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Abstract

Embryonic stem cells (ESCs) possess immune privileged properties and have the capacity to modulate immune activation.
However, the mechanisms by which ESCs inhibit immune activation remain mostly unknown. We have previously shown
that ESC-derived factors block dendritic cell maturation, thereby indirectly affecting T cell activation. Here, we show that
ESC-derived factors also directly affect T cell activation. We provide the first demonstration that ESC-derived factors
significantly down-regulated the expressions of IL-2 and IFN-c, while markedly up-regulating the expression of IL-10, TGF-b,
and Treg transcription factor Foxp3 in CD4+ CD25+ T cells. Furthermore, ESC-derived factors robustly suppressed T cell
proliferation in response to the protein kinase C-h (PKC-h) activator phorbol 12-myristate 13-acetate (PMA). Western blot
analysis indicated that ESC-derived factors prevented PKC-h phosphorylation without influencing total PKC-h levels.
Moreover, IkB-a degradation was abrogated, confirming absence of PKC-h activity. The impact of ESC-derived factors on
PKC-h activation appeared to be specific since other upstream T cell signaling components were not affected. In conclusion,
ESCs appear to directly impact T cell activation and polarization by negatively regulating the PKC-h pathway.
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Introduction

Embryonic stem cells (ESCs) are pluripotent stem cells and are

able to differentiate into cells derived from all three germ layers

[1,2,3]. As such, they represent an important tool for the study of

developmental biology and may provide new treatment for a

variety of degenerative and genetic diseases [4,5,6,7,8,9].

Recently, several groups have described that ESCs possess

immune privileged properties. These properties allow ESCs to

survive across both allogeneic and xenogeneic barriers without

evoking immune responses [10,11,12,13,14,15,16,17,18,19]. The

ability of ESCs to evade the immune system may be associated

with their very low level of MHC I expression and no MHC II

expression [10,11,12,14,15,16]. In addition, ESCs lack expression

of co-stimulatory molecules CD80, CD86 and CD40 that may

contribute to activating immune effector cells [10,11,12,14,15,16].

However, differentiation of ESCs and treatment with inflamma-

tory cytokines such as IFN-c results in MHC I expression and

immune recognition [11,15]. Notably, these properties are found

to be consistent in human, mouse and rat ESCs [11,12,16].

In addition to evading the immune system, ESCs also have the

capacity to actively modulate the immune system towards a

tolerant state. In mixed lymphocyte reaction assays, ESCs suppress

immune activation and proliferation in response to third party

antigen presenting cells (APCs) [14,15]. It has become apparent

that ESCs are able to influence APCs [11,14,15,20]. Other studies

have elucidated that ESCs are able to directly inhibit T cell and

NK cell activity [11,21,22]. Significantly, rat ESCs were shown to

provide immune protection to solid organ transplants across

allogeneic barrier [12]. Therefore, ESCs possess powerful immune

modulatory properties that not only facilitate their own survival in

hostile immunological environments but also inhibit immune

responses to third party APCs and provide protection to solid

organ transplants.

Harnessing these immune modulatory properties may yield

important applications in autoimmune conditions, allergy and

transplantation. However, ectopic tumor (teratoma) formation

after using live ESCs in vivo is the most serious safety concern

[1,2,3]. This has caused great apprehension in recent clinical trials

when transplanted embryonic neuronal precursors gave rise to

spinal cord and brain stem tumors [23]. As a result, use of live

ESCs to promote immune tolerance and reduce the severity of

aberrant or unwanted immune activation is currently limited by

potential serious adverse effects [2,24,25,26,27]. Therefore,

alternative strategies that can circumvent tumor formation while

retaining the immune modulatory properties of ESCs are needed.
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Recently, we have established that cytoplasmic lysates of both

human and mouse ESCs retain the immune modulatory

properties of live cells thereby averting the potential of teratoma

formation. Our studies elucidated that these ESC-derived factors

have the capacity to inhibit maturation of monocyte-derived

DCs [20]. ESC-derived factors prevented full maturation of DCs

in response to TNF-a by decreasing surface expression of CD80,

MHC II and CD83 molecules. Accordingly, DCs treated with

ESC-derived factors retained greater phagocytic ability, secreted

low levels of IL-12p40 and were poor stimulators of allogeneic T

cells [20]. Interestingly, we observed that inhibition of T cell

activation by DCs could be enhanced further by addition of

ESC-derived factors during the T cell activation assay,

suggesting that ESC-derived factors may also affect T cell

activation.

Here we show that ESC-derived factors have the capacity to

modulate T cell function directly. ESC-derived factors suppress

the upregulation of T cell activation markers CD25, CD44, and

CD69. They also inhibit IFN-c production in T cells while

promoting Foxp3 expression. In addition, we provide the first

evidence that ESCs suppress PKC-h activation without affecting

upstream signaling components originating from CD3 and CD28

receptors. Moreover, ESC-derived factors work synergistically

with very low dose of immunosuppressive drug cyclosporine

(calcineurin inhibitor) to markedly suppress T cell proliferation in

response to allo-antigen. Hence, ESC-derived factors may hold the

potential to be used as a therapeutic, instead of live ESCs, in

overcoming aberrant immune responses.

Results

ESC-derived factors directly inhibit T cell proliferation and
activation

In order to specifically determine the impact of ESCs on T cells,

we stimulated mouse B6 splenocytes with anti-CD3 and anti-

CD28 in the presence of increasing concentrations of ESC-

conditioned media (ESC-CM) or control MEF cell-conditioned

media. We found that ESC-CM inhibited T cell proliferation as

indicated by reduced number of cell divisions reflected by lower

degree of CFSE dilution (Figure 1a). Moreover, increasing

amounts of ESC-CM (from 50% in combination with RPMI

media to 100% of ESC-CM) had a greater inhibitory effect on T

cell proliferation (Figure 1a). In contrast, non-conditioned media

and media conditioned by MEF cells did not have an effect on

anti-CD3 and anti-CD28 mediated T cell proliferation (Figure 1a).

To further confirm that T cell inhibition was due to ESC-derived

factors, we prepared and examined the cytoplasmic fraction of

ESCs (see materials and methods) on T cell proliferation.

Splenocytes were stimulated with anti-CD3 and anti-CD28 in

the presence of increasing concentrations of ESC-derived factors.

Similar to ESC-CM, ESC-derived factors inhibited T cell

proliferation in a dose dependent manner (Figure 1b). The

inhibitory effect of ESC-derived factors was also examined in

mixed lymphocyte reaction (MLR) assays. Once again, ESC-

derived factors were able to inhibit T cells proliferation in a dose

dependent manner (Figure S1). Conversely, vehicle control did not

affect T cell proliferation, while mouse muscle stem cell precursor-

derived factors (C2C12 cell line) enhanced T cell proliferation

(Figure 1b). Notably, human ESC-derived factors from H9 cell line

[11,14,15,20] were also found to inhibit T cell proliferation in

response to concanavalin A and PMA (Figure S2).

To elucidate whether T cell inhibition is due to activation-

induced cell death (AICD) by ESC-derived factors, we examined

T cell apoptosis and necrosis using Annexin V and 7AAD

respectively. Splenocytes stimulated with anti-CD3 and anti-CD28

and treated with ESC-derived factors were found to have the same

number of CD3+ dead cells as control treatments 24 hours

following stimulation (Figure 2). Moreover, the number of dead T

cells did not significantly increase after stimulation with anti-CD3

and anti-CD28 and treatment with ESC-derived factors for

72 hours (Figure S3). These data suggests that ESC-derived factors

inhibit T cell proliferation without inducing T cell death following

activation.

Next we assessed the impact of ESC-derived factors on T cell

activation. CD3+ T cells were negatively selected from splenocytes

and stimulated with anti-CD3 and anti-CD28. Subsequently, T

cells were examined at the specified time points for the surface

expression of CD25, CD44 and CD69. These markers are

important for T cell activation and subsequent proliferation and

function [28,29,30]. We found that ESC-derived factors have the

capacity to markedly decrease the surface expression of CD25 on

both CD4 and CD8 T cells (Figure 3a,b). Similarly, ESC-derived

factors were also able to noticeably reduce the surface expression

of CD44 and CD69 (Figure 3a.b). As a result, it can be concluded

that ESC-derived factors inhibit T cell proliferation by decreasing

surface expression of important markers that are necessary for

proper activation and subsequent proliferation.

ESC-derived factors skew T cell cytokine production
towards a T regulatory profile

The ability of ESC-derived factors to affect proper T cell

activation led us to examine T cell effector function in response to

alloantigen. We performed one-way mixed lymphocyte reaction

(MLR) assays and examined the expression of various cytokines

and transcription factors by quantitative PCR at several time

points. We found that MLR treated with ESC-derived factors had

significantly lower expression levels of IL-2 and IFN-c after

8 hours of stimulation compared to controls (Figure 4 a,b). In

contrast, we observed significantly higher expression of TGF-b
and Foxp3 in the same samples by 24 hours (Figure 4c,e).

However, Tbet expression remained unchanged (Figure 4d).

These results indicate that ESC-derived factors may favour

development of T regulatory cells over Th1 cells in response to

alloantigen.

To further confirm that the shift in cytokine and transcription

factors was specifically induced in T helper subsets, we examined

IFN-c and Foxp3 expression by intracellular staining of T cell

subsets. Splenocytes were stimulated with anti-CD3 and anti-

CD28 or PMA/Ionomycin in the presence of ESC-derived

factors or controls and subsequently analyzed by flow cytometry

at the indicated time points. We gated on CD4 and CD8 T cell

subsets and found that ESC-derived factors suppressed IFN-c
production in CD8 T cells compared to controls (Figure 5a) but

not in CD4 cells at this time point (data not shown). Next we

examined the frequency of T regulatory cells based on the

combined expression of CD4, CD25 and Foxp3 [31]. Treatment

of splenocytes with ESC-derived factors resulted in greater

number of CD4+, CD25+ and Foxp3+ cells compared to controls

(Figure 5b). In addition to stimulating splenocytes with anti-CD3

and anti-CD28 or PMA, we also used one-way MLR to examine

the intracellular protein levels of IFN-c and Foxp3. We found

that ESC-derived factors decreased the number of IFN-c-

producing cells and increased the number of Foxp3+ cells in

response to alloantigen (Figure S4). Taken together, these data

suggest that ESC-derived factors may skew the production of

cytokine and transcription factors in T cells and promote the

development of T regulatory cells.

ESC Inhibit T Cell Activation through PKC-h
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ESC-derived factors skew T cells responses by preventing
PKC-h phosphorylation

The mechanisms underlying ESC-mediated T cell inhibition

remain poorly understood. Recently, Yachimovich-Cohen et al.

described that intact human ESCs are able to directly inhibit T

cell proliferation through the expression of the enzyme arginase-1

[22]. However, in our assays we supplement the cytoplasmic

lysates with excess amounts of L-arginine to prevent protein-

protein aggregation and dimerization [32,33]. It is very likely that

ESCs may have multiple properties that affect T cell activation

and proliferation. To delineate alternate mechanisms, we

stimulated splenocytes with various mitogens that activate specific

Figure 1. ESC-conditioned media and cellular factors from ESC-extracts inhibit T cell proliferation in response to anti-CD3/anti-
CD28 stimulation. a) C57BL/6 splenocytes were labeled with CFSE and activated with anti-CD3/anti-CD28 in RPMI media (unstimulated cells
presented in panel 1 and stimulated cells in panel 2). Cells were also activated in 50% RPMI along with 50% or 100% fresh unconditioned media
(panels 3 and 4), 50% RPMI along with 50% or 100% mouse embryonic fibroblast-conditioned media (MEF-CM, panels 5 and 6), and 50% RPMI along
with 50% or 100% mouse ESC-conditioned medium (ESC-CM, panels 7 and 8). After 48 hours the cells were analyzed by flow cytometry for
proliferation. b) ESCs were grown in feeder free cultures, harvested and lysed by sonication. Cell membrane, mitochondria and nucleus were removed
by centrifuging the sonicate at 15000 g for 15 minutes. Proliferation of B6 splenocytes stimulated with anti-CD3/anti-CD28 in RPMI media was
assessed using extraction buffer alone (vehicle, panel 1), lysates from C2C12 cells (Control-Factors) or increasing concentration of ESC-derived factors
(ESC-Factors). Results are representative of 4 separate experiments.
doi:10.1371/journal.pone.0032420.g001

ESC Inhibit T Cell Activation through PKC-h
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signaling pathways in T cells. Interestingly, we found that ESC-

derived factors could specifically inhibit phorbol-1-3-merystate

(PMA) mediated proliferation of splenocytes (Figure 6a). Similarly,

human ESC-derived factors were able to inhibit PMA-mediated

proliferation of healthy donor T cells (Figure S2). It is well known

that PMA is a specific activator of protein kinase C-theta (PKC-h)

[34,35] Therefore, ESC-derived factors may inhibit proper T cell

activation and proliferation by suppressing PKC-h activation.

To directly establish the impact of ESCs on PKC-h, splenocytes

were stimulated with PMA in the presence and absence of ESC-

derived factors. Subsequently, western blot assays were carried out

to assess PKC-h phosphorylation at Threonine-538 (Thre-538)

that has been shown to be reflective of its activity [36]. Splenocytes

treated with ESC-derived factors at various time points had very

little or no phosphorylation of PKC-h whereas control splenocytes

showed strong phosporylation in response to PMA (Figure 6b).

Notably, ESC-derived factors did not have an effect on total PKC-

h levels as they remained constant at all time points similar to

controls (Figure 6b). To determine whether the absence of

phosphorylation at Thr-538 was indeed reflective of PKC-h
activity we examined down stream targets of the kinase. PKC-h is

known to form a complex with CARMA-1, Bcl-10 and MALT-1

to induce NFkB translocation to the nucleus by causing

degradation of IkB [37]. As a result we examined IkB-a
degradation in purified T cells that had been activated with

PMA. Consistent with above results, we found that IkB-a was not

or only slightly degraded in cells that were treated with ESC-

derived factors whereas IkB-a was visibly degraded in controls

(Figure 6c). Accordingly, cells treated with ESC-derived factors

had decreased levels of NFkB translocated to the nucleus in

comparison to those treated with vehicle (Figure S5). Hence, ESC-

derived factors can directly affect T cell activation and

proliferation by inhibiting PKC-h phosphorylation and subsequent

activity.

ESC-derived factors specifically inhibit PKC-h activation
without affecting upstream T cell signaling

Although ESC-derived factors have the capacity to inhibit PMA

mediated PKC-h activation, it is unclear whether they also affect

other signaling components emanating from the TCR and CD28.

It is known that PKC-h activation is mediated by signaling

molecules PLC-c and PI3K originating from the TCR and CD28,

respectively [38,39]. As such, we determined whether these

signaling molecules were affected by ESC-derived factors following

anti-CD3 and anti-CD28 stimulation. Splenocytes were pre-

treated overnight with ESC-derived factors and stimulated with

anti-CD3 and anti-CD28 for the indicated time periods.

Subsequently, phosphorylation of PLC-c, AKT (used as a

surrogate marker for PI3K) and PKC-h were examined.

Consistent with the data obtained with PMA (Figure 6), we found

that splenocytes treated with ESC-derived factors and activated

with anti-CD3 and anti-CD28 had little or no phosphorylation of

PKC-h at all time points, whereas phosphorylation was detected in

controls (Figure 7). In contrast, phosphorylation of PLC-c and

AKT could be detected in both ESC-derived factor- and control-

treated splenocytes at all time points (Figure 7). Therefore, it can

be concluded that ESC-derived factors specifically inhibit PKC-h
without influencing its known up-stream activators.

ESC-derived factors enhance inhibition of allogeneic
immune activation in combination with cyclosporin A

By determining that ESC-derived factor specifically inhibit

PKC-h phosphorylation (Figure 6, 7), we then asked whether T

Figure 2. ESC-derived factors do not enhance T cell death. C57BL/6 splenocytes were stimulated with anti-CD3/anti-CD28 antibodies in the
presence of ESC-derived factors for 24 hours. The cells were harvested and washed with PBS and stained with anti-CD3 antibody, Annexin V-PE and
7AAD to examine T cell apoptosis and necrosis, respectively. Analysis was carried out by gating on CD3+ cells followed by determination of Annexin
V-PE and 7AAD. Results are representative of 4 separate experiments.
doi:10.1371/journal.pone.0032420.g002

ESC Inhibit T Cell Activation through PKC-h
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cell proliferation could be further suppressed in combination with

inhibitors of the calcium-signaling pathway. The effect of ESC-

derived factors was tested in combination with CsA, a drug that

specifically inhibits calcineurin activation and has been widely

used in the clinic to alleviate allogeneic organ rejection. Treatment

of MLR with CsA alone resulted in a decrease in cell proliferation

(Figure 8). Notably, ESC-derived factors used in combination with

CsA markedly suppressed MLR proliferation and significantly

enhanced the effect of very low dose CsA drug (Figure 8). These

data indicate that ESC-derived factors in combination with

inhibitors of the calcium-signaling pathway have an additive effect

in preventing allo-immune activation. It can be concluded that

ESC-derived factors may hold the potential as a new supplement

of current conventional immunosuppressive drugs to promote

allogeneic graft survival while reducing harmful side effects.

Discussion

Several groups have demonstrated that ESCs have immune

modulatory properties that not only allow ESCs to survive across

allogeneic immune barrier but also provide protection to solid

organ transplants [5,10,12,13,14,15,17,18,19,20,22,40,41]. Here

we have further demonstrated that ESCs have the capacity to

directly inhibit T cell proliferation and activation. Moreover, we

have demonstrated for the first time that one of the mechanisms by

which ESCs modulate the immune system occurs through

suppression of PKC-h phosphorylation. In addition, we have

found that ESC-derived factors skew T helper responses from Th1

towards a regulatory T cell phenotype by decreasing the

production of IL-2 and IFN-c and increasing production of

TGF-beta and Foxp3. We also determined that ESC-derived

factors were able to specifically inhibit PKC-h phosphorylation

without affecting upstream T cell signaling components derived

from both CD3 and CD28, such as PLC-c and PI3K (known

activators of PKC-h).

The role of PKC-h and its contribution to T cell function and

phenotype has been expanded by several important findings.

Zanin-Zhorov’s et al. have recently elucidated that PKC-h is

recruited much less in T regulatory cells compared to effecter T

cells [42]. They established that PKC-h has a negative impact on

T regulatory cells rendering them less effective in suppressing

effecter T cell function. Moreover, inhibition of PKC-h was shown

to enhance T regulatory potency in suppressing effecter T cell

proliferation and IFN-c secretion [42]. Meanwhile, Valenzuela et

al. have found that PKC-h is required for allo-antigen responses in

a GVHD model [43]. Whereas wild type T cells induced severe

GVHD resulting in a lethal outcome for all mice, PKC-h-KO T

cells induced very mild or no GVHD leading to the survival of

most transplanted mice [43]. Finally, several groups have

established that in the absence of PKC-h activation, an anergic

genetic program is initiated. This anergic state is induced due to

prolonged calcium flux leading to persistent activation and

translocation of NFAT to the nucleus [44,45,46,47] and an

enhanced expression of E3 ubiquitin ligases that negatively

regulate T cell signaling [48,49], in the absence of other

transcription factor such as NFkB and AP-1. Our current results

expand on the previous findings and provide the first connection

between ESC immune modulation and PKC-h inhibition. We

believe that the inhibition of PKC-h by ESC-derived factors will

have a major impact in modulating T cell responses.

The mechanisms underlying ESC-mediated immune modula-

tion remain mostly unknown. Previous studies have shown possible

involvement of TGF-b in mouse ESCs while FasL has been

implicated in rat ESC immune modulation [12,13]. In our studies

we treated ESC-derived factors with neutralizing antibodies

against TGF-b in both T cell proliferation and in Foxp3 induction

assays. We did not find a noticeable increase in T cell proliferation

and a reduction in the number of Foxp3+ T cells in response to

ESC-derived factors after neutralizing TGF-b (data not shown).

Consistent with these results, Robertson et al. examined 87

immunologically relevant genes in mouse ESC and found that IL-

Figure 3. ESC-derived factors inhibit upregulation of activation
markers CD25, CD44 and CD69 on CD4 and CD8 T cells.
Negatively isolated C57BL/6 CD3+ T cells were stimulated with plate
bound anti-CD3/anti-CD28 antibodies in the presence of ESC-derived
factors or vehicle control. a) CD4 positive T cells were examined for
CD25 and CD44 expression after 24 hours and CD69 expression after
6 hours of stimulation. b) CD8 positive T cells were examined for CD25
and CD44 expression after 24 hours and CD69 expression after 6 hours
of stimulation. Results are representative of 3 separate experiments.
doi:10.1371/journal.pone.0032420.g003

ESC Inhibit T Cell Activation through PKC-h
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10, TGF-b1, arginase-1, arginase-2 and indoleamine-2,3-dioxy-

genase did not contribute to their immune privilege [18]. Studies

carried with human ESCs have shown that arginase-1 and HLA-G

may play a role in ESC-mediated immune modulation [22,41].

Based on these reports, it has become apparent that ESC-

mediated immune modulation may occur through a number of

different factors and mechanisms. Given the importance of ESCs

in PKC-h activation, our current focus has been to identify a

specific factor that mediates such an effect.

Conclusions
ESC-derived factors have the capacity to modulate T cell responses

directly. In the presence of ESC-derived factors T cell proliferation is

hindered and the expression of activation markers decreased.

Moreover, ESC-derived factors favour a T regulatory phenotype

over a Th1 response, leading to an increase in CD4+, CD25+ Foxp3+
cells and a decrease in IFN-cproduction. Such a modulation in T cell

responses may be achieved by the ability of ESCs that specifically

inhibit PKC-h phosphorylation and its subsequent activity.

Figure 4. ESC-derived factors modulate T helper responses during an allogeneic immune response. A one way mixed lymphocyte
reaction was performed, C57BL/6 splenocytes were used as responders and CD1 splenocytes as stimulators in the presence of ESC-derived factors or
vehicle control. Cells were harvested at the indicated time points and total RNA was isolated. Subsequently, cDNA was synthesized and used to carry
out QPCR to examine the expression of cytokines and master regulator transcription factors of T helper cells. a) IL-2, b) IFN-c, c) TGF-b, d) T-bet, e)
Foxp3. Responders alone were used as baseline. Results are representative of 3 separate experiments. Data points represent mean 6 SD. * indicates p
value#0.05. White bars represent results obtained from vehicle treated MLRs and black bars indicate results obtained from ESC-derived factor treated
MLRs.
doi:10.1371/journal.pone.0032420.g004

ESC Inhibit T Cell Activation through PKC-h
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Materials and Methods

Cell lines and animals
Mouse ESC C57BL/6 cell line was obtained from ATCC.

Mouse ESC D3 and J1 cells were kind gifts from Dr. Qiao Li and

Dr. Michael Rudnicki, respectively (University of Ottawa, Ottawa,

Ontario, Canada). Mouse strains C57BL/6, B6C3F1, Balb/c and

CD1 (10 to 15 weeks old) were obtained from Charles River

Laboratories, Montreal Canada. All hESC lines (H1 and H9 cell

lines from WiCell Research Institute, Madison, WI, USA)

[11,14,15,20] were used with the approval of the local Ethics

Board (Permit No. 2005721-01H) and the Stem Cell Oversight

Committee of the Canadian Institutes for Health Research (Permit

No. FRN-11224). Animals were maintained at the University of

Ottawa (Ottawa Ontario, Canada) in accordance with the

Canadian Council on Animal Care guidelines under protocols

approved by the Animal Use Subcommittee at The University of

Ottawa (Permit No. BMI-95).

ESC conditioned medium
Mouse ESCs were grown in 75 cm2 Corning flasks (Sigma Inc.)

in 10 ml of ESC medium for 24 hours. The next day the medium

was harvested and centrifuged at 15000 g for 15 minutes at 4uC in

order to remove cell debris. Supernatants were transferred to new

tubes and either used right away in proliferation assays at

indicated ratios in combination with RPMI or frozen at 220uC
for later use. Mouse embryonic fibroblast (MEF) cells-conditioned

medium as described above was used as a control.

Mouse ESC extraction
Mouse ES lines D3, J1 and B6 were grown on mitomycin-

treated MEF cells in Dulbecco’s modified eagle Medium (DMEM)

containing 4.0 mM L-glutamine, 1.0% non-essential amino acids,

0.10 mM 2-ME, 1.06102 units of Penicillin, 1.06102 units of

Streptomycin and 15% FBS (Invitrogen Canada Inc., Burlington

ON) supplemented with 1.06103 units/mL of LIF (Millipore

Canada Ltd., Etobicoke ON) and incubated at 37uC with 5.0%

CO2. Subsequently, the cells were cultured on 0.10% gelatin

coated plates for two passages in order to eliminate MEF cells.

Upon reaching confluence, the cells were harvested by treatment

with trypsin (Invitrogen Inc.) and dissociated to obtain a single cell

suspension. Subsequently, ESCs were washed twice with ice cold

PBS and centrifuged at 400 g for 6 minutes at 4uC. After washing,

the cells were re-suspended in lysis buffer. (50 mM HEPES,

50 mNaCl, 1.0 mM EDTA, 1.0 mM DTT, 50 mM L-arginine,

pH 8.2). The lysis buffer was supplemented with pan protease

Figure 5. ESC-derived factors skew T cell helper responses towards T regulatory cells. a) C57BL/6 splenocytes were pre-treated over night
with ESC-derived factors and stimulated with PMA and Ionomycin or anti-CD3/anti-CD28 for 6 hours. Protein transport inhibitor cocktail was added
to the cells 1 hour following stimulation. Cells were harvested and stained for surface CD8. After washing, the cells were fixed, permeabilized and
stained for intracellular IFN-c. b) C57BL/6 splenocytes were treated with ESC-derived factors and stimulated with anti-CD3 and anti-CD28 for 3 days.
The cells were harvested and stained for CD3, CD4 and CD25. Subsequently, cells were fixed, permeabilized and stained for Foxp3. Gates were set on
CD3+ followed by CD4+ cells. Results are representative of at least 3 separate experiments.
doi:10.1371/journal.pone.0032420.g005

ESC Inhibit T Cell Activation through PKC-h
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inhibitors at 1:100 (4-(2-aminoethyl) benzenesulfonyl fluoride

(AEBSF), pepstatinA, E-64, bestatin, leupeptin, and aprotinin)

dissolved in DMSO, Sigma Aldrich Canada Ltd, Oakvile ON). At

this point the cells were incubated for 30 minutes on ice and

sonicated until complete lysis of the cells was achieved. The

sonicated cells were centrifuged at 15000 g for 15 minutes at 4uC
to remove cell membrane, mitochondrial and nuclear fractions.

The soluble cell free fraction was separated from the insoluble

fraction and both stored at 280uC. Protein concentration was

determined using Bio-Rad Protein assay kit (Bio-Rad Laboratories

Ltd., Mississauga ON).

Mouse splenocyte and CD3+ T cell isolation
Mouse spleens were removed aseptically and gently homoge-

nized with the frosted ends of two sterile microscope slides and

passed through a 45 mm mesh filter. The cells were washed twice

with PBS and red blood cells were removed by Ficoll

centrifugation or ACK red blood cell lysis buffer (Cederlane

Laboratories Ltd. Burlington ON). Afterwards, cells were washed

twice with PBS and re-suspended in media. Purified CD3+ T cells

were obtained by negative selection using a magnetic labeling kit

(StemCell Technologies Inc.) according to manufacturer instruc-

tions (Purity was 92% for CD3 marker).

Mouse splenocyte activation
Isolated splenocytes were suspended in serum free RPMI media

at 1.06106 cells/mL and stained with 0.01 mM of carboxyfluor-

esceindiacetatesuccinimidyl ester (CFSE) (Simga Aldrich Inc.) or

CellTrace Violet Cell Proliferation kit (Invitrogen Inc.) for

40 minutes at 37uC. Subsequently, the cells were washed twice

with PBS. Splenocytes were plated at 1.06105/well in 96 well

plates in a total volume of 0.20 ml of RPMI media (10% FBS,

2 mM L-glutamine, 16102 U penicillin, 16102 U streptomycin,

1.0 mM Non-essential amino acids, 50 mM 2-mercapto-ethanol).

Figure 6. ESC-derived factors inhibit PMA mediated PKC-h activation in T cells. a) C57BL/6 splenocytes were stained with CellTrace Violet
Cell Proliferation dye and activated with 50 ng/ml of PMA for 24 hours in the presence of 0.23 mg/ml of ESC- derived factors (without pre-treatment).
Cells were harvested, washed with PBS and examined for proliferation by flow cytometry. b) C57BL/6 splenocytes were pre-treated over night with
0.23 mg/ml of ESC-derived factors and stimulated with 50 ng/ml of PMA for the indicated periods of time. Subsequently, the cells were harvested
and lysed. Lysates were examined by western blotting for PKC-h phosphorylation (Thre 538), and total PKC-h. c) C57BL/6 CD3+ T cells were pre-
treated overnight with 0.23 mg/ml ESC-derived factors and stimulated with 50 ng/ml of PMA for the indicated periods of time. Subsequently, the
cells were harvested and lysed. Lysates were examined by western blotting for IkB-a degradation. Results are representative of 4 separate
experiments.
doi:10.1371/journal.pone.0032420.g006
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Cells were stimulated with 1.2 mg/ml of anti-CD3 and 0.50 mg/ml

of anti-CD28 (eBioscience Inc., San Diego CA) (unless otherwise

stated) in the presence of increasing concentration of mESC-

derived factors (0.15 mg, 0.23 mg/ml and 0.30 mg/ml). Spleno-

cytes were also stimulated with either concanavalin A (ConA), or

phorbol 12-myristate 13-acetate (PMA) and ionomycin in the

presence or absence of 0.23 mg/ml of ESC-derived factors.

Proliferation was allowed to proceed for 2–3 days and CFSE

dilution was analyzed by Beckman Coulter Cyan flow cytometer.

Mixed lymphocyte reaction
Splenocytes were isolated as described above. One-way MRL

were carried out with 1.06105 splenocytes from both responder

and stimulator cells in 96 well U bottom plates. Stimulator cells

were pre-treated with 50 mg/mL of mitomycin C for 40 minutes

at 37uC prior to MLR. The cells were allowed to proliferate for 3

days and tritium uptake was determined. The cells were harvested

on to 96 well filters-mats (Wallac Inc., Turku Finland) using a

TomTec harvester. Tritium uptake was determined by liquid

scintillation using a Wallac 1450 Microbeta Plus liquid scintillation

counter (Wallac Inc.). Results are displayed as counts per minute

(CPM) of triplicate wells 6 SD.

T cell markers
T cell activation was examined using CD3, CD4, CD8, CD25,

CD44 and CD69 (eBioscience Inc.). CD3+ T cells were stimulated

with plate bound anti-CD3 and anti-CD28 (eBioscience Inc.) in

the presence or absence of 0.23 mg/ml of ESC-derived factors

and allowed to proliferate for the indicated times. Cells were

harvested and washed with PBS. Next, blocking was carried out

with 10% rat serum for 15 minutes on ice. At the end of the

incubation period, antibodies were added to the cells according to

manufacturer recommendation and the cells were incubated for

30 minutes. Cells were analyzed by Beckman Coulter Cyan flow

cytometer. Data were analyzed by gating on CD3 positive cells

followed by examination of activation markers CD25, CD44 and

CD69 on CD4 and CD8 separately.

Cell death assay
Splenocytes were stimulated with anti-CD3 and anti-CD28

(eBioscience Inc.) in the presence or absence of 0.23 mg/ml of ESC-

derived factors and allowed to proliferate for 2–3 days in 96 well

plates as described above. Cells were harvested and washed twice

with PBS. At this point, cells were re-suspended in Annexin-V buffer

and stained with 5.0 ml of Annexin V-PE for and anti-CD3-FITC

antibody for 30 minutes (BD Biosciences Inc. Mississauga, ON).

Cells also received 5 ml of 7-amino-actinomycin D (7AAD) for the

last 10 minutes of incubation. Cell death was determined by flow

cytometer using Beckman Coulter Cyan flow cytometer.

QPCR
Splenocytes were isolated as described above. A one way mixed

lymphocyte reaction was performed by treating stimulator cells

with 50 mg/mL of mitomycin C for 40 minutes at 37uC prior to

MLR. Subsequently, 16106 C57BL/6 splenocytes (responders)

were incubated with 16106 CD1 splenocytes (stimulators) in 48

well plates in triplicates. The cells were treated with 0.30 mg/ml of

ESC-derived factors or vehicle control. At the indicated time

points cells were harvested, lysed and RNA was isolated using

QiagenRNeasy Mini Kit (Qiagen Canada Inc. Mississauga ON)

according to manufacturer instructions. Subsequently, cDNA was

synthesized using QiagenQuantiTech Reverse Transcription kit

(Qiagen) according to manufacturer instructions. QPCR was

carried out with iQ SYBR Green Supermix (Bio-Rad Laboratories

Ltd.) and My iQ-iCycler (Bio-Rad Laboratories Inc.) with an

initial hot start for 90 seconds at 94uC followed by 40 cycles set for

10 seconds at 94uC, 30 seconds at 60uC, and 30 seconds at 72uC.

Primers were as follows; IL-2 forward CAGGATGGAGAATTA-

CAGGAACCT, IL-2 reverse 59 TTTCAATTCTGTGGCC-

TGCTT, IFN-c forward 59 GAAAATCCTGCAGAGCCAGA,

IFN-c reverse 59 TGAGCTCATTGAATGCTTGG, TGF-b
forward 59 GTGCTCGCTTTGTACAACAGC, TGF-b reverse

59 TTACCAAGGTAACGCCAGG, Foxp3 forward 59 CGAA-

AGTGGCAGAGAGGTATTGA, Foxp3 reverse 59 ACTGTC-

TTCCAAGTCTCGTCTGAA, Tbet forward 59 GCCAGGGA-

ACCGCTTATATG and Tbet reverse 59 GACGATCATCT-

GGGTCACATTGT. Gene expression levels were normalized to

Figure 7. ESC-derived factors specifically inhibit PKC-h activa-
tion without affecting upstream signaling molecules. C57BL/6
splenocytes were pre-treated with ESC-derived factors overnight and
stimulated with anti-CD3/anti-CD28 for the indicated periods of time.
Subsequently, the cells were harvested and lysed. Lysates were
examined by western blotting for PLC-c, AKT and PKC-h phosphory-
lation. Results are representative of 3 separate experiments.
doi:10.1371/journal.pone.0032420.g007

Figure 8. ESC-derived factors in combination with cyclosporin
A enhance inhibition of allogeneic immune activation. A one
way mixed lymphocyte reaction was performed, C57BL/6 splenocytes
were used as responders and CD1 splenocytes as stimulators in the
presence of vehicle control, ESC-derived factors and CsA. Moreover,
ESC-derived factors were used in combination with CsA to determine
whether they can complement one another in preventing allo-immune
activation.
doi:10.1371/journal.pone.0032420.g008
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GAPDH and fold change was compared to relative gene

expression with responder cells alone through the delta-deltaCt

method.

Western blot
Two million splenocytes were-pretreated with 0.23 mg/ml of

ESC-derived factors or vehicle control overnight in 0.50 ml of

RPMI medium in 48 well plates. The next day, cells were

stimulated with either 50 ng/ml of PMA or anti-CD3 and anti-

CD28 for the indicated periods. Cells were harvested and lysed

immediately in lysis buffer (25 mM Tris-HCl, 0.15 M NaCl,

5.0 mM MgCl2, 1.0% NP-40, 1.0 mM DTT, 5.0% glycerol,

[pH 7.5]) and an equivalent volume of Laemmli Sample buffer

(Bio-Rad Laboratories Ltd.) was added to the samples. Samples

were boiled for 5 minutes and ran on a 10% SDS-PAGE gel and

transferred to nitrocellulose membranes. The membranes were

blocked with 5% powder milk (w/v) or 5% BSA (w/v) in TBS-T

for 1 hour. Membranes were probed with rabbit anti-mouse

phospho-PKC-h (Thre538) and total PKC-h antibodies at 1:500

(Santa Cruz Biotechnology Inc. Santa Cruz, CA) overnight.

Subsequently, membranes were washed 3 times with TBS-T for

15 minutes and were probed with goat anti-rabbit secondary HRP

conjugated antibody. Again, membranes were washed 3 times with

TBS-T. At this point, the bands were visualized with Amersham

ECL Plus western blot detection systems (GE Healthcare

Biosciences Corp. Piscataway, NJ). A similar procedure was

carried out for pAKT (1:3000), IkB-a (1:500) and pPLC-c (1:1000)

(Cell Signaling Technology Inc. Danvers, MA).

Intracellular cytokine and transcription factor staining
Two million splenocytes were pre-treated with 0.23 mg/ml of

ESC-derived factors or vehicle control overnight in 0.50 ml of

RPMI media in 48 well plates. The next day, the cells were

stimulated either with anti-CD3/CD28 or PMA and ionomycin

for 6 hours. After the first 1-2 hours of stimulation cells were also

treated with Protein Transport inhibitor cocktail (eBioscience

Inc.). At the end of the incubation period cells were harvested and

washed twice. Subsequently the cells were incubated with 10% rat

serum and stained for surface markers CD4 and CD8. Staining

was carried out for 30 minutes followed by two washes with PBS.

The cells were fixed and permeabilized using the Foxp3 Fixation/

Permeabilization Concentrate kit according to manufacturer’s

instructions (eBioscience Inc.). Cells were stained for intracellular

IFN-c and Foxp3 (eBioscience Inc.).

Statistical analysis
Statistical significance was determined using a Student’s t-test,

ANOVA or chi-square wherever appropriate. Results were

considered significant when P,0.05.

Supporting Information

Figure S1 A one-way MLR was performed with C57BL/
6 splenocytes used as responder cells and BALB/c

splenocytes used as stimulators. Cells were treated with

increasing concentration of ESC derived factors or equivalent

volume of vehicle control. MLR was allowed to proceed for 4 days

and tritiated thymidine was added for an additional 16–18 hours.

Data points indicate counts per minute [CPM] of triplicate wells+/

2SD. * indicates p,0.05.

(TIF)

Figure S2 Purified human CD3+ T cells were stimulated
with 30 ug/ml of ConA or 50 ng/ml of in the presence of
hESC or vehicle control. Tritiated thymidine was added on

day 3 and the cells were cultured for an additional 16 to 18 hours.

Results are displayed and counts per minute (CPM) of triplicate

wells+/2SD.

(TIF)

Figure S3 C57BL/6 splenocytes were stimulated with
anit-CD3/anti-CD28 in the presence of ESC-derived
factors or vehicle control for 72 hours. The cells were

harvested and washed with PBS and stained with anti-CD3-FITC,

Annexin-V-PE and 7AAD to examine T cells apoptosis and

necrosis. Analysis was carried out by gating on CD3+ cells.

(TIF)

Figure S4 A one-way MLR was performed with C57BL/
6 splenocytes used as responder cells and BALB/c
splenocytes used as stimulators. Cells were treated with

0.225 mg/ml of ESC derived factors or equivalent volume of

vehicle control at start of culture. a) CD8 cells were examined for

intracellular IFN-c 24 hours later. b) Intracellular Foxp3 was

examined 48 hours following start of culture in CD4+ CD25+
cells.

(TIF)

Figure S5 Purified C57BL/6 T cells were pre-treated
overnight with 0.23 mg/ml of ESC derived factors or
equivalent volume of vehicle control. The next day cells

were stimulated with 50 ng/ml of PMA for the indicated amount

of times. Cells were harvested and total nuclear protein was

isolated. Samples were examined for translocated NFkB in each

sample. Histone deacetylase 1 (HDAC1) was used as a loading

control.

(TIF)
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