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Abstract
Liposomes (phospholipid bilayer vesicles) are versatile and robust delivery systems for induction
of antibody and T lymphocyte responses to associated subunit antigens. In the last 15 years,
liposome vaccine technology has matured and now several vaccines containing liposome-based
adjuvants have been approved for human use or have reached late stages of clinical evaluation.
Given the intensifying interest in liposome-based vaccines, it is important to understand precisely
how liposomes interact with the immune system and stimulate immunity. It has become clear that
the physicochemical properties of liposomal vaccines – method of antigen attachment, lipid
composition, bilayer fluidity, particle charge, and other properties – exert dramatic effects on the
resulting immune response. Here, we present a comprehensive review of the physicochemical
properties of liposomal vaccines and how they influence immune responses. A discussion of novel
and emerging immunomodulators that are suitable for inclusion in liposomal vaccines is also
presented. Through a comprehensive analysis of the body of liposomal vaccine literature, we
enumerate a series of principles that can guide the rational design of liposomal vaccines to elicit
immune responses of a desired magnitude and quality. We also identify major unanswered
questions in the field, pointing the direction for future study.
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1. Introduction
Subunit vaccines are increasingly sought because they offer superior safety profiles and can
be manufactured with minimal risk of contamination [1, 2]. When coupled with appropriate
adjuvants, they can also focus the immune response on protective or highly conserved
antigenic determinants that may not elicit a potent response during natural infection or
vaccination with an intact pathogen [3, 4]. Currently marketed hepatitis B and human
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papillomavirus vaccines are two successful examples of protein subunit vaccines [5, 6],
while glycoconjugate subunit vaccines have dramatically impacted prevention of bacterial
pneumonia and meningitis in pediatric populations [7, 8]. Despite their obvious advantages,
subunit antigens alone are poorly immunogenic and must be formulated with particulate
adjuvants to elicit robust humoral and cell-mediated immunity [9, 10]. These particulate
systems mediate efficient delivery to antigen presenting cells and may induce inflammation
through activation of innate immunity [11–13]. The continued development of particulate
antigen delivery systems is an essential element of the pursuit of safe, effective subunit
vaccines.

Liposomal vaccines used in humans
Aluminum salts have been the most widely used vaccine adjuvants since their use was first
reported in 1926 [14], and prior to 2009, alum was the only adjuvant approved for use in the
United States [15]. However, because alum-based adjuvants elicit sub-optimal TH1
responses and weak cell-mediated immunity, alternatives are being evaluated. Of the
numerous particulate delivery systems that have been developed to replace alum – gels,
emulsions, polymeric particles – phospholipid bilayer vesicles (liposomes) are among the
most promising. Gregoriadis and Allison first reported the use of liposomes as
immunological adjuvants in 1974 [16, 17]. Since that time, liposomes and related vesicular
carriers have been established as robust systems for induction of humoral and cell-mediated
immunity to a broad spectrum of infectious diseases and cancers [18–20].

Currently, at least 8 liposome-based adjuvant systems are approved for human use or
undergoing clinical evaluation (Table 1). Virosomes, composed of reconstituted influenza
virus membranes (lipids and envelope glycoproteins) supplemented with
phosphatidylcholine (PC), have been a component of licensed influenza and hepatitis A
vaccines since 1997 [21–24]. Inflexal® V, the virosomal influenza vaccine, is marketed in
43 countries with over 60 million doses distributed. Liposomal vaccines comprised of more
traditional constituents (PC; phosphatidylglycerol, PG; cholesterol, Chol) are also
progressing toward regulatory approval for therapy of non-small cell lung cancer
(Stimuvax®, Oncotheryon; PC, PG, Chol, MPL) and prevention of malaria (RTS, S/AS01,
GlaxoSmithKline; PC, PG, Chol, MPL, QS-21) [25–28]. Liposome vaccine research and
development has greatly intensified in the last 10 years; of the 1316 published investigations
of liposome-based vaccines in the years 1974–2010 (according to PubMed), half have
appeared in the last 8 years and one quarter have been published the last 3 years.

Advantages of liposome-based adjuvant systems
The success of liposomal vaccines and increasing interest in their development can be
attributed to several key advantages that they offer over other particulate systems. Most
importantly, liposomes are known to be safe and well tolerated, as shown through the
extensive use of approved liposome-based anti-cancer and anti-infective drugs such as
DoxiI® (Johnson & Johnson) and AmBisome® (Gilead Sciences) [29–31]. In addition,
numerous human trials of liposomal vaccine candidates have demonstrated acceptably low
reactogenicity [21–28, 32, 33]. Also, because liposomes are often composed of lipids that
occur naturally in cell membranes, such as PC and cholesterol, these formulations are
completely biodegradable. As this review will emphasize, another key advantage of
liposome-based vaccine delivery systems is their versatility. Lipid constituents and methods
of vesicle preparation can be tailored to achieve particular desired physicochemical
properties of the liposome formulation [34]. Hydrophilic molecules can be encapsulated in
the aqueous interior or conjugated to the vesicle surface, whereas hydrophobic compounds
can be intercalated into the lipid bilayer [35]. This versatility allows antigens of all types,
including peptides, proteins, carbohydrates, nucleic acids, and small molecule haptens, to be
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incorporated in liposome formulations with appropriate modifications in vesicle properties
to accommodate antigen size and charge. Combination of immunomodulators, such as Toll-
like receptor (TLR) agonists or other pattern recognition receptor (PRR) agonists, can be
readily co-formulated as well.

Rationale for this article
After 35 years and over thirteen hundred publications, it has become clear that the
physicochemical properties of lipid vesicles exert a dramatic influence on the nature of the
resultant immune response to associated antigens. However, the relationship between
physicochemical properties and immunogenicity has been challenging to define because of
the difficulty in modifying one physicochemical property without perturbing others. Thus,
we have carefully reviewed the evidence concerning this relationship in an attempt to
identify key correlations between physicochemical properties of liposome-based vaccines
(depicted in Figure 1) and the immune responses they elicit. Because of the difficulty in
comparing results from studies that use different vesicle compositions, model antigen
systems, and species, we have constrained our review to emphasize those studies that
directly compare one or more physicochemical properties within a single experimental
system in vivo. We have attempted to focus on the issues particular to liposomes and related
lipid-based systems, and for information on more general topics we refer the readers to more
focused reviews on those specific areas. The design principles presented herein may inform
the future design of improved liposome adjuvant systems.

2. Physicochemical properties of liposomal vaccines evaluated in vivo
Properties reviewed elsewhere

Many of the properties of a successful subunit vaccine are not specific to liposomes or any
particular delivery system. For example, route of administration can be critically important
when seeking to induce mucosal immunity, which is remarkably compartmentalized [36].
Oral immunization elicits potent IgA secretion in the small intestine and ascending colon,
but weak responses in the distal colon and female genital tract; however, nasal immunization
elicits IgA secretion in the respiratory tract and female genital tract with virtually no
response in the gut [37, 38]. Antigen dose is another important consideration that is
determined by the age, nutritional status, and immune status of the target population [39,
40]; for example, increased doses have been found to generate significantly higher antibody
responses to a trivalent inactivated influenza vaccine in adults over 65 years of age [41]. The
nature of the antigen itself is critically important; larger or repetitively displayed antigens
are more immunogenic, and for protein antigens T cell epitope density is critical [42–45]. In
addition, vaccines can now be efficiently targeted to specific receptors on antigen presenting
cells, such as DC-SIGN or DEC-205 on dendritic cells [46, 47]. Finally, particle size and
shape are important determinants of the in vivo fate of a vaccine formulation, including
clearance from the injection site and distribution to the lymphatic system [48]. Particle
elasticity may also be important in determining trafficking of parenterally injected
particulates to lymph nodes [49]. Although particle size is considered in this review, we
have constrained our discussion to specific investigations of liposomes. For all of these more
general topics, we refer the reader to appropriate articles (Table 2). Our intent is to focus
only on those issues that are particular to lipid-based particulate formulations.

In addition to the properties discussed above, agonists for pattern recognition receptors
(PRRs) such as Toll-like receptors (TLRs), NOD-like receptors (NLRs), and C-type lectin
receptors (CLRs), are extremely important candidate adjuvants for subunit vaccines and
have been extensively investigated [50–54]. TLR and NLR agonists such as
lipopolysaccharide (LPS) derivative monophosphoryl lipid A (MPL), unmethylated
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cytosine-phosphate-guanine motifs (CpG), polyinosinic:polycytidylic acid (poly(I:C)), and
muramyl dipeptide (MDP) are commonly incorporated into liposome-based vaccines [20,
55–57]. However, because these molecules have been reviewed extensively elsewhere, we
will not discuss them here. Instead, our discussion of molecular immunopotentiators is
limited to molecules that are novel or particular to liposome-based systems.

Archetypal liposomal vaccines
Liposome and lipid-based nanoparticle formulations used for vaccination can be broadly
grouped into several archetypal classes (summarized in Table 3). Conventional and cationic
liposomes, composed of neutral or cationic lipids, respectively, and cholesterol, have been
the most widely studied and afford the greatest versatility – desired formulation parameters
can be achieved through modification of the lipid composition or vesicle preparation method
[18, 20, 58, 59]. For delivery of plasmid DNA, which can act both as antigen (through
encoded proteins) and adjuvant (through stimulation of TLR9 via CpG motifs), the nucleic
acid is typically mixed with a cationic lipid to form an electrostatic complex (lipoplex) [60].
Greater formulation control may be achieved by condensing the DNA with a polycation
prior to addition of pre-formed vesicles, which in some cases results in formation of a
bilayer structure surrounding the DNA-polycation complex [61]. Virosomes, as mentioned
in the previous section, are a special class of vesicles prepared from reconstituted influenza
virus membranes supplemented with PC [62, 63]. The physicochemical features of
virosomes are constrained by their well-defined composition and method of preparation, but
these vesicles benefit greatly from the inherent delivery properties (efficient cell binding,
internalization, and cytosolic release) and immunogenicity of the influenza virus. Other
specialized formulations include archaeosomes (prepared from polar glycerolipids extracted
from Archaea), which are inherently immunostimulatory, and niosomes (nonionic
surfactants with cholesterol), which have been investigated for topical delivery [64–66].
This review will focus mainly on conventional and cationic liposomes, as well as lipid-DNA
particles of various types.

Antigen attachment method
One of the most critical parameters influencing the immunogenicity of liposomal vaccines is
the method by which the antigen is physically or chemically associated with the formulation.
The most common modes of association include covalent lipid conjugation (either pre- or
post-vesicle formation), non-covalent surface attachment (via biotin, NTA-Ni(II)-His6, or
antibody-epitope interactions), encapsulation, and surface adsorption (Figure 2). Many of
the early investigations of liposomal peptide and protein antigenicity in mice compared
encapsulated antigens to those conjugated to the surface of pre-formed liposomes.
Collectively, these studies by Alving, Gregoriadis, Therien, and others confirmed that both
methods are generally effective for inducing antibody and T cell responses to associated
protein antigens such as albumin and tetanus toxoid [67–69]. In some cases, covalent
antigen conjugation results in superior antibody induction [70–74], which is not surprising
because B cell receptors can recognize intact antigen on the liposome surface [74]. As the
size and complexity of the antigen decreases, the benefit of surface conjugation for antibody
induction becomes more pronounced. Synthetic peptides for which surface conjugation
provides superior immune responses to encapsulation include those derived from viral
antigens (HIV-1 gp120, HSV glycoprotein D) and tumor antigens (MUC1) [70, 74–77].

Helper and cytotoxic T cell responses to liposome-associated antigens are also highest when
the antigen is conjugated to the vesicle surface as compared to encapsulated in the aqueous
interior, but the benefit is not as great as that observed for antibody induction. For example,
Therien and coworkers demonstrated that surface-linked conalbumin (via SPDP) elicited
50% greater proliferation of restimulated splenocytes than encapsulated conalbumin, despite
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immunization with 5-fold higher dose of encapsulated antigen [72]. In a follow-on study, the
surface-conjugated formulation also increased splenocyte IFN-γ production [69]. Chen and
Huang also observed a benefit when a peptide derived from human papilloma virus protein
E7 was palmitoylated at the N-terminus and incorporated into cationic liposomes [78].
Palmitoylation increased E7-specific CTL responses 2-fold over unconjugated peptide. This
study also emphasized the importance of the antigen-lipid linkage; addition of a Lys-Ser-Ser
linker to E7 resulted in enhanced affinity for MHC I. In contrast, other studies have
demonstrated parity between surface conjugation and encapsulation for elicitation of
antigen-specific splenocyte proliferation, IFN-γ secretion, and CTL cytotoxicity for peptide
and protein antigens [68, 74, 75, 79].

For covalently conjugated peptide and protein antigens, the conjugation chemistry and
structure of the lipid anchor can also influence the magnitude and TH balance of the
response. Nakano and colleagues observed that ovalbumin (OVA) conjugated to liposomes
via amino groups (via glutaraldehyde or DSS) elicited anti-OVA IgG, but not IgE, in sera of
mice [80]. By contrast, OVA conjugated to liposomes via thiols or amines derivatized to
thiols (via EMCS or SPDP) elicited serum anti-OVA IgE, which correlated with splenocyte
IL-4 production. In addition, orthogonal chemistries can be used to conjugate multiple
peptide or protein antigens to a single formulation. As demonstrated by Garçon and Six,
liposomes provide “conjugation by proxy” in the sense that chemical conjugation of a
haptenic antigen to a T helper epitope is not required to elicit a T-dependent immune
response if both the hapten and the T helper epitope are co-formulated in the same liposome
preparation [81, 82]. In one example, Boeckler et al. sequentially conjugated two thiol-
containing peptides to a single liposome; a TH epitope was coupled to a maleimide-
functionalized lipid at pH 6.5, and a B cell epitope was attached to a bromoacetylated DPPE
lipid after adjusting the pH of the formulation to 9.0 [83]. In that study, changing the TH
epitope anchor from Pam3Cys-Ala-Gly to DPPE-PEG3 resulted in antibody titers that were
significantly lower at peak and declined more rapidly over time, underscoring the
importance of the TLR2-activating Pam3Cys moiety. For self-adjuvanting lipopeptide
anchors such as Pam3Cys, care must be taken to ensure that the conjugation scheme does not
disrupt the immunostimulatory properties of the anchor [84]. It should be noted that the need
for orthogonal chemistry is eliminated if lipopeptide conjugates are prepared prior to
liposome formation.

The structure of the covalent lipid anchor is a critical parameter for induction of maximal
antibody responses to peptide antigens. White et al. compared cholesterol and palmitate
anchors for elicitation of antibodies and CTL responses in mice to a peptide derived from
the V3 loop of HIV-1 gp120 [74]. Covalent anchorage (via either palmitate or cholesterol)
was superior to antigen encapsulation for antibody induction in that study, generating a 2-
fold increase in antibody titer. Further, the cholesterol linkage elicited slightly higher
antibody titers than N-terminal palmitoylation. The site of lipid conjugation was important;
C-terminally palmitoylated peptide failed to elicit an antibody response. To clarify the role
of lipid structure, Watson and Szoka recently measured the anti-peptide serum IgG response
in mice to hydrophilic and hydrophobic peptides derived from the membrane proximal
external region of HIV-1 gp41, conjugated to a series of sterols, fatty acids, and
phospholipids [85]. All conjugates were retained in a conventional MPL-adjuvanted
liposome formulation in an ultracentrifugation sedimentation assay. However, some lipid
anchors, in particular cholesterol hemisuccinate and phosphatidylethanolamine, elicited far
higher antibody responses than others in sera of mice. Notably, palmitate, which is
historically the most common lipid anchor for peptide antigens, gave the weakest response.

More recently, several groups have investigated stable non-covalent linkages, such as
avidin-biotin and nitrilotriacetic acid (NTA)-hexahistidine, for attachment of antigens to pre-
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formed vesicles. If successful, these strategies could decrease the complexity and cost of
producing liposomal vaccines by eliminating chemistry and purification steps. For example,
attachment of HIV-1 gag p24 to the surface of solid lipid nanoparticles via an NTA lipid
elicited greater antigen-specific serum IgG responses than a formulation in which the
antigen was adsorbed to the particle surface [86]. van Broekhaven and Altin reported that a
trivalent NTA lipid could be used to attach His-tagged targeting ligands and co-stimulatory
molecules (B7.1 and CD40) to a liposomal tumor vaccine, resulting in a measurable
improvement in antitumor effect in a murine model [87]. More recently, His-tagged
Candida albicans hsp90 was attached to the surface of NTA-containing liposomes
adjuvanted with MDP. When administered to mice, these formulations elicited anti-hsp90
serum IgG and splenocyte IFN-γ production comparable to hsp90 emulsified in Freund’s
adjuvant [88]. However, further studies are needed to determine if vaccine formulations
containing non-covalently linked antigens can match or exceed the immunogenicity of
preparations in which the antigen is covalently attached to a lipid anchor. For example,
Watson et al. showed that covalent linkage to a lipid anchor was superior to NTA-Ni(II)-
His6 attachment for elicitation of antibodies to OVA or to synthetic peptides derived from
the MPER of HIV-1 gp41 [89].

Surface adsorption, via electrostatic interactions, is another useful method for liposomal
association of antigens, primarily for proteins. The recent work of Christensen, Perrie, and
others with proteins antigens adsorbed to cationic DDA/TDB liposomes has demonstrated
that formulations with surface-adsorbed antigens can be highly stable and elicit robust
antibody and cell-mediated responses in mice and ferrets [18, 90–93]. However, adsorption
has not been comprehensively compared to other modes of association. Two underexploited
strategies for antigen-liposome conjugation are avidin-biotin and post-translational
lipidation of recombinant proteins (via glycophosphatidylinositol, for example). Phillips et
al. reported that avidin-biotin interactions could be used to aggregate antigen-loaded
liposomes in draining lymph nodes by sequential injection of biotinylated liposomes
followed by avidin [94]. This procedure increased retention of liposome material in the
draining lymph node by up to 10-fold following subcutaneous administration. McConville
and colleagues observed that the predominant cell surface glycogonjugate antigen of
Leishmania major contained a GPI-like membrane anchor. When they reconstituted this
antigen in multilamellar vesicles and immunized mice, the animals were protected from
cutaneous leishmaniasis [95]. Similarly, detergent-soluble membrane protein antigens can be
reconstituted in phospholipid vesicles by detergent dialysis methods [96]. This approach can
sometimes be used to renature purified membrane proteins to achieve a vaccine-competent
conformation, as has been shown for Neisseria meningitides PorA [97, 98].

Size and lamellarity
Vesicle size and bilayer structure are important factors in liposomal vaccine design. As
mentioned earlier, general considerations for the role of particle size in uptake and
trafficking of particulate subunit vaccines are extensively reviewed elsewhere [48].
However, several studies have been performed that specifically focus on liposomal vaccine
size and these merit discussion. Brewer et al. evaluated the effect of vesicle size (100 ± 10
nm, 155 ± 10 nm, 225 ± 25 nm, and 560 ± 60 nm diameter) on the serum anti-OVA antibody
response in mice immunized subcutaneously with OVA encapsulated in MPG:DCP:Chol
liposomes [99]. All formulations elicited equivalent anti-OVA IgG1, but larger vesicles
elicited significantly higher IgG2a, as well as greater IFN-γ production by restimulated
lymph node cells, in an IL-12-dependent manner. Differential uptake by B cells or
macrophages did not account for the difference between 155 nm and 225 nm vesicles. In
vitro, only large vesicles (diameter ≥ 225 nm) elicited IL-12 production in peritoneal
macrophages, whereas smaller vesicles elicited greater IL-1β. Similar results were reported
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in another study in which influenza A hemagglutinin was entrapped in liposomes of either
250 nm or 980 nm in diameter [100]. Henriksen-Lacey et al. investigated the immune
response to DDA:TDB vesicles of <200 nm, 700 nm, and 1.5 μm in diameter with an
adsorbed protein antigen derived from M. tuberculosis antigen [101]. When these
formulations were administered intramuscularly to mice, vesicles of increasing size trended
toward greater accumulation in the draining lymph node. Of the formulations studied, 700
nm diameter vesicles elicited the greatest IFN-γ secretion by restimulated splenocytes.
Collectively, these studies suggest that vesicles 250–700 nm in diameter skew the TH profile
of the response toward TH1 and increase both persistence at the injection site and transit to
draining lymph nodes.

Vesicle lamellarity may also influence the immune response against liposome-associated
antigens. Shek and coworkers compared multilamellar and unilamellar vesicles of equivalent
size composed of lecithin:DCP:Chol in which bovine serum albumin (BSA) was
encapsulated as a model antigen [102]. BSA-specific IgG plaque-forming cells were
approximately 2-fold greater in spleens of mice receiving unilamellar vesicles as compared
to those receiving multilamellar preparations. More recently, Bhowmick et al. compared the
immune response in mice to leishmanial membrane antigen encapsulated in multilamellar
vesicles (MLVs), dehydration-rehydration vesicles (DRVs), and reverse phase-evaporation
vesicles (REVs) [103]. MLVs elicited higher antigen-specific serum IgG1, whereas DRVs
and REVs elicited higher IgG2a and splenocyte IFN-γ. However, because the unilamellar
DRVs and REVs were twice the diameter of the MLVs (900nm and 400 nm, respectively),
vesicle size may have also influenced the outcome of the study. In addition, MLV
preparations may vary with regard to the number of lamellae per vesicle, typically as many
as 10 [104]; unappreciated differences may exist in the immune response potentiated by
MLVs of varying lamellarity.

Charge
Several studies have directly compared antigen-specific immune responses elicited by
positively charged, negatively charged, and neutral liposome formulations with similar lipid
compositions. Kraaijeveld measured virus-neutralizing antibodies elicited in serum by UV-
inactivated encephalomyocarditis and Semliki Forest viruses admixed with positively
charged (DPPC:ODA:Chol), negatively charged (DPPC:PA:Chol), or neutral (DPPC:Chol)
liposomes and administered intraperitoneally to mice [105]. Formulations that contained
charged vesicles (either positive or negative) elicited greater neutralizing antibody responses
than neutral vesicles, but the difference between positive and negative formulations was
minimal. Nakanishi assessed antigen-specific antibody and cytotoxic T cell responses in
spleens of mice following administration of OVA or diphtheria toxin encapsulated in
positively charged (PC:Chol:SA), negatively charged (PC:Chol:PA), or neutral (PC:Chol)
liposomes [106]. In the OVA study, only positively charged liposomes elicited an OVA-
specific CTL response. The positively charged formulation also elicited the greatest anti-
OVA serum IgG1 response, followed by negatively charged liposomes, with neutral
liposomes eliciting the weakest response. In a follow-on study, only the positively charged
formulation elicited a specific CTL response to a second model antigen, β-galactosidase
[107]. The authors attributed this observation to greater cytoplasmic release of proteins
encapsulated in cationic formulations, which was confirmed by cell culture studies. In an
unrelated model system, Badiee and colleagues compared the ability of neutral
(DPPC:Chol), negatively charged (DPPC:Chol:DCP), and positively charged
(DPPC:Chol:DDAB) large multilamellar vesicles to elicit serum antibodies to L. major
rgp63 protein in mice [108]. The cationic formulation elicited the greatest antigen-specific
IgG1 and IgG2, whereas neutral liposomes elicited the weakest antibody response.
Interestingly, the neutral vesicles elicited the greatest IFN-γ production by restimulated
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splenocytes, and animals receiving the neutral formulation had the lowest parasite burden
and least swelling following a footpad challenge. Collectively, these studies support the
conclusion that cationic vesicles promote stronger antigen-specific serum antibody
responses than otherwise equivalent neutral or anionic formulations, but antibody and cell-
mediated response are not always correlated.

Membrane fluidity
The effects of lipid gel-liquid crystal transition temperature and membrane phase behavior
on immune responses to liposome-associated antigens have been investigated extensively in
several model systems. In the earliest studies, Yasuda et al. compared the ability of
liposomes composed of PCs with various transition temperatures (DOPC, −19 °C; DLPC,
−2 °C; DMPC, 23 °C; DSPC, 54 °C) to elicit antibodies to a lipid-linked dinitrophenyl
hapten (DNP-Cap-PE), as measured by quantification of spleen antibody-secreting cells in a
plaque assay [109]. All formulations contained cholesterol (2:1.5:0.2:0.1
PC:Chol:DCP:DNP-Cap-PE). In that study, it was determined that higher transition lipids
gave higher anti-DNP antibody response over a 4-fold range. This pattern was maintained
when the formulations contained lipid A (although overall response magnitudes were 10-
fold higher), emphasizing the importance of bilayer phase behavior even in the presence of a
potent immunostimulator. In the same experimental system, the group later compared
formulations with mixed compositions of low transition temperature (DOPC) and high
transition temperature (DSPC) lipids [110]. Titration of high transition temperature lipids
into the formulation increased the antibody response over a 4-fold range beginning at ~50%
DSPC. Again, a clear correlation between lipid transition temperature and antibody response
was observed for DSPC, DMPC, DLPC, and DOPC; the presence of cholesterol up to 50%
did not abolish this relationship. A more recent study by a different group also observed an
effect of lipid transition temperature on anti-DNP antibody response on mice, but the
correlation was not quite as clear, with lipids of an intermediate transition temperature
(DPPC, 42 °C) being optimal [111]. In contrast, T cell responses against another lipid-linked
hapten (p-azobenzenearsonate), as measured by footpad DTH response, was unaffected by
varying either the PC transition temperature or the presence of cholesterol. The influence of
lipid transition temperature on antibody responses to liposome-associated protein antigens
has also been investigated. Bakouche et al. encapsulated Gross cell surface antigen (GCSA)
in liposomes and measured GCSA-specific serum antibody responses following
immunization of rats [112]. Liposomes composed solely of DSPC failed to elicit a GCSA-
specific response, but inclusion of cholesterol at varying levels enabled immunogenicity
over a 10-fold range with an optimum at 20 mol% cholesterol. Inclusion of 12.5 mol%
negative charge, whether DCP or DPPG, was optimal. A final optimal formulation of 7:2:1
PC:Chol:DCP was selected, influenced also by the precedent of the 7:2:1 EPC:Chol:DCP
formulation used by Allison and Gregoriadis [16]. In the 7:2:1 molar ratio format, a
convincing correlation between PC transition temperature and antibody response was
observed, with DSPC eliciting the strongest response (DSPC > DPPC > PLiPC > DOPC >
DLiPC). For PCs with saturated acyl chains, chain length correlated well with serum
antibody responses (C18 > C17 > C16 > C14 > C12). Titration of greater than 25 mol%
shorter chain PC into a DSPC formulation significantly inhibited the antibody response. A
similar study by Kersten compared the ability of vesicles composed of EPC, DPPC, or
DSPC to elicit antibody responses to a membrane protein antigen from N. gonorrhoeae
[113]. In that study, DSPC-containing formulations were found to be superior. In addition,
the authors evaluated a matrix of formulations containing varying amounts of cholesterol
and established an inverse relationship between membrane fluidity (as measured by
fluorescence polarization) and serum antibody responses. Studied by Kahl, Garnier, and
others have also reported the superiority of DSPC-containing formulations for elicitation of
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CTL responses to a variety of membrane-associated and entrapped soluble protein antigens
[114–117].

Several noteworthy exceptions to this trend have been reported. A series of studies by
Gregoriadis and colleagues reported a minimal effect of transition temperature of constituent
phospholipids (in the range of −32 °C to 41.5 °C) on the serum antibody response to tetanus
toxoid entrapped in dehydration-rehydration vesicles or covalently conjugated to the surface
of multilamellar vesicles [67, 118]. The cause of this discrepancy is unknown, but could be
explained in part by antigen-specific effects arising from the potent intrinsic adjuvanticity of
tetanus toxoid [119]. Also, Nakano et al. reported that liposomes composed of lower phase
transition lipids elicited higher serum IgG in mice to covalently attached OVA when
compared to formulations containing higher phase transition lipids [120, 121]. However, the
results of the studies were inconsistent; an inverse relationship between antibody response
and membrane fluidity was observed when cholesterol was titrated into DPPC liposomes.
Setting aside these exceptions, the totality of the literature clearly indicates that liposomes of
greater rigidity and higher gel-liquid crystal transition temperature elicit higher antibody and
cell-mediated responses to a variety of encapsulated and surface-associated antigens.

Fusogenicity
The incorporation of certain constituent lipids endows a liposome formulation with the
ability to fuse with the plasma membrane or endosomal membrane, releasing associated
cargo into the cytosol. Liposome-virus hybrid particles may fuse with the plasma membrane
directly (virosomes are a well-characterized example), whereas pH-sensitive formulations
disrupt endosomal compartments as they acidify [62, 122, 123]. Fusogenicity has been
widely exploited to increase the efficiency of carrier-mediated gene delivery, and
vaccinologists have hypothesized that increased cytosolic delivery may also increase the
magnitude of immune responses, particularly CTL responses, to liposome associated
antigens. When liposome-encapsulated OVA was injected intravenously into mice, Nair et
al. observed that pH-sensitive liposomes (containing DOPE) stimulated CTL responses up
to 5-fold more efficiently than non-pH-sensitive formulations [124]. Cationic liposomes are
also well known to disrupt endosomal membranes and promote cytosolic release [125, 126],
which likely contributes (in addition to cell and tissue binding) to the superior
immunogenicity of cationic formulations as compared to anionic or uncharged formulations,
as discussed earlier. In some cases fusogenicity is conflated with other important factors. For
example, Ahmad et al. reported superior antibody and CTL responses against encapsulated
Salmonella antigens elicited by a fusogenic formulation prepared from an E. coli lipid
extract as compared to a non-fusogenic PC formulation [127]. However, the potent
immunostimulatory potential of LPS and other E. coli membrane components was not
accounted for. Other studies have attributed the immunostimulatory potential of lipid
extracts from viruses [128] or fungi [129] to fusogenicity without sufficient consideration of
other factors. Fusogenicity is particularly critical for nucleic acid vaccines because access to
the cytosol (and for DNA, the nucleus) is required for expression of the encoded antigen. In
one specific example, addition of fusogenic PE also increased the antibody response in mice
to hepatitis B surface antigen encoded by a liposomal DNA vaccine [130]. Collectively, the
studies suggest that fusogenicity does increase the capacity of liposomes to promote
immunity to associated antigens but conflating factors must be taken into account.

Novel immunostimulatory lipids
Classical TLR and NLR agonists such as MPL, MDP, CpG, and poly(I:C) have been
incorporated into liposomal vaccines for decades. These molecules have been studied
extensively; for more information on these, the reader is referred to pertinent reviews [50–
54]. Rather, this review will highlight some of the other lipophilic molecules that have
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gained attention recently as candidate immunomodulators for inclusion in liposomal
vaccines and immune-modulating therapies (Table 4). Many such lipids are derived from
bacteria or other natural sources; a principal example is trehalose dibehenate, a synthetic
analog of mycobacterial cord factor [131, 132]. This molecule, which was recently identified
as an agonist of the C-type lectin receptor Mincle, is a component of the potent cationic
liposomal adjuvant ‘CAF01’ [133]. CAF01 is reviewed in detail elsewhere [18]. Other
naturally derived lipid adjuvants include glycolipids that bind CD1d and activate invariant
NKT cells, such as α-galactosylceramide, a glycosphingolipid first isolated from the marine
sponge A. mauritianus [134–136].

One exciting recent development is the discovery of specific adjuvant activity of certain
cationic lipids originally synthesized as transfection reagents. Lipid-protamine-DNA
complexes, initially conceived as non-viral gene delivery vectors, were observed to induce
robust IFN-γ and TNF-α responses in serum and anti-tumor immunity in murine models of
pulmonary metastasis and fibrosarcoma [137, 138]. Aside from the presence of
unmethylated CpG motifs within associated plasmid DNA, it was also observed that
DOTAP, a cationic lipid used for many years as a staple of non-viral gene delivery [139],
exerted an enantiospecific adjuvant effect in dendritic cells through induction of reactive
oxygen species and downstream activation of ERK and p38 pathways [140, 141]. Another
cationic transfection reagent, diC14-amidine, was recently reported to be an agonist for
TLR4 in mouse and human dendritic cells in vitro [142, 143], though in a mouse model
diC14-amidine appears to interact with serum lipoproteins to antagonize CpG- and LPS-
induced inflammation [144, 145].

Vitamin A and its metabolites, most notably all-trans retinoic acid (ATRA), are unique
molecules that exert a diverse array of pleiotropic immunologic effects, both stimulatory and
suppressive. ATRA plays a key role in immunosuppression through induction of regulatory
T cells [146], but also primes gut immunity by promoting lymphocyte gut homing and
mucosal IgA secretion [147]. This dichotomy may be explained through cooperation of
ATRA with certain pro-inflammatory cytokines to shift the balance of gut immunity from
tolerance to inflammation [148]. Liposomal formulations of ATRA have long been used for
therapy of acute promyeolocytic leukemia [149]. More recently, Watson et al. reported that
a liposomal vaccine containing ATRA, MPL, and a lipopeptide antigen elicited 3-fold
greater antigen-specific antibody response in mice as compared to a formulation lacking
ATRA [150], and further studies are needed to sort out the intracellular signaling that
dictates the influence of ATRA on the balance of tolerance and immunity.

The ability of endogenous lipids to modulate immunity is being increasingly appreciated.
Saturated and polyunsaturated fatty acids exert reciprocal effects on dendritic cells in vitro,
with saturated fatty acids seemingly promoting pro-inflammatory signaling through several
mechanisms. Weatherill and coworkers reported that lauric acid (dodecanoic acid) induced
cytokine secretion and costimulatory molecule expression of dendritic cells in a manner
dependent on TLR4 signaling [151], although subsequent studies indicate that saturated fatty
acids do not activate TLRs directly [152]. More recently, Wen et al. demonstrated that
saturated palmitic acid (hexadecanoic acid), but not unsaturated oleic acid, activates the
NLRP3-ASC inflammasome through induction of reactive oxygen species and MAP kinase
signaling [153]. Conversely, polyunsaturated ω-3 fatty acids antagonize many of the same
pathways in vitro and in vivo. For example, Weatherill and others have found that the ω-3
fatty acid docosahexaenoic acid (DHA) inhibits LPS-induced dendritic cell activation in
vitro [151, 154], perhaps in part through attenuation of NF-κB signaling [155], and reduces
the ability of macrophages to control M. tuberculosis infection through impaired IFN-γ
signaling [156]. In vivo, dietary DHA suppresses inflammation and autoimmunity in murine
models of colitis and experimental autoimmune encephalomyelitis [154, 157]
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Other endogenous lipids with immunomodulation activity include phosphatidylserine and
lysophospholipids. Phosphatidylserine was widely used in liposomal vaccine formulations
before its anti-inflammatory properties were well known. PS is a component of the
cytoplasmic leaflet of the plasma membrane and is exposed on the cell surface during
apoptosis. PS is recognized by a specific receptor on macrophages as part of the process of
clearance of apoptotic cells, leading to production of TGF-β and induction of an anti-
inflammatory state in macrophages [158, 159]. Nonetheless, in some cases PS exhibited a
beneficial adjuvant effect; in one instance PS liposomes elicited a higher OVA-specific
serum IgG titer against surface-associated OVA when compared an analogous PC-
containing formulation [160]. Lysophospholipids such as lysophosphatidic acid (LPA) and
sphingosine-1-phosphate (S1P) are also important regulators of innate and adaptive
immunity [161, 162]. Although S1P has long been known to regulate T lymphocyte
trafficking [163], it has more recently been found to modulate the phenotypes of dendritic
cells and macrophages [164, 165]. LPA has chemotactic effects on T cells and dendritic
cells [166, 167], and also may promote dendritic cell maturation [168].
Lysophosphatidylcholine (LPC) has also been reported to induce DC maturation in vitro and
elicit cytotoxic T cell responses to co-administered antigens in vivo [169]. The adjuvant
actitivities of these lysophospholipids have not been thoroughly studied, and the mechanistic
basis for immune modulation by fatty acids, phospholipids, and other endogenous lipids are
only beginning to be understood.

3. Mechanistic basis for liposome-mediated adjuvanticity
The influence of liposome formulation parameters on immunogenicity can be viewed in the
context of the steps necessary for antigen uptake, trafficking, processing, and presentation.
In the sections below, the mechanistic contributions of vesicle properties to these processes
are discussed.

Trafficking of liposomal antigens from the injection site
Formulation parameters play an important role in the retention of liposomes and associated
antigens at the site of injection and subsequent trafficking to draining lymph nodes, which in
turn influences the magnitude of the antigen-specific immune response (Figure 3). A series
of studies by Oussoren, Storm, and colleagues described the biodistribution of radiolabeled
liposomes (labeled with [3H]-cholesteryloleylether) following subcutaneous administration
to rats. They observed that small (100 nm) anionic liposomes comprised of EPC:EPG:Chol
accumulated in regional lymph nodes following subcutaneous administration in the footpad
or dorsal side foot, with approximately 2% of the injected lipid dose detected in lymph
nodes after 52h [170]. Strikingly, 20–30% of the injected dose was observed in the blood at
peak concentration (2–4h post injection), while 5% and 15% of the injected dose was
recovered in the spleen and liver, respectively. Liposome retention at the injection site
showed clear size dependence; only 20% of a 40 nm liposome dose remained at a
subcutaneous injection site after 52h, whereas over 80% of a 400 nm liposome dose
remained, with 70 nm and 170 nm liposomes exhibiting an intermediate level of retention
[171]. Interestingly, vesicle size had essentially no influence on the fraction of the
radioactive lipid dose recovered in regional lymph nodes. An important caveat to these
studies is that they do not determine what fraction of the radioactivity is associated with
intact liposomes and what fraction is degraded or metabolized. However, in comparing the
distribution of liposome encapsulated and free radiolabel from a subcutaneous injection site,
Harrington et al. found that pegylated liposomes containing encapsulated 111In-DTPA
retained significantly more radioactivity than unencapsulated 111In-DTPA at both the
injection site (518-fold increase in total exposure) and in local lymph nodes (88-fold
increase at 24 h and 564-fold increase at 72 h), suggesting little retention of unencapsulated
radiolabel at these sites [172].
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Oussoren et al. later reported that substitution of PS, DPPC, or DPPG into the formulation
did not influence extent of retention at the injection site (with a lone exception – liposomes
composed solely of DPPC exhibited a slight increase in retention at the injection site). Also,
‘DPPC only’ liposomes and PS-containing formulations exhibited an approximately 3-fold
increase in lymph node accumulation. When macrophages were depleted prior to injection
of radiolabeled liposomes, lymph node accumulation was significantly decreased,
particularly for large vesicles, emphasizing the importance of phagocytic cells in facilitating
liposome trafficking to lymph nodes [173]. More recent studies in the CCS/C and DDAB/
TDB systems have confirmed that persistence at the injection site and accumulation in
lymph nodes are important determinants of immunogenicity [91, 92, 101, 174]. Henriksen-
Lacey et al. also observed that cationic charge and large vesicle diameter dramatically
increase retention at the injection site, and the benefits were greater for some cationic lipids
(DDA, DC-Chol) than others (DOTAP) [91, 92, 101].

Several additional factors could affect the stability of liposomal vaccines in vivo. The size
and charge dependence of liposome immunogenicity could be influenced by complement-
mediated vesicle destabilization. Richards, Bradley, and others have demonstrated
complement-dependent disruption of liposomal membranes, with lysis being greatest for
small, anionic vesicles [175, 176]. Also, cholesterol is known to exchange readily between
liposomes and biomembranes in biological fluids [177]. Depletion of cholesterol could
cause vesicles to aggregate in vivo [178], effectively increasing their size and thus their
retention at the injection site. Conversely, steric stabilization of vesicles through
incorporation of polyethylene glycol-functionalized lipids could inhibit vesicle aggregation
and tissue binding, causing more rapid drainage to lymph nodes. Kaur and colleagues
reported that the addition of 25 mol% PEG lipid to a DDA/TDB formulation reduced
antigen retention at the injection site approximately 10-fold when measured 24 h after
injection [179].

Uptake and processing of liposomal antigens
Although encapsulated and surface-associated liposomal antigens induce T cell responses
equivalently, many studies have shown increased antibody induction mediated by surface-
associated antigen [70–74]. This may be because surface-conjugated antigen is available on
the particle surface for antibody or B cell receptor (BCR) recognition, whereas encapsulated
antigen requires some measure of processing or vesicle disruption to be accessible [74, 180].
For surface-associated antigens, B cells may recognize intact liposomal antigen directly or
via opsonized liposomes bound to Fc receptors or complement receptors on antigen
presenting cells [181].

Liposome formulation and antigen conjugation also influence the intracellular processing
and presentation of T cell epitopes within antigen presenting cells (Figure 4). Cationic
liposomes are internalized by macrophages and dendritic cells (and virtually all other cell
types) more efficiently than neutral or anionic liposomes due electrostatic interactions with
the anionic plasma membrane [182, 183]. This effect may be enhanced by
immunostimulatory properties of some cationic lipids that promote phagocytosis [140, 143].
At high charge densities, anionic vesicles are also internalized to a greater extent than
neutral vesicles, an effect sometimes attributed to scavenger receptor-mediated uptake [184].

An additional benefit of cationic liposomes is increased cytosolic delivery through
disruption of endosomal and phagosomal membranes. Membrane disruption is proposed to
occur by lateral diffusion of anionic lipids from the lumenal leaflet of the endosomal
membrane into the contact zone with the liposome bilayer, forming charge-neutralized ion
pairs [185]. Cationic lipids with headgroups containing titratable amines may also buffer
protons during endosomal acidification, leading to Cl− accumulation and osmolysis [186].
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Cytoplasmic release may also be accomplished through inclusion of pH-sensitive lipids such
as DOPE that promote lamellar-to-hexagonal phase transition as the endosome acidifies
[187].

Cytosolic delivery has been shown to augment MHC I presentation of associated antigens in
vitro [188, 189] and increase antigen-specific T cell responses in vivo [124, 130] as
compared to non-fusogenic formulations. A series of studies by Alving and coworkers has
illuminated the pathways by which liposomal carriers direct associated antigens to the MHC
I pathway. Peptide fragments derived from liposome-encapsulated proteins were detected in
the trans-Golgi of macrophages in a TAP-dependent manner [190]. Transport of peptides to
the trans-Golgi was dependent on TAP, functional microtubules, and proteasomal activity
[190–192], suggesting liposome-associated antigens are processed by a classical MHC I
pathway. Liposomes were more effective in promoting MHC I presentation of associated
antigens in macrophages as compared to dendritic cells [193], perhaps due to the greater
intrinsic capacity of DCs for cross-presentation of exogenous antigens [194].

Covalent lipid conjugation of T cell epitopes also appears to direct intracellular antigen
trafficking in a manner that increases MHC I presentation. N-terminally palmitoylated MHC
I epitopes are efficiently endocytosed by DCs, processed, and presented to CD8 T cells
[195–197]. Palmitoylated peptides differ in their intracellular routes, with some
proteolytically degraded in the cytosol [197] and others in the endosome [196]. Lipidation
also increases peptide accumulation in the Golgi [197], similar to the effect Alving and
colleagues showed for liposome-encapsulated protein [190].

4. Design principles for liposomal vaccines
A synthesis of the body of liposome vaccine literature suggests several underlying
guidelines that should be considered in the design of liposomal vaccine formulations, as
summarized in Table 5. Firstly, this review clearly establishes that biophysical formulation
parameters are important determinants of antigen-specific immune responses elicited by
liposomal vaccines, even in the presence of potent immunostimulants such as MPL.
Moreover, an antigen must be physically associated with the liposomal matrix in some form,
typically through covalent conjugation, encapsulation, or adsorption, to achieve an optimal
immune response. The various methods of antigen attachment influence the magnitude of
the immune response to liposome-associated antigens but do not generally affect the quality
of the response (e.g. TH1 versus TH2). Surface attached and encapsulated antigens stimulate
CTL responses equivalently, whereas surface conjugated antigens induce more potent
antibody responses. However, as the molecular size and antigenic diversity of an antigen
increases, the influence of antigen attachment method on the resulting immune response
decreases.

Regarding other formulation parameters, vesicles comprised of lipids with higher gel-liquid
crystal transition temperatures elicit stronger antigen-specific immunity than those
comprised of lipids with lower transition temperatures. Charged vesicles (either positive or
negative) elicit more potent responses than uncharged vesicles, with cationic formulations
generally being the most effective. In addition, prolonged retention at the injection site,
mediated through either cationic vesicle charge or larger vesicle size, skews the elicited
immune response toward TH1 (as indicated by increased antigen-specific IgG2a and CTL
responses). Finally, careful consideration must be given to the choice of lipids in the
formulation; the large number of endogenous lipids with recently described
immunomodulatory properties suggests that others have not yet been discovered. Inclusion
of fusogenic lipids, such as DOPE, may facilitate enhanced antigen-specific CTL responses,
but this effect may be understated for formulations that include large, immunogenic antigens
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or potent immunomodulators. PRR agonists, such as MPL, MDP, and other molecular
adjuvants, can be easily included in liposome formulations to modulate both the magnitude
and the TH bias of the immune response.

5. Confounding factors
Though clear trends are observable from the studies discussed here, they must be carefully
interpreted to avoid conflating multiple interrelated variables. For example, comparisons of
negatively and positively charged vesicles should consider a possible role of monocytic
scavenger receptors, some of which are reported to have broad specificity for polyanionic
molecules [198]. Similarly, some studies have included PS as an anionic lipid to impart a
negative liposomal charge, but have not accounted for receptor mediated clearance of PS
and anti-inflammatory properties of PS-containing liposomes [171, 199]. Conversely, many
cationic lipids commonly used in liposomal vaccines are now known to be
immunostimulatory [140–143]. Also, liposome formulations are typically compared at molar
equivalence, but in some cases this may not be an ideal basis for comparison. For example,
formulations that vary in vesicle size or lamellarity will also vary in the number of vesicles
per molar unit of lipid [34] and the encapsulated aqueous volume [200]. Antigen surface
density may also vary. Future studies should incorporate additional controls to address these
variables.

Limitations of the choice of antigen must also be taken into account, as there will always be
exceptions to the general guidelines we prescribe resulting from the intrinsic
physicochemical and immunologic properties of the antigen itself. Some protein antigens
may be more readily adsorbed to liposomes due to their hydrophobicity and charge.
Alternatively, some proteins have a higher density of B or T cell epitopes than others, while
some antigens, such as the B subunit of cholera toxin, have intrinsic immunostimulatory
properties [201]. With regard to model antigens, source and purity must be considered. For
example, many of the studies discussed in this review use OVA as a model antigen [80, 99,
106, 120, 121, 124]. Endotoxin contamination of commercial OVA preparations has been
widely reported [202, 203]. Many studies that use OVA do not describe any purification
method used to reduce endotoxin content.

Immunologic variability between animal strains and species should be considered. Nearly all
of the studies discussed here have been performed in rats and mice, with the majority of
studies being done in two inbred mouse strains – BALB/C and C57BL/6. Several groups
have proposed that a TH1 or TH2 “bias” exists in specific inbred mouse strains, with BALB/
C mice having a propensity toward TH2 responses and C57BL/6 mice being more prone to
TH1 responses [204, 205]. This paradigm has recently been disputed, and may be confined
to immune responses directed against specific pathogens [206], but animal species and strain
should nonetheless remain a consideration in design of experiments and interpretation of
results.

In addition, the data from these studies should be evaluated with regard to their potential
applicability to human vaccines. Although the mouse is an excellent model for human
physiology, differences between the two species should be acknowledged. For example, the
effects of liposome vesicle size on retention at the injection site and trafficking to lymph
nodes, and the subsequent ability to elicit an immune response, may differ between the two
species because of the physical differences in interstitial spaces, lymph vessels, nodes, and
other relevant tissues. Human lymph nodes are nearly 1000-fold more massive than murine
lymph nodes (1 g in human and only 15 mg in mouse) and the mass of a lymph node relative
to total body mass is approximately 70-fold greater in mouse as compared to human [207,
208]. Thus, mouse studies investigating the relationship between vesicle size, lymph node
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trafficking, and adjuvanticity should be interpreted carefully. In addition, differences
between the mouse and human immune systems should also be considered. These
differences, including proportions of lymphocytes, polarization of helper T cells, expression
of PRRs, immunoglobulin subsets, cytokines, and cytokine receptors, have been extensively
reviewed elsewhere [209]. Thus, as is the case with all subunit vaccine delivery systems,
rodent studies of liposomal vaccines are not necessarily predictive of immunogenicity in
humans. For example, the cationic lipid DC-Chol elicited potent humoral and cellular
responses to co-administered antigens in mice [210], but a DC-Chol-adjuvanted HIV-1
vaccine candidate (gp160) failed to elicit measurable antigen-specific immunity in a Phase I
trial [211].

Finally, epitope density and geometry of surface-displayed antigens are important
parameters for induction of B cell responses. This is because multivalent, highly repetitive
antigens can crosslink BCRs, increasing the level and duration of BCR signaling [212]. As a
result, polyvalent antigens can elicit antigen-specific B cell responses in the absence of CD4
T cell help [213]. In a particulate vaccine delivery system, modifications to antigen dose
may change the effective density of antigen present on the particle surface unless the
antigen/adjuvant mass ratio is preserved. Indeed, increased antigen density on the surface of
particulate vaccine systems has been shown to augment antigen-specific antibody responses,
particularly IgG [214, 215]. Antigen surface density is rarely considered in liposomal
vaccine studies and the influence of antigen density on the T cell-independent antibody
response is not known.

The design guidelines presented here are synthesized from convergent evidence representing
a large number of diverse studies, and thus should apply to a majority of antigens. However,
it is critical to remember that exceptions will arise, owing to the intrinsic properties of the
antigens themselves or to the interdependence of the many factors involved in liposomal
vaccine formulation. Thus, although these guidelines provide a framework for liposomal
vaccine development, one must always expect to optimize formulation parameters carefully
for each new liposomal vaccine candidate. By considering these and other potentially
confounding factors, we hope to encourage the understanding of liposome vaccine studies in
full context, thereby enhancing future research and applicability in advancing the rational
design of human vaccines.

6. Unanswered questions and opportunities for future study
Although a vast body of literature exists describing the importance of biophysical
formulation parameters in the immunogenicity of liposomal vaccines, many important
unanswered questions remain. At the cellular level, how does lipid conjugation influence
antigen processing and presentation? Little is known regarding the cellular distribution of
lipid-modified peptides. Lipid conjugation is reported to target T cell epitopes to the Golgi
[216] – how significantly does that increase the efficiency of loading and presentation on
MHC molecules, if at all? Do lipid-modified peptides bind to MHC, and if so, how do their
affinities compare with unmodified peptides? Some studies have suggested that fatty
acylation increases loading and presentation of MHC I epitopes but inhibits direct binding to
MHC [195, 197]; more work is needed to generalize these observations. Once a system is
established to answer these questions, it will be important to determine the importance of
lipid structure (fatty acid, phospholipid, sterol, etc.). In turn, these modifications may also
influence antigen trafficking and disposition in vivo.

Another question concerns the in vivo fate of constituent lipids in liposomal vaccines.
Radiolabeling studies have shown divergent biodistribution of liposomal lipid and protein
[92]. Some liposomal lipids, particularly sterols such as cholesterol, readily exchange with
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host cell membranes in biological fluids [177]; to what extent does this occur at
subcutaneous injection sites and in lymph nodes? Immunogenicity experiments comparing
lipids of various gel-liquid crystal transition temperatures have indicated lipid transition
temperature influences the immune response, even when sufficient cholesterol is included to
eliminate this thermotropic phase transition and force formulations into an intermediate
liquid ordered phase (approximately 30 mol% cholesterol with synthetic
diacylphospholipids) [217]. Does cholesterol exchange in vivo play a role in the context of
liposomal vaccines? Non-exchangeable cholesterol-phospholipid chimeras may be useful
tools to address these questions [218].

Further research is needed to elucidate the mechanistic basis of adjuvanticity of cationic
lipids and liposome formulations generally. Cationic lipids such as DOTAP activate pro-
inflammatory signaling in dendritic cells; do they bind PRRs, and what signaling pathways
do they initiate? Is the enantiospecific activity of DOTAP [141] mediated by a specific
receptor interaction? Do liposomes activate the inflammasome, as other particulate
adjuvants do [219, 220]? If so, what is the relationship between physicochemical vesicle
properties and inflammasome activation? Transcription profiling, genome-wide siRNA
screens, and other high throughput approaches will be useful in addressing these issues.
Similarly, what is the mechanistic basis for the role of lipids in maintaining the balance of
inflammation and immunity, and what structural relationships can be derived? For example,
saturated fatty acids are pro-inflammatory but polyunsaturated fatty acids are
immunosuppressive. This effect is partly mediated by specific receptor interactions (e.g.
GPR40 and GPR120 [221, 222]). Do biophysical effects of lipids on host cell membrane
properties act as danger signals to activate innate immunity? This has been suggested as a
mechanism to explain the apparent activation of TLR4 by saturated fatty acids [223]. If so,
how can this be exploited for both pro-inflammatory (vaccination) and anti-inflammatory
(autoimmune therapy) applications?

As described in this review, several studies have described the influence of liposome
parameters on the TH1/TH2 balance of the immune response. For example, vesicles within a
particular size range (roughly 250–750 nm diameter) appear to elicit more potent TH1
responses than smaller or larger vesicles in some systems [99–101]. In contrast,
multilamellar vesicles may skew immune responses toward TH2 [103]. Thus, the possibility
exists that formulation parameters may also promote, or inhibit, induction of more recently
described T cell subsets. The importance of Treg and TH17 responses is well established
[224]; a TH9 CD4 lymphocyte population has also been described [225]. Can liposomal
vaccines be designed to selectively induce or inhibit these T cell subsets?

Finally, recent studies have demonstrated dramatic synergy when multiple PRR agonists are
included in a single vaccine formulation. For example, Kasturi et al. showed that
nanoparticle formulation containing both TLR4 and TLR7 agonists significantly increased
antigen-specific serum IgG titer in mice against influenza virus hemagglutinin as compared
to formulations containing a single TLR agonist [226]. Virus neutralization titer, antibody
avidity, and duration of the antibody response were also markedly improved. In another
example, a combination adjuvant including ligands for TLRs 2, 3, and 9 significantly
increased the protective efficacy of a vaccine containing HIV envelope-derived peptide
antigens in a mouse pseudovirus challenge model when compared to single TLR ligand
adjuvants [227]. Given the versatility of liposomal carriers and their amenability to
simultaneous incorporation of multiple adjuvant molecules, the liposome would seem an
ideal model system to study the synergy phenomenon in great detail in vitro and in vivo.
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7. Conclusions
Liposomal vaccine delivery technology is currently enjoying a renaissance. Given the recent
explosion of interest, we have undertaken a systematic review of the physicochemical
factors that should be considered when designing a liposomal vaccine formulation. The
collective body of literature shows conclusively that these factors – size, charge,
composition, antigen attachment method – have meaningful impacts on immunogenicity and
should be carefully chosen. Though we have identified trends in the relationship between
formulation biophysics and immunogenicity, the interconnectedness of the various
biophysical factors underscores the need to optimize individual formulations for specific
applications. Lastly, we have identified important questions regarding liposome
immunogenicity that remain unanswered, pointing toward future directions in the field.
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Abbreviations
111In-DTPA 111In-labeled diethylenetriaminepentaacetic acid

APC Antigen presenting cell

ATRA all-trans retinoic acid

BCR B cell receptor

BSA Bovine serum albumin

CCS Ceramide carbamoyl-spermine

Chol Cholesterol

CLR C-type lectin receptor

CpG Unmethylated cytosine-phosphate-guanine motifs

CTL Cytotoxic T lymphocyte

DC-Chol 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]cholesterol

DC-SIGN Dendritic cell-specific intracellular adhesion molecule-3-grabbing non-
integrin

DCP Dicetylphosphate

DDA Dimethyldioctadecylammonium

DLiPC 1,2-dilinoleoyl-sn-glycero-3-phosphocholine

DLPC 1,2-dilauryl-sn-glycero-3-phosphocholine

DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine

DNP Dinitrophenyl

DNP-Cap-PE 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[6-[(2,4-
dinitrophenyl)amino]hexanoyl]
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DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine

DOTAP 1,2-dioleoyl-3-trimethylammonium propane

DOTIM 1-[2-(oleoyloxy)ethyl]-2-oleyl-3-(2-hydroxyethyl)imidazolinium

DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine

DPPE 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine

DPyPE 1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine

DRV Dehydration-rehydration vesicle

DSPC 1,2-distearoyl-sn-glycero-3-phosphocholine

DSS Disuccinimidyl suberate

DTH Delayed-type hypersensitivity

EMCS N-(ε-Maleimidocaproyloxy)succinimide

EPC 1,2-diacyl-sn-glycero-3-phosphocholine from egg

EPG 1,2-diacyl-sn-glycero-3-phosphoglycerol from egg

ER Endoplasmic reticulum

GAP-DMORIE N-(3-aminopropyl)-N,N-dimethyl-2,3-bis(cis-9- tetradeceneyloxy)-1-
propanaminium

GCSA Gross cell surface antigen

GMS Glyceryl monostearate

IFN-γ Interferon gamma

IL-12 Interleukin 12

LPA Lysophosphatidic acid

LPC Lysophosphatidylcholine

LPD Lipid-protamine-DNA nanoparticle

LPS Lipopolysaccharide

MDP Muramyl dipeptide

MHC Major histocompatibility complex

MLV Multilamellar vesicle

MPG 2-monopalmitoylglycerol

MPL Monophosphoryl lipid A

NLR Nod-like receptor

NTA Nitrilotriacetic acid

ODA Octadecanoic acid

OVA Ovalbumin

PA Palmitic acid

PC 1,2-diacyl-sn-glycero-3-phosphocholine

PEG Poly(ethylene glycol)
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PG 1,2-diacyl-sn-glycero-3-phosphoglycerol

PLiPC 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine

poly(I:C) polyinosinic:polycytidylic acid

PRR Pattern recognition receptor

PS 1,2-diacyl-sn-glycero-3-phosphoserine

QS21 Quillaja saponaria Molina saponin

REV Reverse phase evaporation vesicle

SA Stearylamine

SMS Sorbitan monostearate

SP1 Sphingosine-1-phosphate

T20 Polyoxyethylene(20) sorbitan monolaurate

SPDP (N-Succinimidyl-3-(2-pyridyldithio)-propionate)

TAP Transporter associated with antigen processing

TDB α,α-trehalose-6,6′-dibehenate

TGF-β Transforming growth factor beta

TH1 T helper type 1

TH17 T helper type 17

TH2 T helper type 2

TH9 T helper type 9

TLR Toll-like receptor

Treg T regulatory
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Highlights

• We have comprehensively reviewed the current state of liposomal vaccine
technology.

• We describe the relationship between formulation parameters and
immunogenicity.

• Biophysical properties dictate the immunogenicity of liposomal vaccines.

• Many lipids are immunomodulatory, so formulations must be selected carefully.

• We also highlight unanswered questions and opportunities for further study.
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Figure 1. Liposome composition parameters that influence immune responses
Biophysical formulation parameters that influence adjuvanticity of liposomal vaccines
include (A) vesicle size, (B) lamellarity, (C) membrane surface charge, (D) bilayer fluidity
(as examples, cholesterol-rich liquid ordered and cholesterol-free liquid crystal phases are
shown), (E) propensity to undergo lamellar-hexagonal bilayer phase transition, and (F)
presence of immunosimulatory lipids.
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Figure 2. Modes of antigen attachment to lipid nanoparticles
Antigens may be (A) covalently conjugated to the liposome surface via a lipid moiety (as an
example, cholesterol is shown), (B) non-covalently attached to the liposome surface (as an
example, NTA-Ni(II)-His6 is shown), (C) encapsulated in the aqueous interior, (D)
electrostatically complexed with lipids of opposing charge, or (E) adsorbed to the liposome
surface or reconstituted in the liposomal membrane.
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Figure 3. Uptake and trafficking of liposomal antigens
Antigen uptake and trafficking events influenced by liposome properties include (A)
persistence at the injection site and release of associated antigen, (B) internalization by
resident or infiltrating APCs, (C) migration of APCs with phagocytosed antigen to LNs, (D)
drainage of free vaccine particles to LNs, (E) processing of phagocytosed antigen in APCs
and presentation to T cells, and (F) presentation of intact antigen to B cells.
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Figure 4. Intracellular processing of liposomal antigens
Intracellular antigen processing events influenced by liposome properties include (A) cell
binding, (B) internalization, (C) fusion with MHC II-containing organelles, (D) loading onto
MHC II molecules followed by trafficking to the cell surface for antigen presentation, (E)
escape from endosomes to the cytosol, (F) proteasomal degradation, (G) transit to the ER,
and (H) loading onto MHC I molecules followed by trafficking to the cell surface for
antigen presentation.
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Table 2

Formulation factors reviewed elsewhere.

Topic Mechanism of action Key Refs.

“Traditional” molecular adjuvants Activation of innate immunity via traditional ligands of pattern recognition receptors
(Toll-like receptors, NOD-like receptors, RIG-like receptors, C-type lectin receptors)

[50–54]

Route of administration Targeting a specific mucosal compartment [36, 234]

Dose Heterogeneous requirements for protective immunity of target population determined by
age, immune status, nutrition

[235, 236]

Nature of antigen Molecular size, T cell epitope density, amino acid composition, degradability, lipidation,
conformation, phylogenetic distance

[42–45, 237]

Receptor targeting Enhanced uptake by a specific subset of relevant antigen presenting cells [46, 47]

Particle size, shape, and charge Clearance from site of injection and accumulation in draining lymph nodes [48, 238]
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Table 3

Archetypal liposome vaccine formulations

Vesicle type Composition Key attributes Refs.

Archaeosome Polar glycerolipids obtained from Archaea via
CHCl3/MeOH/H2O extraction. Typical archaeal
lipids contain two ether-linked phytanyl groups,
with or without one of many different possible
head groups.

Induction of TH1 and cell-mediated responses
without addition of TLR agonists. Ether lipid
backbone confers stability but biodegradability is not
well understood.

[64]

Cationic liposome A cationic lipid (e.g. DOTAP, DDA, DC-Chol),
typically with a neutral helper lipid (e.g. Chol,
PC) and/or an immunomodulator (e.g. MPL,
TDB). An exemplary formulation is CAF01
(DDA and TDB).

Binding and uptake by APCs strongly favored due to
electrostatic interactions. Retained at the injection
site longer than uncharged formulations. Some
cationic lipids are inherently immunostimulatory
(e.g. DOTAP).

[58, 59]

Conventional liposome One or more neutral or anionic lipids (PC, PG,
Chol), typically with an immunomodulator (e.g.
MPL).

Greatest versatility in formulation parameters and
modes of antigen incorporation. Immunogenicity is
typically weak without specific addition of
immunomodulators.

[18, 20]

Lipoplex A cationic lipid electrostatically complexed with
plasmid DNA, often with a helper lipid (e.g.
DOPE, Chol).

DNA component may encode the antigen or act as an
adjuvant through TLR9 activation. Standard
formulation for delivery of lipid-based nucleic acid
vaccines.

[60]

Lipopolyplex Cationic liposomes mixed with pDNA that has
been pre-condensed with a polycation (e.g.
protamine). An exemplary formulation is LPD
(DOTAP, protamine, pDNA).

As compared to conventional lipoplexes, the double
bilayer of LPD confers greater stability and
structural homogeneity.

[61]

Niosome Cholesterol and a single-alkyl chain nonionic
surfactant (e.g. GMS, SMS, T20)

Suggested as inexpensive, simple alternatives to
conventional liposomes. Like liposomes, generally
immunologically inert without added
immunomodulators. Widely investigated for topical
vaccination.

[65, 66]

Virosome Reconstituted influenza virus membranes
(phospholipids, HA, NA) supplemented with
PC.

Efficient cell binding, internalization, and endosomal
release due to presence of HA. Highly immunogenic
due to presence of HA and NA.

[62, 63]

Vaccine. Author manuscript; available in PMC 2013 March 16.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Watson et al. Page 41

Table 4

Novel and emerging immunostimulatory lipids

Name Origin Mechanism Refs.

All-trans retinoic acid Vitamin A metabolite RAR agonist [150, 239]

DiC14-amidine Synthetic cationic transfection reagent TLR4 agonist [142, 143]

Docosahexaenoic acid Polyunsaturated ω-3 fatty acid GPR120 agonist [151, 155]

DOTAP Synthetic cationic transfection reagent Induction of reactive oxygen species,
subsequent activation of ERK and p38

[139–141]

α-galactosylceramide Glycosphingolipid first isolated from A. mauritianus CD1d agonist [134, 135]

Lauric acid Saturated fatty acid TLR4 agonist [151]

Lysophosphatidylcholine Endogenous lysophospholipid Upregulation of MHC II, CD86; secretion
of chemokines

[169]

Palmitic acid Saturated fatty acid Activation of NLRP3-ASC inflammasome [153]

Phosphatidylserine Phospholipid found in cytoplasmic leaflet of plasma
membrane

Induction of TGF-β, possibly via PI3K-
ERK

[158, 159]

Sphingosine-1-phosphate Endogenous Agonist of S1PR receptor family [163–165]

Trehalose dibehenate Synthetic analogue of mycobacterial cord factor Mincle agonist [131–133]
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Table 5

Design principles for liposomal vaccines

Parameter Guideline Supporting Refs.

Antigen attachment Physical association in some form is required. Surface conjugated Ag generally elicits greater
antibody responses than encapsulated Ag, whereas CTL responses are equivalent.

[67–79]

Vesicle size Larger vesicles (~250–700 nm diameter) promote a more robust TH1 response. [99–101]

Lamellarity Multilamellar vesicles may promote a TH2 response. [102–104]

Vesicle charge Charged formulations are more potent adjuvants than neutral ones, with cationic being more
effective than anionic.

[105–108]

Membranefluidity Vesicles composed of lipids with higher gel-liquid crystal transition temperatures elicit stronger
responses.

[109–117]

Fusogenicity Fusogenicity increases CTL responses, particularly for peptide and DNA vaccines. [124, 130]

Lipid composition In addition to classical TLR and NLR agonists, a versatile and expanding toolkit is available to
tailor the adjuvanticity of liposomal vaccines.

[131, 141, 151, 168]
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