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A network of regions including the medial temporal lobe (MTL) and
the striatum are integral to visuomotor associative learning. Here,
we evaluated the contributions of the structures of the striatum
and the MTL, as well as their interactions during an arbitrary
associative learning task. We hypothesized that activity in the
striatum would correlate with the rate of learning, while activity in
the MTL would track how well associations were learned. Further,
we expected functional correlations to show both facilitative as
well as competitive relationships depending on the regions
involved. Results showed that activity throughout the striatum
was modulated by the rate of learning, while the sensorimotor and
ventral striatum were also modulated by probability correct. Across
the MTL, activity correlated with the probability of being correct,
while the perirhinal cortex and right parahippocampal cortex were
modulated by the rate of learning. The activity in the ventral
striatum robustly coupled with activity in the MTL during learning,
while interactions between the associative striatum and the MTL
showed the opposite pattern. These findings suggest dissociable
computational roles for different subregions of the striatum and
MTL. These subregions interact in distinct ways, perhaps forming
functionally integrated networks during the learning of arbitrary
associations.
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Introduction

Conditional associative learning is a form of learning that

requires participants to associate specific actions to

arbitrary cues in the environment. Successful performance

in conditional associative learning tasks requires not only

stimulus discrimination but also response selection and the

storage and monitoring of previously selected responses

and their representative outcomes (Hadj-Bouziane et al.

2006). Thus, conditional associative learning provides an

ideal task to assess the interactions among multiple learning

and memory mechanisms. Here, we used functional mag-

netic resonance imaging (fMRI) to record neural activity

while participants learned through trial-and-error condi-

tional visuomotor associations.

Electrophysiological and neuropsychological studies in non-

human primates have identified regions that support both the

acquisition and the retention of conditional visuomotor

associations, including the medial temporal lobe (MTL)

(Murray and Wise 1996; Wise and Murray 1999, 2000; Brasted

et al. 2003; Wirth et al. 2003; Yanike et al. 2009), premotor

cortex (Halsband and Passingham 1985; Mitz et al. 1991;

Brasted and Wise 2004; Buch et al. 2006), prefrontal cortex

(Murray et al. 2000; Wang et al. 2000; Bussey et al. 2001;

Pasupathy and Miller 2005; Histed et al. 2009), and the striatum

(Canavan et al. 1989; Hadj-Bouziane and Boussaoud 2003; Hadj-

Bouziane et al. 2003, 2006; Brasted and Wise 2004; Nixon et al.

2004; Pasupathy and Miller 2005; Buch et al. 2006; Williams and

Eskandar 2006; Histed et al. 2009). fMRI studies utilizing

arbitrary associative learning tasks have reported changes in

cerebral blood flow across a similar network of regions (Toni

et al. 2001; Eliassen et al. 2003; Boettiger and D’Esposito 2005;

Law et al. 2005; Grol et al. 2006; Hanakawa et al. 2006; Haruno

and Kawato 2006; Brovelli et al. 2008).

Many of the regions identified in these studies were posited

to support learning via different computational goals. For

example, during learning over multiple trials, regions across

the MTL track how well an association is learned (Toni et al.

2001; Law et al. 2005), while activity in the striatum is largely

modulated by prediction error (Haruno and Kawato 2006;

Brovelli et al. 2008). However, learning-related changes in

behavior are likely the product of an interaction among many

regions rather than isolated processes at local neuronal

populations (McIntosh 2000). Attempts to elucidate the

underlying computational principles of individual brain

regions with assessments of the functional interactions across

regions may facilitate our understanding of how regionally

specific computational principles influence broader network

interactions.

Few neuroimaging studies have directly compared how the

striatum and MTL interact and how their interactions change

during associative learning. In one notable study of striatal

interactions, Toni et al. (2002) examined corticocortical and

corticostriatal effective connectivity using a conditional visuo-

motor associative learning task and structural equation

modeling. However, their model did not include structures in

the MTL, leaving open questions about the nature of

interactions between these regions during associative learning.

Here, we evaluated MTL and striatal contributions to an

associative learning task. We hypothesized that activity in MTL

regions would predominately track how well associations were

learned, while activity in anterior regions of the striatum would

be largely modulated by the rate of learning—a putative reward

prediction error measure. Further, we hypothesized a func-

tional dissociation between anterior and posterior striatum

where posterior regions of the striatum would correlate with

how well associations are learned as the stimulus--response

associations are acquired.

In our model-based analyses, we used the rate of learning

(slope) rather than a reinforcement learning model--derived

prediction error estimate. Our questions concern the relative

contributions that distinct brain regions make to probability
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correct and prediction error processes. Prediction error

estimates correlate with the probability of being correct (see

Supplementary Table 1) and therefore cannot be modeled

within the same general linear model (GLM) without an

orthogonalization process (which would distort their shape).

Running separate models provides a qualitative description

(i.e., which brain regions correlate with probability correct

versus which brain regions correlate with prediction error) but

not a quantitative one (i.e., what are the relative contributions

to probability correct and prediction error for each region).

Therefore, it is important to have each estimate modeled as

a separate regressor within the same model. Slope is calculated

as the difference between the current probability of being

correct and the subsequent trial’s probability of being correct:

S(t) = Pa(t + 1) – Pa(t), providing an error term between the

current and subsequent probabilities of being correct. This

error term is similar to the delta rule k – Qa(t) in the Rescorla--

Wagner model: Qa(t + 1) = Qa(t) + g[k – Qa(t)] (Rescorla and

Wagner 1972). However, rather than using an arbitrarily set

asymptotic value (k), we substitute the subsequent trial’s

probability correct estimate into the equation similar to an

ideal observer model. Supplementary Figure 1 shows a compar-

ison between 2 stimuli and their slope and reinforcement

learning model--derived prediction error estimates. Slope

appears to be a smoothed version of prediction error for these

representative stimuli; therefore, we believe that learning rate

is capturing a similar computational principle as prediction

error here. Notably, within trial estimates of prediction

errors—which are captured by temporal-difference (TD)

learning algorithms (Sutton and Barto 1998)—are a more

accurate estimation of dopaminergic neuronal activity (Schultz

et al. 1997). However, given the temporal structure of our

trials, the prediction error generated by a Rescorla--Wagner

rule would not differ from that generated by a TD algorithm;

therefore, in our model-based analyses, we used slope as

a surrogate for a Rescorla--Wagner rule trial-specific prediction

error estimate.

To determine the extent of interactions between the MTL

and striatum during the conditional visuomotor task, we

performed a psychophysiological interaction (PPI) correla-

tional analysis (Friston et al. 1997). Based on anatomical studies

(Groenewegen et al. 1987) and findings supporting a functional

coupling (i.e., increase in interaction) between the hippocam-

pus and the nucleus accumbens (NAcc) (Goto and Grace

2008), we hypothesized that a functional correlation between

the NAcc and the MTL would be evident.

The following results are from a novel and independent

analysis of previous data collected across 2 experiments

conducted in our laboratory utilizing the same task. Impor-

tantly, the previous studies were motivated by questions

concerning the role of the MTL in the learning of arbitrary

associations and did not report patterns of activity in the

basal ganglia. Here, utilizing a similar analysis, we report

activity specific to the striatum (the main input nucleus

to the basal ganglia). Further, we introduce model-based

analyses and functional connectivity analyses that were not

performed in the previous studies to assess the computa-

tional mechanisms inherent to each region and how these

putatively distinct learning and memory systems interact

during the course of learning. The obtained results from the

reanalysis constitute a significant and novel advance over the

original studies.

Materials and Methods

Participants
Participants from 2 separate studies utilizing the same conditional

visuomotor associative learning task were pooled for a total of 31 (18

females) right-handed participants (Law et al. 2005; Kirwan et al. 2007).

All participants gave written informed consent before participating.

Mean age was 26.7 (range 18--33). Participants were recruited from the

Johns Hopkins community and were paid for their participation.

Materials and Experimental Design
The details of the behavioral task were previously published in Law

et al. (2005) and Kirwan et al. (2007). Briefly, the stimuli were random

computer-generated kaleidoscopic images (Miyashita et al. 1991). A

fixation cross was presented for 300 ms at the beginning of each trial.

Following the fixation cross, a kaleidoscopic image with 4 super-

imposed boxes in a horizontal row was presented for 500 ms. A brief

delay (700 ms) followed the kaleidoscope presentation, during

which the stimulus was removed and only the fixation cross and

boxes remained. After the delay, during a 700-ms response window,

participants were instructed to respond following a cue (Go!).

Participants were informed that each kaleidoscope image was paired

with 1 of 4 response buttons, corresponding to 1 of the 4 boxes on the

screen. Directly following the participants’ response, the selected box

was filled with white, indicating which response had been recorded.

Lastly, feedback was presented for 800 ms: ‘‘yes’’ (shown in green) if

their response was the correct button associated with that stimulus,

‘‘no’’ (shown in red) if they were incorrect, and ‘‘?’’ if they failed to

respond during the response window. Participants were instructed to

use the feedback to learn through trial-and-error the correct

associations for each kaleidoscope image. Each trial lasted 3000 ms.

Figure 1A shows a representative trial.

To establish a reference for the fMRI signal and assist in the

estimation of the hemodynamic response for all conditions of interest

by inducing jitter between trial types, baseline trials were randomly

presented during the experiment (Dale and Buckner 1997; Burock

et al. 1998). The temporal structure of baseline trials was identical to

learning trials. However, in place of the kaleidoscope image, a random

visual static pattern was presented. In the study of Law et al. (2005), 1

of the 4 boxes was randomly filled with white at 50% opacity, indicating

the target that the participant should select during the response

window. In the study of Kirwan et al. (2007), the same basic task was

used, but the target on each trial was set to be between 11% and 17%

greater opacity than the other 3 non-target boxes, making the task

more perceptually challenging. The stimuli were presented until

a response was recorded or the trial ended. Baseline trials were

intended to minimize mnemonic demand and to provide a stable level

of activity across trials (Stark and Squire 2001). In contrasts between

trial types of interest, all baseline activity is factored out, however.

Figure 1B shows a representative baseline trial.

Prescan Training
Participants were trained on the task using a set of 4 ‘‘reference’’

stimuli, 24--48 h prior to scanning. The associations for each reference

stimulus were maintained throughout the experiment. Prescan training

consisted of 2 sessions during which 102 trials were presented (72

stimulus presentation trials—18 trials for each of the 4 reference

stimuli—and 30 baseline trials). Reference stimuli were used to

compare activity for well-learned associations versus associations that

were in the process of being learned.

Scanning Session
Scanning runs consisted of 72 associative learning trials, 30 reference

trials, and 30 baseline trials (132 total trials per run). Participants

completed different numbers of runs ranging between 3 and 6 runs.

Two methods were utilized to maximize the number of trials during

which participants were actively learning new associations. First, the

number of concurrently learned stimuli was tailored to each participant

based on prescan training performance. Participants in the study of
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Law et al. (2005) learned 4, 8, or 12 stimuli concurrently, while

participants in the study of Kirwan et al. (2007) learned 4 or 8 stimuli at

the same time. Second, each participant’s behavioral performance was

monitored in real time to determine when a preset criterion was met (6

consecutive correct responses). For example, in the study of Law et al.

(2005), if at least one-half of the stimuli being learned met the preset

criterion, then a new stimulus set was introduced on the subsequent

run. In the study of Kirwan et al. (2007), stimuli were automatically

replaced during a run as performance on them improved.

fMRI Imaging Parameters
Imaging data were collected on a Phillips 3.0-T scanner equipped with

a sensitivity encoding (SENSE) head coil at the F. M. Kirby Research

Center for Functional Brain Imaging at the Kennedy Krieger Institute

(Baltimore, MD). SENSE imaging capitalizes on the sensitivity profiles of

multiple surface coils, allowing for an under-sampling of k-space with

fewer phase-encoding steps while maintaining full field-of-view images

that are free of aliasing—thereby, significantly reducing acquisition

time and distortion attributable to magnetic susceptibility (Pruessmann

et al. 1999). A high-speed echoplanar single-shot pulse sequence with

an acquisition matrix size of 80 3 80, an echo time of 30 ms, a flip angle

of 70�, a SENSE factor of 2, and an in-plane acquisition resolution of 3 3

3 mm, was used to collect functional echoplanar images. A total of 264

(132 trials per run, 3 s each trial, 2 acquisitions per trial) whole-brain

3D volumes were acquired with a repetition time (TR) of 1.5 s during

each run. Functional volumes consisted of 30 triple-oblique axial slices

aligned to the principle axis of the hippocampus. To allow for magnetic

resonance (MR) signal stabilization, data acquisition began after the

fourth image. To facilitate anatomical localization and cross-participant

alignment, a standard whole-brain, 3D magnetization-prepared rapid

gradient echo (MP-RAGE) scan was acquired (150 oblique axial slices,

echoplanar with the fMRI data, 1 3 1 3 1 mm voxels).

Calculation of the Learning Curve and Memory Strength Index
Similar to Wirth et al. (2003), Law et al. (2005), and Kirwan et al.

(2007), we utilized a logistic regression algorithm developed by Brown

and colleagues (Smith and Brown 2003; Smith et al. 2004) to calculate

a learning curve for each stimulus, which was then used to derive an

estimate of memory strength. Behavioral performance for each stimulus

was converted into a binary response across the multiple trials (1 if

the response was correct and 0 if the response was incorrect). The

algorithm used the binary performance for each stimulus to calculate

the probability of a correct response based on the number of trials

using a Gaussian random walk model as the state equation and

a Bernoulli model as the observation equation (Wirth et al. 2003; Smith

et al. 2004). Figure 2 shows 3 representative learning curves.

The learning curve for each stimulus provided a quantitative measure

of how well that stimulus had been learned on a trial-by-trial basis

(probability of being correct: range 0--1). In order to determine the

correlation between learning and memory and fMRI activity, we used

the learning curve for each kaleidoscope image to derive a discrete

memory strength index. Memory strength values from 1 to 5

corresponded to estimated probability correct scores of 0--1 in 5

increments of 0.2 each (Str1 to Str5).

Calculation of the Slope of the Learning Curve (i.e., Ideal
Observer Prediction Error Estimate)
For each learning stimulus, we calculated the first derivative (slope) of

the learning curve. Additionally, as a control analysis, we modeled each

participant’s performance with a Q-learning algorithm (Watkins 1989),

which used a Rescorla--Wagner learning rule (Rescorla and Wagner

1972) to update Q values (see Supplementary materials).

Cross-Participant Alignment
We used a region of interest alignment (ROI-AL) approach developed

by our laboratory (e.g., Stark and Okado 2003) to align both the

structural and the functional data. To begin, all structural and

functional scans are aligned to the Talairach atlas (Talairach and

Tournoux 1988) with the functional scans resampled to 2.5 mm

isotropic in the process (and blurred by a mild 4 mm full-width at

half-maximum [FWHM] Gaussian kernel to reduce any resampling

artifacts). This first pass helps remove large spatial shifts be-

tween subjects, providing an initial common registration prior to

subsequent fine-tuning. The Talairach transformed MP-RAGE (1 mm3)

structural images were then used to segment anatomical ROIs for

each participant. A total of 14 regions in the MTL and striatum were

defined (MTL: bilateral hippocampus, temporopolar, perirhinal,

entorhinal, and parahippocampal cortices; striatum: bilateral caudate

and putamen). Regions in the parahippocampal cortex were

segmented according to the boundaries outlined by Insausti et al.

(1998), while striatal regions were based on the landmarks described

in the Atlas of the Human Brain (Mai et al. 1997).

A model for the fine-tuned transformation calculations was then

constructed by choosing a single participant (number 29) to serve as

the initial model for the transformation calculation for all the other

participants. The ROI-AL approach uses high dimensionality diffeomor-

phic techniques (ROI-Demons) (Stark and Okado 2003; Yassa and Stark

2009) to map the transformation between an individual’s ROI

segmentations and the model’s segmentation. ROI-Demons generates

a smooth 3D vector field that is used to transform images between

coordinate systems. This or related techniques have been used

successfully to align across participants the structures of the MTL

and the substructures of the hippocampus (Stark and Okado 2003; Law

et al. 2005; Miller et al. 2005; Kirwan and Stark 2007; Kirwan et al. 2007;

Bakker et al. 2008) and have been extended here to the striatum. After

each participant’s structural image was aligned to the model, the

resulting transformation matrices were applied to align the functional

images.

fMRI Data Analysis
We performed 2 univariate analyses to assess how activity changed

during learning. First, we performed a trial-based analysis, binning

together trials that showed a similar probability of being correct. Our

Figure 1. Sample stimulus and schematic diagram of trial structure for both learning/reference trials (A) and baseline trials (B).
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binned analysis examined how blood oxygen level--dependent

(BOLD) fMRI changed as a function of how well the associations

were learned. This analysis was constrained to the striatum. This is

the same type of analysis as our previous work (Law et al. 2005;

Kirwan et al. 2007) (see Supplementary Fig. 5 for MTL results). The

second analysis was a more direct interrogation of learning-related

changes in activity. We utilized parametric regression to identify

regions that correlated with trial-specific probability correct (how

well the associations are learned) and learning rate (slope) estimates.

The 2 styles of analyses yielded comparable changes in activity over

the course of associative learning.

Analysis of Functional Neuroimages (AFNI) software (Cox 1996)

was used to perform all data analyses. Functional data were

coregistered in 3 dimensions and through time to reduce any effects

of head motion. Any time periods with more than 3 degrees of

rotation or 2 mm of translation in any direction were eliminated

(along with the immediately adjacent TRs) from further analysis. Each

participant’s data were concatenated across all runs for subsequent

analysis. We functionally defined ROIs by setting a voxel-wise

threshold of P < 0.04 with a connectivity radius of 2.6 mm and

a spatial extent threshold of 609 mm3 for the memory strength and

parametric analyses and 531 mm3 for the PPI analyses resulting in an

overall alpha probability of P < 0.05 as determined by Monte Carlo

simulations (AFNI’s ‘‘AlphaSim’’ program). In the PPI analysis, our

initial hypotheses were concerned with the interaction between

memory systems; therefore, we corrected for multiple comparisons

using the volume of the non-seed memory system resulting in

a smaller spatial extent correction than the memory strength and

parametric analyses. Smoothness was established for the AlphaSim

correction using AFNI’s 3dFWHMx estimating the intrinsic smooth-

ness of the residuals combined with the moderate spatial blurring

kernel utilized in the functional ROI analysis (4 mm FWHM).

Binned Memory Strength Analysis
Behavioral design matrices were created for each subject containing

regressors for the 5 memory strength indices, reference trials, and

the first presentation of each stimulus. Additionally, nuisance re-

gressors coding for drift in the MR signal were included in the design

matrix. Baseline trials were not entered into the design matrix, and

activity associated with these trial types served as a reference point

for all other trials. The design matrices were used to analyze the fMRI

data from each participant using a deconvolution approach based on

multiple linear regression (3dDeconvolve ; http://afni.nimh.nih.gov/

pub/dist/doc/manual/Deconvolvem.pdf). The deconvolution tech-

nique estimates the hemodynamic response for each vector of

interest by creating 11 time-shifted versions of the design matrix,

coding for BOLD activity from 0 to 16.5 s after trial onset. The

resulting fit coefficients (b coefficients) represent activity versus

baseline for each condition of interest at a given time point in each

voxel. The sum of the b coefficients over the expected hemodynamic

response (~3 to 12 s after trial onset) was taken as the estimate of

the model of the response to each regressor of interest. The

summed b values for each participant were used in group-level

analyses, utilizing repeated measures analysis of variance (ANOVA)

to contrast all memory strengths, first presentation, and reference

conditions.

Continuous Auxiliary Behavioral Information (ABI) Analysis
In a separate analysis, we directly modeled learning (probability correct

estimates) and learning rate (slope) to evaluate how activity changed

over the course of learning. Here, we used the continuous measures of

probability correct obtained from the stimulus-specific learning curves

and the first derivative of the learning curves (slope), as ABI, to

parametrically evaluate changes in BOLD activity with learning. Each

participant’s trial-by-trial probability correct and slope estimates were

convolved with a canonical hemodynamic response function and

correlated with each participant’s functional data using multiple linear

regression. Design matrices for each participant included regressors for

the event occurring, the probability of being correct, and the slope

estimate, as well as regressors of no interest coding for drift in the MR

signal. The resulting b coefficients for the parametrically modulated

regressors (probability correct and slope) were used for subsequent

repeated measures ANOVA and t-tests at the group level.

Finally, separate control analyses were performed to account for the

possibility that the resulting BOLD modulation was in part due to the

outcome of each trial (i.e., correct vs. incorrect) or a decrease in

reaction time as associations became well learned. A significant

modulation due to outcome or reaction time may confound regions

that potentially show a modulation to the slope. Therefore, we split

trials according to whether or not participants responded correctly or

incorrectly and performed a similar parametric regression analysis as

outlined above. In the control analysis, 2 additional parametric

regressors were added to the model for the correct and incorrect

reaction times (see Supplementary materials).

Functional Connectivity Analysis
In its most basic form, functional connectivity analyses attempt to

correlate changes in activity over time in one region with changes in

activity in a second region (Friston 1994). Such ‘‘seed style’’ analyses

can provide evidence for some form of connection between regions

(see Supplementary materials for such an analysis on these data).

Direction, causality, or modulations in this connectivity cannot be

inferred. This last aspect (modulation) can be inferred from a more

complex form of functional connectivity analysis known as PPI

functional connectivity analysis (Friston et al. 1997).

PPI analyses attempt to account for activity in one region of the brain

in terms of an interaction between activity in another region and

a psychological context. We defined context as the different stages of

learning outlined by our memory strength indices. To perform the PPI

analysis, we added 3 regressors to the model from our memory strength

analysis (binned style analysis), one regressor representing global ac-

tivity across the task, another regressor for the time series activity from

our seed region, and a third regressor representing the interaction

between our learning contexts and the time series from our seed

region. Ordinarily, an additional regressor is added to the model to

account for the context events (1 if the context is true and

0 otherwise); however, since our original model already contained this

regressor (each memory strength index), we made no such addition, so

as to avoid the complication of multicollinearity. One participant was

dropped from this analysis due to signal drop out during a portion of

a run that would specifically harm this style of analysis, leaving a total of

30 participants for this analysis.

In the PPI analysis, we assessed the change in correlation across

learning by determining whether or not the correlation between our

Figure 2. Representative learning curves for 3 stimuli learned by a single participant. Gray dots represent incorrect trials, while black dots represent correct trials. Plots show the
trial-specific probability of being correct (black line) bounded by its 95% confidence interval (dashed lines).
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seed regions and the rest of the brain changed as a linear, a quadratic, or

a cubic function of memory strength. To construct our interaction

regressor, we isolated a single time series of activity for all events of

interest including first presentation through reference trials. We then

used the hand-segmented ROIs (used for cross-participant alignment)

to calculate a mean time series for each seed region by averaging across

all voxels within each ROI. We then deconvolved the seed time series

into its underlying neural function prior to calculating the interaction

term (Gitelman et al. 2003). This deconvolution step was utilized

to accommodate for the temporal lag and other aspects of the

hemodynamic response. We then created the interaction term by

combining the physiological event (deconvolved seed time series) with

an orthogonal set of contrast weights coding for a linear, quadratic, and

cubic change in learning. The resulting neural interaction terms were

then convolved with a gamma basis function using AFNI’s ‘‘Waver’’

program.

We then ran 3 separate models to test whether regions showed an

interaction in correlation following a linear, a quadratic, or a cubic

change in memory strength. The correlation coefficients for the

interaction terms from the separate models were Fisher’s z transformed

and analyzed at the group level using repeated measures ANOVAs.

Group analyses were utilized to identify whether correlations with the

seed region changed according to our prescribed functions (linear,

quadratic, or cubic).

As a control, the data were analyzed in a more agnostic manner using

a sliding ‘‘tent’’ function to define contexts (e.g., the current and

adjacent memory strengths vs. all remaining memory strength indices).

While this method was less directed, it provides a more readily

interpretable visualization of how the correlations between regions

changed as a function of learning. This analysis was performed to

corroborate the direct analysis. Lastly, we performed a standard seed

style functional connectivity analysis to establish the underlying

functional interactions between our ROIs. Reliable seed style functional

correlations between the ROIs will help with interpretation of the PPI

analysis results. See Supplementary materials for methods and results of

both the tent style PPI and the standard seed style functional

connectivity analyses.

Results

Behavioral Results

Similar to previous analyses (Wirth et al. 2003; Law et al. 2005;

Kirwan et al. 2007), we considered an estimate of the onset of

learning to be the trial when the lower 95% confidence interval

exceeded chance performance (i.e., probability of being

correct exceeded 25%). For all participants, the mean number

of training trials required to reach the onset of learning was

4.67 (standard deviation [SD], 3.7; range 2--28). Across both

experiments, the mean number of new stimuli learned per run

was 7.5 (SD, 1.7; range 3--12).

Reaction times for correct trials separated according to each

memory strength can be found in Table 1. The reaction time

data correspond to the time to make a response following the

response window cue. We found a small but reliable effect of

memory strength on reaction time (F = 3.59, P = 0.002). A

Bonferroni post hoc pairwise test showed that the only

pairwise difference that was reliable was the modest 38 ms

difference in reaction times between strengths 3 and 5 (t =
3.68, P < 0.05). Given the response window, reaction times

need not be clearly related to processing time, however.

Imaging Results

Change in Activity with Memory Strength Index (Binned

Analysis)

To identify regions in which activity varied over the course of

associative learning, we compared activity across all memory

strengths, first presentation, and reference conditions using

a repeated measures ANOVA. We masked all the reported

results by the MTL/striatal model used for alignment as the

approach utilized to functionally define our ROIs does not

control for Type I errors in larger volumes. The functional ROI

analysis revealed several subregions within the striatum.

Specifically, within the putamen, there appeared to be 2

distinct ROIs, one anterior to the anterior commissure and

another posterior to the anterior commissure. In order to

maintain the fidelity of these ROIs when masked by the MTL/

striatal model, we augmented the model to differentiate

between anterior and posterior putamen, defining the border

as 2 mm posterior to the last slice in which the anterior

commissure was visible. A similar anterior/posterior distinction

was used earlier in nonhuman primates to assess novel learning

(anterior) versus the recall of well-learned (posterior) sequen-

ces in a sequential hand movement task (Miyachi et al. 1997,

2002). Additionally, previous studies (e.g., O’Doherty et al.

2004) suggest a functional distinction between the dorsal and

the ventral striatum; therefore, the model was augmented to

define the NAcc via template matching with the Atlas of the

Human Brain (Mai et al. 1997).

The pattern of activity observed in the anterior dorsal and

ventral striatum was consistent with what we would expect for

an area modulated by reward prediction error. Early in training,

activity was low and increased until strength 4, after which

activity decreased progressively for associations that were well

known. Subsequent post hoc trend analyses constrained to the

5 memory strength indices identified significant quadratic and

cubic trends in all anterior striatal ROIs (all F > 5, P < 0.05). No

significant linear trends were found in the caudate ROIs (all F <

1, P > 0.4). However, both the anterior putamen and the NAcc

bilaterally showed a significant linear component (all F > 18,

P < 0.05).

Activity found in the left posterior putamen rose mono-

tonically, tracking how well associations were learned in

a pattern similar to what was observed in the MTL ROIs (see

Supplementary Fig. 5). This activity showed a linear increase in

activity from memory strength index 1 to 5 (linear trend

analysis: all F > 23, P < 0.0001), with only a trend but no

reliable indications of higher order components (all F < 3.14,

P > 0.07) (Fig. 3).

Change in Activity with Probability Correct and Slope

Estimates

While the binned analysis is an unbiased method of examining

activity changes over the course of learning over multiple trials,

it does not directly test the hypothesis that activity in a voxel is

correlated with behavioral measures of learning. To test this

directly, we used ABI measures derived from each participant’s

Table 1
Reaction times for correct trials versus trial type

Memory strength Mean reaction time (SD)

First 264.12 (62.82)
Strength 1 (0 # P[c] # 0.2) 287.12 (66.69)
Strength 2 (0.2 # P[c] # 0.4) 283.21 (48.53)
Strength 3 (0.4 # P[c] # 0.6) 293.67 (42.74)
Strength 4 (0.6 # P[c] # 0.8) 265.07 (54.13)
Strength 5 (0.8 # P[c] # 1.0) 255.06 (51.45)
Reference 271.60 (57.58)
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performance to parametrically regress fMRI activity with both

the probability of being correct and the first derivative of the

learning curve (slope/learning rate). We utilized slope rather

than the prediction error estimates derived from our

Q-learning algorithm to include both the probability correct

and the learning rate estimates within the same GLM (see

Supplementary materials). Slope is orthogonal to the probabil-

ity correct estimates. Therefore, a regressor accounting for

slope could be included in the same model with the probability

correct estimate without affecting the estimate of probability

correct (prediction error and probability correct are corre-

lated, see Supplementary Table 1). At the same time, slope of

learning captures many of the same features as prediction error

(Supplementary Fig. 1). Additionally, in our control analyses, we

observed greater activity for correct versus incorrect trials

across the striatum. Further splitting the parametrically

modulated regressors by correct and incorrect trials showed

no reliable difference for the probability correct and slope

estimates between correct and incorrect trials; therefore, the

following reported results collapsed across outcome (see

Supplementary materials).

Probability correct and slope parameter estimates were

taken to a group-level analysis. We used a repeated measures

ANOVA to identify voxels where BOLD fMRI activity was

modulated by the event occurring, probability of being correct,

or slope of the learning curve. Similar to the binned analysis, we

excluded voxels that did not fall within our alignment mask. In

post hoc analyses using Bonferroni corrections for multiple

comparisons, we found that bilateral hippocampal, entorhinal,

and left parahippocampal ROIs were reliably modulated by the

probability of being correct (all t > 3.31, P < 0.003), while the

bilateral perirhinal and right parahippocampal cortices showed

significant BOLD activity for slope (t = 3.46, P < 0.003)

(Fig. 4A). Activity in the right perirhinal and parahippocampal

cortices were modulated by the probability of being correct,

but this result did not survive corrections for multiple

comparisons. Conversely, the slope modulated activity in ROIs

within the striatum (all t > 3.87, P < 0.003). However, in

addition to a reliable modulation by the slope, the bilateral

NAcc, posterior putamen, and the left anterior putamen

showed significant modulation by the probability correct

regressor (all t > 3.7, P < 0.003) (Fig. 4B). This analysis was

not performed in our prior work.

Here, we observed robust modulation across the MTL by the

probability of being correct (a direct measure of associative

learning). Notably, bilateral perirhinal and left parahippocampal

cortices were largely modulated by slope rather than the

probability of being correct. Dorsal anterior regions of the

striatum were consistently modulated by slope, while bilateral

NAcc, posterior putamen, and left anterior putamen were

significantly modulated by both slope and probability correct

estimates.

Functional Connectivity Results

We used a PPI analysis to evaluate how correlations between

the MTL and striatum changed as a function of learning. We

used a repeated measures ANOVA to identify voxels where

Fisher’s z-transformed correlation coefficients changed in

a linear, quadratic, or cubic fashion. The cubic change in

correlation with learning was not reliably significant in any of

the regions identified.

We observed an increase in correlation between the NAcc

and MTL during the height of learning, suggesting that the

NAcc and the MTL form a functionally integrated network that

is recruited during the learning of arbitrary associations.

Specifically, the left NAcc seed showed a reliable context-

dependent interaction with the left parahippocampal cortex.

The correlation between the left NAcc and parahippocampal

Figure 3. Regions of striatum (A, coronal; B, axial) where activity varied over the course of learning. Activity in the anterior striatum tracked the rate of learning (a putative
prediction error signal): left caudate (red), right caudate (dark blue), left anterior striatum (yellow), right anterior striatum (green), left NAcc (purple), and right NAcc (dark brown).
Activity in the posterior striatum tracked the amount of information learned similar to MTL ROIs: left posterior putamen (orange). Regions in the MTL (pale yellow) also correlated
with learning; these results are reported in the supplementary materials (Supplementary Fig. 5). Parameter estimates for the striatal ROIs are plotted above. Error bars represent
the standard error of the mean. Colors represent ROI labels derived from group-level analysis. L, left; R, right; Caud, Caudate; Ant Put, anterior putamen; Post Put, posterior
putamen.

652 Striatal and MTL Functional Interactions d Mattfeld and Stark

Supplementary materials
Supplementary Table 1
Supplementary Fig.ure 3
Supplementary materials
supplementary materials
Supplementary Fig.ure 3


cortex showed a significant positive quadratic and negative

linear change with learning. It is important to note that in a PPI

analysis, the sign of the PPI value represents an increase

(positive) or decrease (negative) in functional coupling.

Therefore, a negative PPI value does not represent an

anticorrelation. The change in correlation between the NAcc

and the MTL ROIs demonstrated little to no coupling early in

learning, increased functional coupling during the height of

learning (near Str3), and a subsequent decrease in coupling as

associations were learned (Str5 and reference trials). Figure 5A

shows the left NAcc seed and parahippocampal cortex ROI for

the first pattern of context-dependent change in correlation.

See Supplementary materials for tent style analysis.

Many of the functionally defined ROIs appeared punctate

and did not survive the spatial extent corrections required for

controlling Type I error. To assess activity in smaller ROIs, we

used the same voxel-wise peak threshold as our previous

analyses (P < 0.04) but reduced the spatial extent correction

from 531 (34 voxels) to 328 mm3 (21 voxels). Interpretation of

these results should be measured given that these ROIs did not

sufficiently correct for familywise error.

Using the reduced spatial extent correction, we observed

regions showing a negative linear and positive quadratic

functional coupling with learning (the left NAcc seed and the

right hippocampus and the right hippocampal seed and the

right entorhinal cortex). This pattern was similar to the pattern

of correlation that was observed between the left NAcc and left

parahippocampal cortex. Activity in the right NAcc seed

showed a negative linear trend with the left entorhinal

cortex—activity in the right NAcc was positively correlated

early in learning and over the course of learning the functional

coupling between these regions decreased.

A second pattern of functional connectivity emerged

between the associative striatum and MTL using the less

stringent spatial extent correction. The left hippocampal seed

showed a change in its correlation with the left caudate as

a function of learning. Early in learning, these regions showed

little to no coupling; however, during memory strength 3, these

regions significantly decreased their functional coupling and

then increased their interaction with subsequent learning. A

similar relationship was identified between a region that

spanned the right perirhinal and hippocampal cortices and the

right caudate when the right caudate was the seed. The right

hippocampal seed showed a significant decoupling with the left

caudate early in learning and subsequently increased functional

coupling as associations became well learned. Figure 5B shows

a representative ROI (left caudate and left hippocampal seed)

for the second pattern of context-dependent correlation

identified. See Table 2 for a summary of the PPI analysis results

at both the stringent and relaxed statistical thresholds.

Discussion

We observed modulations in the BOLD fMRI signal across the

MTL and the striatum during the acquisition of arbitrary

associations. Activity in the bilateral caudate, anterior putamen,

and NAcc showed a peak in activity when associations were

being acquired (Str3 and Str4), which subsequently declined as

associations became well learned (Str5 and Ref). The left

posterior putamen, in contrast, showed a monotonic increase

in activity with learning similar to MTL ROIs.

The parametric analysis revealed that the bilateral caudate

and anterior putamen were largely modulated by the slope of

the learning curve while the bilateral NAcc and posterior

Figure 4. Regions of the MTL (A) and the striatum (B) where activity varied as a function of how well the associations were known (P [probability of being correct]) versus slope.
ROIs within the MTL were largely modulated by the probability of being correct (dark gray bar). However, the bilateral PRC and right PHC were significantly modulated by slope
(white bar). ROIs throughout the striatum were mostly modulated by slope. However, bilateral NAcc and posterior putamen showed significant modulation by the probability of
being correct. Bar graphs represent the mean parameter estimate for each ROI. Error bars represent the standard error of the mean. A Bonferroni correction was used for all post
hoc analyses. *P\ 0.05, **P\ 0.003; L, left; R, right; PRC, perirhinal cortex; ERC, entorhinal cortex; HPC, hippocampus; PHC, parahippocampal cortex; Caud, caudate; Ant Put,
anterior putamen; Post Put, posterior putamen.
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putamen showed a significant modulation by both slope and

the probability of being correct. In the MTL, the hippocampus,

entorhinal cortex, and left parahippocampal cortex showed

a robust modulation to the probability of being correct, while

the slope reliably modulated activity in the perirhinal and right

parahippocampal cortices. These data add to our previous

analyses of the MTL (Law et al. 2005) showing a monotonic

increase in activity with learning across the hippocampus and

entorhinal cortex while the perirhinal and parahippocampal

cortices showed evidence for a more curvilinear change in

activity with learning—which may be accounted for by the

significant modulation by the slope here.

Our results in the MTL based on the parametric analysis

correspond with previous work in nonhuman primates and

human fMRI studies that have identified the engagement of

structures in the MTL during the learning of arbitrary

associations (nonhuman primate studies: Murray and Wise

1996; Wise and Murray 1999, 2000; Brasted et al. 2003; Wirth

et al. 2003; Yanike et al. 2009; human study: Toni et al. 2001).

The MTL appears to track how well the associations were

learned (i.e., reliable modulation by the probability of being

correct). Importantly, this analysis also revealed several regions

within the MTL (bilateral perirhinal and right parahippocampal

cortices) that showed significant modulation by the rate of

learning. These regions, while increasing their activity in

a roughly monotonic fashion, showed a much steeper rise in

activity with a plateau in activity as associations were well

learned. The reliable modulation by slope here provides

a potential computational mechanism for the distinct curvilin-

ear changes in learning-related activity observed in the

perirhinal and parahippocampal cortices (see Supplementary

Fig. 5). While the differential modulation within the MTL by

probability correct and slope suggests that different parts of the

MTL are contributing to learning and memory in unique ways,

we believe that this strong conclusion requires more direct

investigation. The seeming divergence between the binned

memory strength analysis and the model-based analysis may

be the result of nonlinearities in the BOLD effect itself. Future

electrophysiological studies investigating changes in spike

rate and or local field potential with measures such as learning

rate will be integral to this end. However, the data presented

here suggest that the original ‘‘memory systems’’ framework

(e.g., Squire et al. 2004) may be due for some degree of

refinement.

While this framework has been influential, accumulating

evidence suggests that regions once thought to be dedicated to

specific types of learning and memory (e.g., the basal ganglia

and habit learning) may in fact be participating in multiple

forms of learning and memory (e.g., Yin and Knowlton 2004).

Perhaps, given the results reported here (i.e., bilateral

perirhinal and right parahippocampal cortices), similar qual-

ifications should be extended to the MTL. Lesion studies

provide information regarding the necessity of a region for

a particular task but cannot address whether or not a region

may be engaged under similar conditions. Likewise, while such

studies have demonstrated that declarative and nondeclarative

memory can be independent, it does not follow that they

always must be mutually exclusive. Nonetheless, fMRI studies

are beginning to probe the computational processes that may

be supporting different forms of learning and memory (Bakker

et al. 2008; O’Doherty et al. 2003). Studies of the processes

underlying different forms of learning and memory offer

another way of thinking about the basis for multiple memory

systems (e.g., McClelland et al. 1995), consistent with the

results reported here.

In the anterior regions of the striatum, the activity identified

likely corresponds to learning-related changes in activity

induced by reward prediction error signals. This interpretation

is in line with previous fMRI studies that have identified

correlations between reward prediction error and fMRI activity

in the dorsal and ventral striatum (Pagnoni et al. 2002; McClure

Figure 5. PPI analysis showing how the correlation between seed regions and the rest of the brain changed as a function of memory strength. ROIs were defined by assessing
change in correlation as a linear, quadratic, or cubic function of memory strength. Two patterns of correlations were observed. The first pattern of functional coupling was
characterized by a robust quadratic interaction wherein the identified regions increased in correlation during the height of learning followed by a decrease in coupling as
associations became well learned. Representative ROI shown L PHC with L NAcc (seed) (A). The second pattern of activity was identified at a reduced spatial extent correction
showed a significant negative quadratic interaction characterized by a decrease in functional coupling during the height of learning followed by a subsequent increase as
associations were learned. Representative ROI shown L caudate (Caud) with L hippocampus (Hipp) seed (seed) (B); Bar graphs represent the mean PPI interaction term Fisher’s
z-transformed correlation coefficients. Error bars represent the standard error of the mean. A Bonferroni correction was used for all post hoc analyses. *P\0.016. L, left; R, right;
PHC, parahippocampal cortex; ERC, entorhinal cortex.

Table 2
PPI analysis

Seed ROI ROI MNI (x, y, z) Volume
(mm3)

Pattern 1
Left NAcc Left parahippocampal

cortex
�22, �34, �17 562

Left NAcc Right hippocampusa 24, �10, �23 343
Right NAcc Left entorhinal cortexa �25, �5, �37 343
Right hippocampus Right entorhinal cortexa 16, �10, �29 375

Pattern 2
Right caudate Right hippocampus/perirhinal

cortexa
26, �23, �23 328

Left hippocampus Left caudatea �6, 8, �1 359
Right hippocampus Left caudatea �16, 1, 23 359

aIdentified using a reduced spatial extent correction.
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et al. 2003; O’Doherty et al. 2003, 2004; Haruno and Kawato

2006; Rodriguez et al. 2006; Brovelli et al. 2008; Schonberg et al.

2010). The reduced activity across the anterior striatum during

Str1 and Str2 may appear inconsistent with a reward prediction

error hypothesis—unexpected reward received early in learn-

ing should generate the largest errors in prediction. Such an

account neglects the fact that Str1 and Str2 contain the largest

proportion of errors. These errors lead to the inclusion of

a large number of negative prediction errors, which would lead

to an overall decrease in BOLD fMRI activity during these

memory strength indices. Importantly, our control analyses

(see Supplementary materials) suggest that activity across the

striatum is not preferentially modulated by error trials with

slope equally modulating both correct and incorrect trials.

Therefore, we are confident that this pattern is consistent with

a prediction error hypothesis. Furthermore, these results are

consistent with previous studies that have reported a reduction

in BOLD signal for trials that predominately code for negative

prediction errors (Tobler et al. 2006).

Activity in the posterior putamen, however, was similar to

that observed in MTL structures, wherein this region tracked

the amount of information learned. While similarities in the

pattern of activity between the striatum and the MTL exist, we

believe the nature of what is learned is different (Knowlton

et al. 1996; Poldrack and Rodriguez 2004). For example, this

region may be participating in the formation of the motoric

component of relevant stimulus--response associations. In our

own data, the functional connectivity analyses support the

notion that the similarities are more superficial. The posterior

putamen showed little connectivity with the MTL, unlike other

striatal regions (Supplementary Fig. 3). Similar changes in

activity in nonhuman primate studies have been identified that

also support this conclusion. As monkeys learned novel

associations during an arbitrary visuomotor associative learning

task, cells in the putamen increased their activity in an

approximately linear fashion--tracking behavioral performance

(Hadj-Bouziane et al. 2003; Brasted and Wise 2004; Williams

and Eskandar 2006). Our results in the posterior putamen

coincide with the findings of Haruno and Kawato (2006) who

identified regions near the anterior commissure in the putamen

that were more correlated with the formation of arbitrary

visuomotor associations; however, our ROIs extend more

posterior.

Similarities aside, one of the limitations of the current study

is that fMRI only provides correlational and not causal support

for the striatum and MTL playing both similar and differential

roles in learning and memory. Neuropsychological studies have

provided compelling evidence, suggesting that the striatum and

MTL support distinct representations (McDonald and White

1993; Knowlton et al. 1996; Packard and McGaugh 1996).

However, accumulating evidence in animals suggests that these

dissociations need to be further refined. For example, lesion

studies in rats have identified a medial versus lateral division of

labor in the dorsal striatum. The dorsomedial striatum appears

to support forms of learning and memory once thought to be

the providence of the hippocampus (i.e., ‘‘place’’ learning)

while the dorsolateral striatum is integral for procedural forms

of learning and memory (i.e., ‘‘response’’ learning) (Devan and

White 1999; Yin and Knowlton 2004). The medial/lateral

division in the dorsal striatum of the rat roughly maps onto an

anterior/posterior divide of the striatum in primates. Miyachi

et al. (1997, 2002) have shown that reversible inactivation of

the anterior putamen (associative striatum) disrupted the

learning of novel sequential hand movements, while inactiva-

tion of the posterior putamen (sensorimotor striatum) dis-

rupted well-learned sequences.

These results support the notion that the striatum is

participating in multiple forms of learning and memory

depending on the subregion involved (Divac et al. 1967;

Murray and Wise 2004; for review, see Yin and Knowlton

2006). Anterior regions of the striatum may represent

visuospatial information early in learning via reward learning

mechanisms (Hikosaka et al. 1999) while posterior regions in

the putamen in conjunction with the premotor/motor cortices

participate in the gradual development of stimulus--response

associations.

In addition to the learning-related changes in activity, we

also identified correlations between MTL and striatal regions

and found that the correlations between these regions changed

during the course of learning. Our PPI analysis identified an

increase in coupling with MTL ROIs during the height of

learning when the seed was located in the ventral striatum. At

a reduced statistical threshold, the associative striatum and

hippocampal ROIs showed a decrease in coupling with each

other at a similar time point.

Toni et al. (2002) used structural equation modeling to

determine the correlation between striatocortical and cortico-

cortical regions in a similar task. Given that their model did not

incorporate a link between the striatum and any region in the

MTL, they were unable to interpret how the 2 regions

interacted. The positive correlation between the NAcc and

the MTL regions identified in our study is supported by the fact

that there is a strong anatomical link between the MTL and the

ventral striatum (Groenewegen et al. 1987). Additionally, lesion

and reversible knockout studies in rats have suggested

a functional link between these 2 regions (Schacter et al.

1989; Sutherland and Rodriguez 1989; Ploeger et al. 1994;

Seamans and Phillips 1994).

The finding that the correlation between these 2 regions

increases during the height of learning is consistent with

a hippocampal gating hypothesis posited by Goto and Grace

(2008). According to their hypothesis, the bistable membrane

potential of the medium spiny neurons in the NAcc are driven

to an ‘‘UP’’ state by hippocampal afferent activity gating

concomitant prefrontal cortical activity through the NAcc on

to the ventral pallidum (O#Donnell and Grace 1995; Grace

2000; Lisman and Grace 2005; Goto and Grace 2008). This has

been shown to be especially prominent during phasic

dopamine bursts facilitating input from the hippocampus

through D1 receptor activation (Goto and Grace 2005). We

hypothesize that a similar phasic increase in dopaminergic

activity coincides with the peak in BOLD activity that we see in

the NAcc during Str3—supported by the significant modulation

due to the slope estimate. Moreover, it would be adaptive to

gate relevant information during the height of learning

(between Str2 and Str4) and to decrease this process as

associations become well learned.

There is one notable discrepancy between our findings and

the gating hypothesis proposed by Goto and Grace (2008):

while they posit a functional relationship between the

subicular projection from the hippocampus and the ventral

striatum, the ROIs that we identified were not limited to the

hippocampus but distributed throughout the MTL. However,

given the robust projections from the adjacent cortices to the
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striatum including the NAcc (Witter and Groenewegen 1986),

we do not believe that our findings are inconsistent with their

model. The functional decoupling observed between the

caudate and the MTL ROIs should be interpreted cautiously

due to the relaxed spatial extent threshold required to identify

voxels; however, the results are consistent with the functional

dissociation identified between these regions during proba-

bilistic categorization tasks (Poldrack et al. 2001) extending

previous results to a conditional associative learning task.

One potential caveat to keep in mind when interpreting the

functional connectivity analyses is the possibility that a third

unmodeled region, in this case the midbrain dopaminergic

neurons—specifically the ventral tegmental area (VTA), is

driving the observed correlation between the ventral striatum

and the MTL. Projections from the VTA target both the ventral

striatum and the hippocampus and entorhinal cortex among

other regions outside of our investigation (Simon et al. 1979;

Swanson 1982; Oades and Halliday 1987). Recent fMRI studies

suggest that interactions between midbrain dopamine neurons

and the hippocampus facilitate scene encoding (Adock et al.

2006), encoding of novel events (Wittman et al. 2007), and the

encoding and integration of associations (Shohamy and Wagner

2008).

While the current study cannot completely discount the

possibility that midbrain dopaminergic neurons are driving the

observed correlations, we believe that there are 2 observations

that make this unlikely and support our original conclusion.

First, PPI functional connectivity analyses (Friston et al. 1997)

investigate the interaction between a seed time series and

a psychological construct. This analysis is very underpowered

given the fact that the seed time series for each ROIs is used as

a regressor of no interest in the model. If the VTAs (the

common input to the ventral striatum and hippocampus) were

modulating the time series of the Nacc, the variance associated

with this modulation would be accounted for by the regressor

of no interest mitigating the influence of the VTA on this

particular analysis. Second, the most reliable region to survive

thresholding in this analysis was the posterior parahippocampal

cortex. This region of the MTL lacks any substantial dopami-

nergic innervation from the VTA (Swanson 1982); therefore, it

is unlikely that the VTA could serve as a common input to drive

the correlation between the posterior parahippocampal cortex

and NAcc; however, the same conclusion cannot be drawn for

the entorhinal and hippocampal ROIs. Further, while a func-

tional coupling was observed between the associative striatum

(i.e., anterior caudate) and the MTL, these regions receive

distinct dopaminergic innervation from the substantia nigra

pars compacta and VTA, respectively (Beckstead et al. 1979).

Conclusions

These data show that the MTL and the striatum are

participating in the learning of arbitrary associations by

tracking the amount of information learned and reward

prediction error mechanisms. Intriguingly, the results reported

here suggest a more complicated picture than the traditional

MTL/striatal dichotomy. While the distinct computational

mechanisms largely adhere to the expected notions of MTL

and striatal function, distinct subregions within these 2

structures appear to deviate from the traditional functional

roles. For example, the posterior putamen and NAcc appear to

track how well an association is learned, albeit through

computationally distinct principles, while the bilateral perirhi-

nal cortex reliably correlates with slope. This divergence from

the traditional dichotomy is consistent with recent work in

animals; however, further human fMRI studies will be necessary

to delineate the functional role of the posterior putamen signal

from the signals observed in the MTL and the perirhinal cortex

from the signals observed in the associative striatum (for an

elegant study positing a role for the posterior putamen in

human habit learning, see Tricomi et al. 2009). Importantly,

MTL and striatal ROIs demonstrate a functional coupling and

decoupling during the height of learning—consistent with

theories positing a functional relationship between the MTL

and the NAcc and a functional dissociation between the MTL

and the caudate.

Supplementary Material

Supplementary material can be found at http://www.cercor

.oxfordjournals.org/.
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