissue can be another important issue, mainly
for medical diagnosis [35]. This parameter would be critical if the power of the incoming light
should be determined. However, the computedQabs is relative to a unity incoming field, which
is supposed to be the reference in the vicinity of the nanoparticle embedded in the cells. There-
fore the optimization of sizes and shapes does not depend on the depolarization of light. For
instance, the nanorods are more sensitive to longitudinal polarization and the contributions of
the other polarization would increaseQabs only slightly (Tab. 1).

Finally, regarding the therapeutic cases, we choose to consider the two followings cases:

• case 1: treatment of shallow cancer assuming the skin dermis as surrounding tissue (re-
fractive index 1.55 [4]) under illuminationλ = 633 nm (VIS)

• case 2: treatment of deep cancer assuming subcutaneous fat as surrounding tissue (re-
fractive index 1.44 [4]) under illuminationλ = 800 nm (NIR)

3.2. Results and discussion

Optimized results
The optimal size parameters, that ensure the maximum absorption efficiencyQabs, are re-
ported in Tab. 1. For optimized nanoshell and hollow nanosphere under linear polarization,
and nanorod under circular polarization, the extinction, absorption and scattering efficiency
spectra are displayed in Fig.5. As expected, they present maxima for the illumination used for
the corresponding therapeutic case.
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(a) Optimized nanoshell (case 1)
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(b) Optimized nanoshell (case 2)
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(c) Optimized hollow nanosphere
(case1)
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(d) Optimized hollow nanosphere
(case2)
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(e) Optimized spheroid (case 1)
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(f) Optimized spheroid (case 2)
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(g) Optimized capped cylinder
(case1)
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(h) Optimized capped cylinder
(case2)
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(i) Optimized cylinder (case 1)
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(j) Optimized cylinder (case 2)

Fig. 5. Extinction (blue curve), absorption (green) and scattering (red) efficiencies for op-
timized nanoparticles (Mie theory and linear polarization are used to evaluate (a)-(d), and
DDA and circular polarization are used for (e)-(j)). The geometrical parameters (Figs. 2
and 4) of each optimized nanoparticle can be found in Tab. 1.



As mentioned previously, the experimental studies are limited to some manufactured samples
which may prevent finding the most absorbant ones for a particular therapy case. Therefore
the purpose of such studies was always to find among all the studied samples, the one whose
maximum absorption efficiency matches with the target laser wavelength. Numerous samples
can fit this condition but without ensuring the maximum absorption. Comparing our results
with the previous theoretical studies where no optimization tools were used, the optimization
tools yield better results. To illustrate:

• A maximalQabs of 6 for nanoshell in the study by Vera and Bayazitoglu [36] (that study
takes into account different optical indexes of tissue but nanoshell size was fixed inde-
pendently) v.s.Qabs greater than 9 in this paper.

• An extinction efficiency not exceeding 8 for different shapes of nanorods, optical indexes
of gold and wavelengths, in the theoretical part of the study carried by Ungureanu et
al. [32], whereas we findQext up to 17 as it could be seen in Fig. 5 (we should note that
both studies use DDA).

• An absorption efficiency not exceeding 8 in the theoretical study by Lee and El-Sayed
[16] that considers different shapes for nanorods, whereasQabs reaches 14 as reported in
Tab. 1.

Table 1. Optimized shape parameters (Figs. 2 and 4) of gold nanoparticles in the two
therapeutic cases: case 1, the nanoparticles are embedded in skin dermis, using 633 nm
illumination wavelength; case 2, the nanoparticles are embedded in subcutaneous fat, using
800 nm illumination wavelength.a: DDA is used to evaluateQabs; b: the full Mie theory
and linear polarization are used to evaluateQabs.

Shape λ=633 nm λ=800 nm
Parallel Circular Parallel Circular

polarization polarization polarization polarization
Spheroida D1 (nm) 51 52 74 79

D2 (nm) 28 29 22 24
Qabs 12.6 6.3 25.4 12.6

Capped L (nm) 19 18 42 44
cylindera D (nm) 26 24 19 19

Qabs 12.9 6.6 27.7 14.4
Cylindera L (nm) 30 30 49 49

D (nm) 24 24 18 17
Qabs 12.2 6.4 28.1 14.2

Nanoshellb r1 (nm) 14 22
e (nm) 6 3.5
Qabs 9.2 11.8

Hollow r1 (nm) 14 20
nanosphereb e (nm) 5 2.5

Qabs 10.1 13.6

Nanoshell v.s. hollow nanosphere
For both the therapeutic cases, the optimized hollow nanospheres are slightly smaller than the
optimized nanoshells (silica core coated with gold) and exhibit higher absorption efficiency
(Tab. 1). The improvement is by 11% in the first therapeutic case and by 14 % in the second
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one. This improvement may be considered slight however, the hollow nanosphere should be
preferred,especially as getting a uniform shell on the silica core remains challenging [2, 37].

Choice of nanorod shape
Lee and El-Sayed [16] suggested that capped cylinder would better describe nanorods. However
Ungureanu et al. [32] found that, in some cases, ellipsoids or cylinders have spectral extinction
closer to experiments. On the other side, when comparing the optimized three shapes, we find
that in two cases, the optimized spheroid, capped cylinder and cylinder have different total
length (D1 for spheroid,D + L for capped cylinder andL for cylinder). However they have
similar absorption efficiencies (difference less than 13%). Therefore we suggest for each ther-
apeutic case, the fabrication of optimized samples with the optimal length and width (Tab. 1)
and the measurement of their spectra to check the theoretical results (Fig. 5).

Effect of polarization on optimal setting of nanorod
The results reported in Tab. 1 show that the maximum absorption efficiency depends on the
polarization. However the size parameters seem to hardly depend on this parameter (almost the
same optimal size parameters for spheroid, capped cylinder and cylinder). In fact, the circular
polarization should be able to excite almost all plasmon oscillation modes including the longi-
tudinal one. The longitudinal mode (which appears when using parallel polarization) presents
the most important absorption efficiency, therefore its contribution toQabs when using circu-
lar polarization should be the most important. Then, the most absorbing structure, illuminated
with a linear polarization, is likely to do as well when illuminated with circular polarization.
The efficiency of linear polarization, is nearly twice that of circular polarization. This comes
from the equal distribution of the energy of the incoming electric field, on the two perpendicular
directions, for the circular polarization. This confirms the relevance of the heuristic reasoning
made above.

Hollow nanosphere v.s. nanorod and influence of the Full Width at Half Maximum
(FWHM) of the illumination
In each therapeutic case, the comparison between the optimized hollow nanosphere (linear po-
larization) and nanorod (circular polarization) can be based on the three following criteria: the
absorption efficiencyQabs, the narrowness of the absorption band and gold volume. The re-
sults reported in Tab. 1, show that the optimized hollow nanosphere is more absorbent than
the optimized nanorod in the VIS therapy case (633 nm and skin dermis as surrounding tis-
sue). Both nanoparticles have almost similar behavior in the NIR therapy case (for the different
possible shapes of nanorods). Thus, nanorods are not the most efficient nanoparticles for PTT.
Regarding the absorption band, its narrowness enables a better match with the laser illumina-
tion and prevent the patient sensitivity to the parasite light. Figure 6 shows that the optimized
nanorod has also a narrow absorption band, comparable to that of the hollow nanosphere, in the
NIR. However its absorption band presents a second resonance in the VIS. Finally, the hollow
nanospheres are small enough for their injection in tissue but are larger than nanorods (Tab. 1).
The gold volume of the optimized hollow nanosphere, that may be crucial for the manufac-
turing cost, is 17×103 nm3 which is less than the optimized spheroid volume (similar results
are obtained in the second therapeutic case: the gold part is approximatively 14×103 nm3 v.s.
24×103 for spheroid, 16×103 nm3 for capped cylinder and 13×103 nm3 for cylinder).

Hollow nanosphere and nanorod have similar efficiencies in therapeutic case 2. Therefore the
influence of the FWHM of the illumination deserves to be studied to depict its impact on their
efficiency. For this, the wavelength is varied within the quarter of the bandwidth i.e. 800+/-25
nm for both the hollow nanosphere and the capped cylinder in therapeutic case 2, as illustration.
Their maximal absorption efficiencies are shown in Fig. 7.

The maximal absorption efficiency of nanorods increases of less than 10% as the wavelength
increases, showing that a higher wavelength ensures higher efficiency of optimized nanorods.
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Fig. 6. Comparison of the absorption band of optimized capped cylinder and hollow
nanosphere (Tab. 1), DDA is used to get the spectra of capped cylinder and Mie theory
is used to get spectra of hollow nanosphere.
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Fig. 7. Maximal absorption efficiencies of hollow nanosphere and nanorod for wavelengths
within the quarter of the bandwidth of the illuminationi.e.800±25 nm.

However the hollow nanosphere presents only slight fluctuations of the maximal absorption
efficiency. Given the values of absorption efficiency over the range of wavelengths, all of the
optimized nanoparticles can be considered active (Fig. 7).

Within this range of wavelengths, slight variations are observed on optimal size parameters
of both nanoparticles. The gold shell thicknesse of the optimized hollow nanosphere remains
equal to 2.5 nm (Tab. 1) over the whole range of wavelengths, and the inner radiusr1 is between
18.5 to 22 nm. Despite the capped cylinder is more sensitive to the wavelength, its optimal
diameterD remains equal to 19 nm over the range of wavelengths and only its lengthL increases
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from 41 nm to 48 nm. Consequently, the critical parameters aree for the hollow nanosphere,
andD for the capped cylinder. The improvement of the fabrication process should be focused
on a better control of these parameters; otherwise, the efficiency of nanoparticles could drop.
These first results confirm those obtained in Ref. [13], but deserve to be expanded through a
study of design tolerance.

Design tolerance for the size parameters
The probability laws governing the uncertainties are neither identified nor quantified experi-
mentally, hence a study of the propagation of uncertainty may be hazardous. On the other hand,
the tolerance analysis helps to deduce the critical parameters, on which effort to control the
fabrication should be made. This approach consists of considering an acceptable threshold of
the efficiency, and deducing the corresponding tolerance for the size parameters [34]. Above
this threshold, the nanoparticles are considered as active for the therapy. The activity of the
nanoparticles depends on both the incoming illumination properties and those of the tissue.
Nevertheless, the arbitrary choice of the threshold enables to quantify the relative tolerances for
each geometrical parameter.

The best nanoparticles found are subjected to this analysis i.e. the hollow nanosphere for the
two therapeutic cases and all the nanorod shapes for the second therapeutic case. To carry this
study, either the method described in [34], or a direct local search can be used. We consider a
threshold of 90% of the maximal absorption efficiency for each nanoparticle, and report results
in Tab. 2 as well as Fig. 8.

Table 2. Design tolerance for the size parameters (min-max values) for a threshold 90% of
maximal absorption efficiency (obtained from the optimum setting of the size parameters)
in both therapeutic cases.

Shape Size parameters Minimum Maximum
Spheroid D1 (nm) 60 93
in therapy case 2 D2 (nm) 17 28

aspect ratioAR 3.3 3.5
Capped cylinder L+D (nm) 47 76
in therapy case 2 D (nm) 14 24

aspect ratioAR 3.1 3.4
Cylinder L (nm) 41 66
in therapy case 2 D (nm) 14 24

aspect ratioAR 2.7 3.0
Hollow nanosphere e (nm) 3.4 6.8
in therapy case 1 r1 (nm) 10.2 17.8

e/r1 2.6 3.0
Hollow nanosphere e (nm) 1.8 3.2
in therapy case 2 r1 (nm) 14.8 25.1

e/r1 7.7 8.4

The tolerance is±1.7 nm for e and±3.8 nm for r1 in therapeutic case 1 (resp.±0.7 nm
and±5.1 nm in case 2), for the hollow nanospheres. These tolerances can be respected, given
the current fabrication precision of 0.6 nm [7], even if the “golden rule” of metrology is more
restrictive on the maximal uncertainties in the fabrication process. However, as demonstrated in
a previous work [34], more attention should be devoted to the coating designeas the tolerance
for this parameter is lower than the tolerance forr1. Moreover, the ratior1/eshould be within a
specific range as reported in Tab. 2 and illustrated by the seemingly-linear dependance between
eandr1 in Fig. 8.
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Fig. 8. Size parameters (shell thicknesse and inner radiusr1) of hollow nanosphere en-
suring 90% of maximal absorption efficiency of hollow nanosphere in therapeutic case
1 (nanoparticles injected in skin dermis and illuminated by a 633 nm laser) and case 2
(nanoparticles injected in subcutaneous fat and illuminated by a 800 nm laser).

Regarding the different shapes of nanorods, results show a tolerance for length of about
±15 nm and a tolerance for width of about±5 nm (Tab. 2). For the both size parameters,
the relative tolerance falls between 21% and 26%. The proposed samples of nanorods (with
tolerances) can be synthesized successfully as the fabrication precisions are less than 5 nm
[38, 39]. Nevertheless, to increase the ratio of active nanoparticles, and therefore to decrease
their concentration while maintaining constant the therapeutic efficiency, the uncertainties on
their geometrical parameters should be decreased. The relative tolerance for the aspect ratio
(AR) is much more restrictive (≤5.3%). Therefore, the nanorods can have different lengths
(what is usually obtained after synthesis) but should have a given aspect ratio, for a given
therapy case.

4. Conclusions

To get the maximum absorption efficiency in two therapeutic cases, the theoretical optimiza-
tion of the size parameters of silica-gold nanoshells, hollow nanospheres and nanorods was
carried out. The optimization of the absorption efficiency (computed with either the full Mie
theory or the discrete dipole approximation) is achieved by an adequate Particle Swarm Opti-
mization algorithm. The results show an improved efficiency compared with previous studies.
The optimized hollow nanospheres are slightly smaller and more efficient than the optimized
nanoshells. Absorption band of nanorods and hollow nanospheres have similar shape and nar-
rowness in the infrared therapy case. It is also shown that under circular polarization, which is
recommended in practice, the optimized hollow nanospheres could be more efficient than the
nanorods. This is the opposite of the commonly reported results assuming polarization parallel
to the longitudinal axis of the nanorod. The influence of the polarization and of the FWMH of
the illumination is also analyzed. Finally a design tolerance analysis for the size parameters, re-
veals that the current fabrication precision is sufficient to guarantee 90% of maximal absorption
efficiency.

For further applications (other laser wavelengths, tissue of different optical indexes, or both),
the same numerical tools can be used to find the optimal parametric setting. It could be inter-
esting to produce the optimized samples suggested in this study mainly to identify which shape
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better describes the real nanorods. Experiments could also help to recover the true optical index
of gold nanoparticles, depending on the process of fabrication.
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