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Introduction

Pramipexole (PPX) is a selective D2-like (D3/2) receptor
agon ist approved for the treatment of Parkinson disease and
restless legs syndrome.1–3 Aside from its use for these neuro-
logic conditions, PPX has also been shown to be efficacious in
the treatment of major depressive disorder (MDD), both as a
monotherapy4,5 and as an augmenting agent in patients with
treatment-resistant depression.6–8 The efficacy of PPX against
depressive symptoms was first noted in patients with Parkin-
son disease.1,9 This illness, characterized by a critical loss of
the dopamine (DA) neurons, has a high incidence of comor-
bidity with MDD: up to 50%.10 These observations fall in line
with research suggesting an important role of the DA system
in both the pathophysiology and treatment of depression.11

Furthermore, not only PPX, but also other D2 receptor ago-
nists with unrelated chemical structures, such as pergolide,

piribedil and bromocriptine, have also been shown to possess
antidepressant-like properties in animal studies and a thera-
peutic action in depressed patients.12–15 Imaging studies pro-
vided evidence that in depressed patients who achieve remis-
sion using PPX, the metabolic activity in brain areas affected
by MDD was normalized.16 Moreover, prolonged PPX treat-
ment not only brought brain metabolism to the control level,
it was also found to restore cortical plasticity in patients with
restless legs syndrome.17

Interestingly, chronic but not short-term stimulation of D2
receptors was found to promote neuronal proliferation in the
rat hippocampus.18,19 This finding is of crucial importance, as
enhanced neurogenesis appears to be one of the common
changes occurring with drugs endowed with antidepressant
properties. Despite their proven efficacy, the mechanisms re-
sponsible for the therapeutic actions of DA D2 agonists have
not been fully elucidated.

Correspondence to: O. Chernoloz, University of Ottawa Institute of Mental Health Research, 1145 Carling Ave., Ottawa ON  K1Z 7K4;
Olga.Chernoloz@rohcg.on.ca

J Psychiatry Neurosci 2012;37(2):113-21.

Submitted Apr. 21, 2011; Revised Aug. 19, 2011; Accepted Aug. 22, 2011.

DOI: 10.1503/jpn.110038

© 2012 Canadian Medical Association

Background: Long-term administration of the dopamine (DA) D2-like (D3/2) receptor agonist pramipexole (PPX) has been previously
found to desensitize D2 autoreceptors, thereby allowing a normalization of the firing of DA neurons and serotonin (5-HT)1A autoreceptors,
permitting an enhancement of the spontaneous firing of 5-HT neurons. We hypothesized that PPX would increase overall DA and 5-HT
neurotransmission in the forebrain as a result of these changes at the presynaptic level. Methods: Osmotic minipumps were implanted
subcutaneously in male Sprague-Dawley rats, delivering PPX at a dose of 1 mg/kg/d for 14 days. The in vivo electrophysiologic micro -
iontophoretic experiments were carried out in anesthetized rats. Results: The sensitivity of postsynaptic D2 receptors in the prefrontal
cortex (PFC) remained unaltered following PPX administration, as indicated by the unchanged responsiveness to the microiontophoretic
application of DA. Their tonic activation was, however, significantly increased by 104% compared with the control level. The sensitivity of
postsynaptic 5-HT1A receptors was not altered, as indicated by the unchanged responsiveness to the microiontophoretic application of 
5-HT. Similar to other antidepressant treatments, long-term PPX administration enhanced the tonic activation of 5-HT1A receptors on CA3
pyramidal neurons by 142% compared with the control level. Limitations: The assessment of DA and 5-HT neuronal tone was restricted
to the PFC and the hippocampus, respectively. Conclusion: Chronic PPX administration led to a net enhancement in DA and 5-HT
neuro transmission, as indicated by the increased tonic activation of postsynaptic D2 and 5-HT1A receptors in forebrain structures.



The hippocampus and prefrontal cortex (PFC), structures
manifesting volume decreases in depressed individuals, are
also affected in rodents with chronic stress.20–24 It is not sur-
prising that one of the common pathways for antidepressant
response is an increase in the gene expression of
 neurotrophic/ neuroprotective factors in the PFC and hip-
pocampus.25,26 Previous work documented that prolonged ad-
ministration of PPX in rats induced a desensitization of so-
matodendritic D2 autoreceptors in the ventral tegmental area
(VTA), allowing the firing of DA neurons to normalize, and
of 5-HT1A receptors in the dorsal raphe (DR) that enabled the
spontaneous firing rate of 5-HT neurons to increase above
control levels.27 Considering the effectiveness of PPX in the
treatment of MDD, the importance of both DA and 5-HT sys-
tems in the pathophysiology of depression, and the DA in-
nervation of the PFC and the 5-HT innervation of the hip-
pocampus, the assessment of the net effect of chronic PPX
administration on DA and 5-HT neuronal tone in the PFC
and hippocampus, respectively, was deemed relevant to
under stand its antidepressant action.

Methods

Animals

Male Sprague-Dawley rats weighing 270–320 g at the time of
recording were used for the experiments. They were kept
 under standard laboratory conditions (12:12 hour light/dark
cycle with free access to food and water). All animal handling
and procedures were carried out according to the guidelines
of the Canadian Council on Animal Care, and protocols of
this study were approved by the local Animal Care Commit-
tee (University of Ottawa Institute of Mental Health Re-
search, Ottawa, Ont.).

Treatments

Rats were anesthetized with isoflurane for the subcutaneous
implantation of osmotic minipumps (Alza), delivering PPX at
a daily dose of 1 mg/kg for 14 days. Control rats were im-
planted with minipumps delivering physiologic saline. The
electrophysiologic experiments were carried out with the
minipumps in place.

In vivo electrophysiologic recordings

Rats were anesthetized with chloral hydrate (400 mg/kg,
intra perioneal) and placed in a stereotaxic frame (David Kopf
Instruments). To maintain a full anesthetic state, chloral
 hydrate supplements of 100 mg/kg were given intraperi-
toneally as needed to prevent any nociceptive reaction to
paw pinching. Throughout the experiments, body tempera-
ture was maintained at 37°C using a thermistor- controlled
heating pad. Extracellular recordings of pyramidal neurons
in the hippocampal CA3 region and in the PFC were ob-
tained using 5-barreled glass micropipettes. Their tips were
of 3–5 µm in diameter, and impedance ranged between 4 and
7 M. Using this approach, during all recordings, signal-to-

noise ratio was between 2 and 10; therefore, spike amplitude
discrimination was reliable. Prior to electrophysiologic ex -
periments, a catheter was inserted in the lateral tail vein for
systemic intravenous injection of appropriate pharmacologic
agents as necessary.

Extracellular recordings and microiontophoresis of pyramidal
neurons in the PFC

The central barrel of the recording electrode was filled with
2 M of NaCl solution, and the 4 side barrels were filled with
the following solutions: DA hydrochloride (5 mM in 200 mM
of NaCl, pH 4) and 2 M of NaCl solution for automatic cur-
rent balancing. The micropipettes were descended into the
PFC using the following coordinates: 2.5 mm anterior and
1 mm lateral to the bregma.28 Pyramidal neurons were found
at a depth of 2–4 mm below the surface of the brain and were
characterized by firing at a range of 0.5– 20 spikes/s, biphasic
waveform with initial negative faze deflection and long-
duration (0.8–1.2 ms) simple action potentials, alternating
with complex spike discharges.29 The duration of microion-
tophoretic application of DA was 50 seconds. The 50-second
duration of microiontophoretic application of the pharmaco-
logic agents and the ejection currents (nA) were kept constant
before and after each intravenous injection throughout the
experiments. We assessed neuronal responsiveness to the
micro iontophoretic application of DA before and after intra-
venous injections by determining the number of spikes sup-
pressed per nA, which was calculated by dividing the differ-
ence between the average number of spikes 50 seconds
before and the average number of spikes during 50 seconds
of ejection by the current of ejected DA in nA.

Extracellular recordings and microiontophoresis of pyramidal
neurons in the CA3 dorsal hippocampus

Extracellular recording and microiontophoresis of CA3 pyra-
midal neurons were carried out with 5-barreled glass micro -
pipettes. The central barrel used for the unitary recording
was filled with 2 M of NaCl solution, and the 4 side barrels
were filled with the following solutions: 5-HT creatinine sul-
fate (10 mM in 200 mM of NaCl, pH 4), quisqualic acid
(1.5 mM in 200 mM of NaCl, pH 8) and 2 M of NaCl solution
for automatic current balancing. The micropipettes were de-
scended into the dorsal CA3 region of the hippocampus
 using the following coordinates: 4 mm anterior and 4.2 mm
lateral to the lambda.28 Pyramidal neurons were found at a
mean depth of 4.0 ± 0.5 mm below the surface of the brain.
Since the pyramidal neurons do not discharge spontaneously
in rats anesthetized with chloral hydrate, a small current of
quisqualate (+1 to –6 nA) was used to activate them to fire at
their physiologic rate (10–15 Hz).30 Pyramidal neurons were
identified by their large amplitude (0.5–1.2 mV) and long-
 duration (0.8–1.2 ms) simple action potentials, alternating
with complex spike discharges.31 The duration of micro -
iontophoretic application of 5-HT was 50 seconds. The 50-
second duration of microiontophoretic application of the
pharmacologic agents and the ejection currents (nA) were
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kept constant before and after each intravenous injection
throughout the experiments. We assessed neuronal respon-
siveness to the microiontophoretic application of 5-HT before
and after intravenous injections by determining the number
of spikes suppressed per nA, which was calculated by divid-
ing the difference between the average number of spikes
50 seconds before and the average number of spikes during
50 seconds of ejection by the current of ejected 5-HT in nA.

Assessment of the tonic activation of postsynaptic D2 
receptors

The degree of tonic activation of postsynaptic D2 receptors
was assessed after 14 days of PPX administration. After a
 stable firing baseline was obtained, the D2-like receptor antag-
onist haloperidol was administered systemically at a dose of
200 µg/kg. The change in the discharge rate of pyramidal
neurons was expressed as a percentage of baseline firing. This
value was compared with that of the control group. Control
rats were subjected to the same testing paradigm. To avoid
drug residual effects, we tested only 1 neuron in each rat.

Assessment of the tonic activation of postsynaptic 5-HT1A

receptors

The degree of tonic activation of postsynaptic 5-HT1A recep-
tors was assessed after 14 days of PPX administration. The
assessment of the tonic activation of postsynaptic 5-HT1A re-
ceptors is more accurate when the firing rate of the recorded
neuron is low. Therefore, the firing rate of pyramidal neurons
was reduced by lowering the ejection current of quisqualate.
After a stable firing baseline was obtained, the selective 
5-HT1A receptor antagonist WAY 100 635 was administered
systemically in 4 incremental doses of 25 µg/kg each at 
2-minute intervals. Neuronal response at each dose point was
obtained for construction of the dose–response curve. Such
curves represent stable changes in the firing rate of pyram -
idal neurons as percentages of baseline firing following each
systemic drug administration. To avoid re sidual drug effects,
we tested only 1 neuron in each rat.

Stimulation of the ascending DA pathway

The VTA was electrically stimulated using a bipolar electrode
(NE-100; David Kopf Instruments). The electrode was im-
planted at 5.2 ± 0.6 mm posterior and 1.0 ± 0.5 mm lateral to
the bregma, 7.4 ± 1.0 mm from the surface of the brain. The
VTA was stimulated in a burst mode (train rate = 0.5 Hz,
train duration = 30 ms, 6 pulses per train) via stimulator (S48;
Grass Instruments) at an intensity of 500 µA. These stimula-
tion parameters led to durations of suppression of firing of
PFC neurons similar to those obtained in previous studies.32,33

The inhibition of the spontaneous activity of the PFC pyram -
idal neurons takes place owing to activation of postsynaptic
inhibitory D2 receptors by DA, endogenously released as a
result of the stimulation of DA afferents.34 We did not use dif-
ferent frequencies of stimulation because DA terminals in
this brain region are devoid of D2 autoreceptors.35 The firing

activity in relation to stimulation trains were analyzed by
computer using Spike 2 (Cambridge Electronic Design Lim-
ited). Peristimulus time histograms of PFC pyramidal neur -
ons were generated to determine the suppression of firing
measured in absolute silence value (SIL) in milliseconds.

Stimulation of the ascending 5-HT pathway

The ascending 5-HT pathway was electrically stimulated using
a bipolar electrode. The electrode was implanted 1 mm an -
terior to the lambda on the midline with a 10° backward angle
in the ventromedial tegmentum and 8.0 ± 0.2 mm below the
surface of the brain. Two hundred square pulses of 0.5 milli -
seconds were delivered by a stimulator at an intensity of
300 µA and frequencies of 1 Hz and 5 Hz. The inhibition of the
spontan eous activity of the hippocampus pyramidal neuron
takes place, at least in part, owing to activation of the postsy-
naptic inhibitory 5-HT1A receptors by 5-HT, endogenously re-
leased as a result of stimulation of the 5-HT afferents.36 The dif-
ferent frequencies were used to determine the function of
terminal 5-HT1B autoreceptors.37 This approach is based on the
evidence that when the frequency is increased to 5 Hz, more 
5-HT is released in the extracellular cleft, which consequently
exerts a greater negative feedback on the 5-HT release via the
terminal 5-HT1B autoreceptors.37 Therefore, the release of 5-HT
is inhibited quickly during the stimulation at 5 Hz, leading to a
smal ler release of 5-HT in the synapse for each action potential
reaching the terminals. The stimulation pulses and the firing
activity were analyzed by computer using Spike 2. Peristimu-
lus time histograms of hippocampus pyramidal neurons were
generated to determine the suppression of firing measured in
SIL in miliseconds. The SIL represents the duration of a total
suppression of the hippocampal neuron by endogenously re-
leased 5-HT.

Drugs

Pramipexole was generously provided by Boehringer
 Ingelheim Pharmaceuticals (Ingelheim); haloperidol, 5-HT
creatinine sulfate, DA hydrochloride, quisqualic acid and
WAY 100 635 were purchased from Sigma. All drugs except
haloperidol were dissolved in distilled water. Haloperidol
was dissolved in distilled water acidified with lactic acid, fol-
lowed by pH control and normalization as needed.

Statistical analyses

All results are expressed as means and standard errors of the
mean (SEM). The n values represent the number of neurons
tested. In the experiments where pharmacologic agents were
systemically administered, only the last neuron in each rat was
used to avoid residual drug effects. Data were obtained from
5–7 rats per experimental group. Statistical comparisons were
carried out using the 2-tailed Student t test when a par ameter
was studied in control and treated rats. We used the paired
Student t test to assess the statistical significance of the varia-
tion of the measured parameter from the same neurons under
2 conditions, such as the SIL at 1 Hz and 5 Hz (for 5-HT). We



performed analysis of covariance to assess statistical signifi-
cance of the difference in the degree of reduction in the re-
sponse of hippocampus neurons when the frequency of stimu-
lation was increased from 1 to 5 Hz in control and PPX-treated
rats. Statistical significance was set at p < 0.05.

Results

Effect of 14-day PPX administration on the responsiveness
of PFC pyramidal neurons to exogenous DA

In line with previous data, DA applied microiontophoret -
ically to the cell body of the neuron resulted in suppression
of 31 of 36 recorded PFC pyramidal neurons. Such variability
is normal for the given type of neurons in the PFC and has
been documented in previous studies.38–40 Dopamine-induced
inhibition of spontaneous firing in PFC pyramidal neurons is
believed to be mediated by the D2 receptors.29,41 Therefore, to
determine the responsiveness of postsynaptic D2 receptors,
only the neurons responding with inhibition were analyzed.
Chronic PPX treatment left the responsiveness of these recep-
tors at the control level, as indicated by the unchanged num-
ber of spikes suppressed per nA (control: mean 14 [SEM 5],
n = 31, baseline firing rate mean 0.7 [SEM 0.4] Hz v. PPX
14 days: mean 18 [SEM 8], n = 38, baseline firing rate mean
0.9 [SEM 0.5] Hz, p = 0.09 for SIL and p = 0.56 for firing; Fig. 1
A and B).

Effect of 14-day PPX administration on the degree of tonic
activation of D2 receptors in the PFC

In the control group the blockade of inhibitory D2 receptors
located on the cell body of PFC pyramidal neurons, achieved
with the systemic administration of the selective D2 antag -
onist haloperidol, led to the decrease of their firing rate
(Fig. 1A). However, after sustained PPX administration, this
blockade led to a significant 104% disinhibition in the firing
rate of pyramidal neurons compared with the control value
(control n = 6, PPX 14d n = 7; t12 = 4.01, p = 0.002; Fig. 1 B and
C). The increase in firing following haloperidol administra-
tion indicates that the overall DA tone is increased by pro-
longed PPX administration.

Effect of 14-day PPX administration on the DA release
 potential in the PFC

To assess the ability of PPX to modify the endogenous release
of DA, the VTA bundle sending afferents to the PFC via the
mesocortical pathway was electrically stimulated after DA
neurons recovered their normal firing rate following sus-
tained administration of PPX.27 Dopamine released as a result
of stimulation produced a suppressant effect on PFC neur onal
firing, which was quantified as SIL. In rats treated with PPX
for 14 days, SIL remained at the level of the control group
 under both stimulation conditions (control: SIL = mean 130
[SEM 9], n = 20 v. PPX 14d: SIL = mean 115 [SEM 6], n = 34;
p = 0.25; Fig. 2), indicating that the release of DA per impulse
was not altered by prolonged administration of PPX.

Effect of 14-day PPX administration on the responsiveness of
dorsal hippocampus pyramidal neurons to exogenous 5-HT

The firing rate of hippocampus pyramidal neurons in control
rats was decreased by 5-HT applied microiontophoretically
in a current-dependent fashion. The sensitivity of the post -
synaptic 5-HT1A receptors located on the cell body of CA3
pyramidal neurons was found to be unaltered by PPX, as in-
dicated by the lack of change in the number of spikes sup-
pressed per nA in comparison to the control group (control:
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Fig. 1: Assessment of tonic activation of D2 receptors in the pre-
frontal cortex (PFC). Integrated firing rate histograms of PFC pyr -
amidal neurons illustrating systemic administration of the D2 recep-
tor antagonist haloperidol (HAL; 0.2 mg/kg) in (A) rats subjected to
saline (controls) and (B) rats receiving a 14-day regimen of
pramipexole (PPX; 1 mg/kg/d). Each bar corresponds to 50-second
application of dopamine (DA), and the number above each bar cor -
responds to the ejection current in nA. The arrow indicates a point
of injection of 200 µg/kg of haloperidol. (C) The overall effect of sys-
temic administration of haloperidol on baseline firing of PFC pyr -
amidal neurons in controls and rats receiving PPX (expressed as %
of change in basal firing). **p = 0.002.
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mean 18 [SEM 1], n = 19 v. PPX 14 d: mean 18 [SEM 1], n = 24,
p = 0.44; Fig. 3 A and B).

Effect of 14-day PPX administration on the degree of tonic
activation of hippocampal 5-HT1A receptors

In the control group, blockade of inhibitory 5-HT1A receptors
located on CA3 pyramidal neurons, achieved with the sys-
temic administration of the selective 5-HT1A receptor antag -
onist WAY 100 635, did not modify their firing rate (Fig. 3A).
Following 14 days of PPX administration this blockade led to
the significant 142% disinhibition in the firing rate of pyram -
idal neurons in the dorsal hippocampus compared with the
control value (control n = 6, PPX 14 d n = 7; t11 = 3.57, p = 0.044;
Fig. 3 B and C). This increase, also observed with all effective
antidepressant treatments,42 indicates that the overall 5-HT
tone is enhanced by long-term PPX administration.

Effect of 14-day PPX administration on the responsiveness of
dorsal hippocampal pyramidal neurons to endogenous 5-HT

To assess the ability of PPX to modify the endogenous release
of 5-HT, the 5-HT bundle containing most of the brain 5-HT af-
ferents was electrically stimulated at a physiologic (1 Hz) and a
maximal (5 Hz) rate.37 Serotonin released as a result of stimula-
tion produced a suppressant effect on hippocampal neuronal
firing, which was quantified as SIL. In rats exposed to PPX for
14 days, SIL remained at the level of the control group (Fig. 4),
indicating that the sensitivity of terminal 5-HT1B receptors con-
trolling the release of 5-HT remained unchanged.
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Fig. 2: Assessment of dopamine (DA) release in the prefrontal cortex
(PFC). Peristimulus time histograms illustrating effects of stimulation
of the ascending DA pathway on the firing activity of PFC pyramidal
neurons in (A) controls and (B) rats administered pramipexole (PPX)
for 14 days. The 2 10-ms bins at time 0 represent the stimulation 
artifacts. SIL = absolute silence value.
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Fig. 3: Assessment of tonic activation of 5-HT1A receptors in the dor-
sal hippocampus. Integrated firing rate histograms of dorsal hip-
pocampus CA3 pyramidal neurons illustrating systemic administra-
tion of the 5-HT1A receptor antagonist WAY 100 635 in 4 incremental
doses of (A) controls treated with 25 µg/kg of saline and (B) rats
treated with 14 days of pramipexole (PPX; 1 mg/kg/d). Each bar cor-
responds to a 50-second application of 5-HT, and the number above
each bar corresponds to the ejection current in nA. Each arrow indi-
cates a single injection of 25 µg/kg of WAY 100 635. (C) The overall
effect of cumulative systemic administration of WAY 100 635 on
baseline firing of CA3 pyramidal neurons in control and PPX-treated
rats (expressed as % of change in basal firing). **p = 0.004.



Discussion

The present electrophysiologic study showed that long-term
administration of the D2-like agonist PPX increased overall
DA neurotransmission, as indicated by the disinhibition of

spontaneous neuronal firing of PFC pyramidal neurons by
systemic administration of the D2-like antagonist haloperi-
dol. This enhancement of DA tone was not attributable to al-
terations of the release of DA or to an enhanced responsive-
ness of postsynaptic D2 receptors. We therefore conclude that
it resulted from a summation of the normalized DA firing,
presumably restoring DA release, and the presence of PPX in
the synapse. The present study also showed that prolonged
PPX administration increased the overall 5-HT tone without
changing the release of 5-HT per action potential reaching
hippocampus terminals or the sensitivity of terminal 5-HT1B

autoreceptors. It can thus be concluded that the increase in 
5-HT neuronal transmission resulted from the enhanced fir-
ing of 5-HT neurons.27

The PFC is believed to be under tonic inhibitory influence
from endogenous DA.29 Microiontophoretic DA administra-
tion has an inhibitory effect on the spontaneous firing rate of
PFC pyramidal neurons.38 The same effect can be produced
by endogenous DA, as evidenced by the suppression of PFC
discharge in response to the VTA stimulation.39,40 Although
both D1-like and D2-like receptors are present in the PFC,43,44

the suppressant effect of DA was shown to be mediated by
the latter, as selective blockade of D2-like but not D1-like re-
ceptors reversed this action.29,41

It was previously documented that the PPX-induced activa-
tion of somatodendritic D2 autoreceptors in the VTA led to
the decrease in the firing rate of DA neurons, driven by the
negative feedback mechanism exerted by the cell body D2
auto receptors.27 With ongoing administration of PPX over
14 days, these receptors desensitize, allowing the firing to re-
turn to baseline. Conversely, the degree of inhibition of PFC
pyramidal neurons by both exogenous (iontophoretically ap-
plied) and endogenous (stimulation-induced) DA was equal
in control and PPX-treated rats. This lack of change indicated
an unaltered responsiveness of PFC postsynaptic D2 receptors
after 14 days of sustained exposure to PPX. Nevertheless, in
rats receiving PPX on a long-term basis, but not in the control
group, blockade of the inhibitory D2 receptors by intravenous
administration of the selective antagonist haloperidol led to
significant disinhibition of the spontaneous firing of pyram -
idal neurons (Fig. 1). As the sensitivity of the receptors medi-
ating this response was found to be unchanged, the observed
PPX-induced increase in the tonic activation of D2 receptors
in the PFC was most likely attributable to the direct effect of
this D2 receptor agonist, present at the time of the experiment,
on the target receptor summating with a normalized DA re-
lease resulting from a recovered DA firing activity.27 Yet, it
needs to be mentioned that both DA modulation and its ef-
fects in the PFC are complex and multisided and that no uni-
fied view has yet been established.45 For instance, depending
on the dose, the state of the system and the predominance of
direct versus indirect activation, the same drug may produce
opposing effects on the elicited responses.45–47 Terminal D2 re-
ceptors, which play a prominent role in the control of DA re-
lease in limbic structures, are fewer in number in the PFC.35,48

Thus, under physiologic conditions, their stimulation by en-
dogenous DA and/or exogenous D2 receptor agonists plays a
negligible role in the amount of DA released.49
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Fig. 4: Assessment of serotonin (5-HT) release and sensitivity of ter -
minal 5-HT1B receptors. Peristimulus time histograms illustrating effects
of stimulation of the ascending 5-HT pathway, with (A) 1 Hz and (B)
5 Hz, on the firing activity of CA3 pyramidal neurons in controls and
rats treated with 14 days of pramipexole (PPX). (C) The suppressing
effect of the 5-HT pathway stimulations (1 Hz and 5 Hz) on the firing
activity of hippocampal neurons in rats administered either NaCl (con-
trol) or PPX. Numbers in the boxes indicate the number of assessed
neur ons. The 10 msec bin at time 0 represents the stimulation artifact.
Stimulation at a frequency of 1 Hz is indicated in white and that at 5 Hz
in black. *p = 0.023, **p = 0.006. SIL = absolute silence value.
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The maintenance of proper mesocortical DA levels plays
an important role in different aspects of attention and learn-
ing and in behavioural and physiologic mechanisms of the
stress response.50–52 These functions are often perturbed in pa-
tients with depression and may be related to the decrease in
DA levels. The decrease in function of the frontal lobe is one
of the most constant findings in the depressive state.53–55 The
normalization of the frontocortical metabolism is consistently
seen in patients who achieve remission following pharmaco-
logic antidepressant treatment.56–58 The VTA provides a dense
DA projection to the PFC. The PPX-induced increase in DA
function, known to be dampened in patients with depression,
potentially leads to the normalization of the modulatory DA
tone in the PFC and a consequent restoration of the functions
controlled by this brain region.

As the 5-HT tone in the hippocampus was significantly in-
creased after prolonged PPX administration, it was important
to determine the mechanism of such an enhancement. The 
5-HT ascending bundle was electrically stimulated, first, to as-
sess the amount of 5-HT released per electrical pulse reaching
the ter minals and, second, to assess the sensitivity of terminal
5-HT1B autoreceptors that control 5-HT release. The stimulation
at a physiologic rate of 1 Hz led to the same degree of suppres-
sion of the firing activity of CA3 pyramidal neurons in rats
that received PPX for 14 days compared with controls. When
the frequency of stimulation was increased from 1 Hz to 5 Hz,
the suppression of the firing was reduced to a similar extent in
treated and control rats, indicating an unaltered responsive-
ness of terminal 5-HT1B autoreceptors. This result stands in
contrast with the decreased responsiveness of the terminal 
5-HT1B autoreceptors occurring with long-term administration
of selective serotonin reuptake inhibitors, such as citalopram,
paroxetine, fluvoxamine and fluoxetine.59 The sensitivity of
postsynaptic 5-HT1A receptors was also unaltered, as shown by
the unchanged inhibitory potency of 5-HT applied on the CA3
pyr amidal neurons by iontophoresis. Since 5-HT activating the
postsynaptic 5-HT1A receptor equally suppressed the firing in
rats exposed to PPX and controls, it can be concluded that in
rats receiving PPX the disinhibition in response to 5-HT1A re-
ceptor blockade (Fig. 3) was due to an overall increase of the 5-
HT tone, not the modified sensitivity of the receptor mediating
this response.

This elevation of the 5-HT neuronal tone likely stemmed
from the PPX-induced amplification in the firing rate of DR 
5-HT neurons that occurred after the same 14-day, but not the
2-day, PPX regimen.27 Enhancement of the tonic activation of
postsynaptic 5-HT1A receptors resulting from the increase in
the firing rate of 5-HT neurons is not unique to PPX. The
 catecholamine-releasing agent bupropion and prolonged va-
gus nerve stimulation have been shown to produce an analo-
gous change.60,61 Similarly to PPX, the increase in the spontan -
eous discharge of DR 5-HT neurons produced by subchronic
administration of the atypical antipsychotic aripiprazole has
been found to be due to activation of the D2-like receptors and
desensitization of 5-HT1A autoreceptors.62 Such a phenomenon
is in line with previous in vivo and in vitro studies document-
ing the enhancement of the 5-HT tone in response to the stimu-
lation of DR D2-like receptors by pro dopaminergic agents.63–65

Limitations

The present study has some limitations. First, unlike for the
5-HT sensitivity in the hippocampus, the sensitivity of post-
synaptic DA in the frontal cortex was not assessed using a
range of ejection currents of DA; therefore, it is possible that
we may have missed a subtle difference in sensitivity. Never-
theless, the 10 nA current did not produce a maximal inhibi-
tion of firing, which would not place that value at the ex-
tremes of a current-effect curve. Second, the neuronal tone
was assessed within the mesocortical system, but not within
the mesolimbic system. Nevertheless, similar changes com-
bining activation of postsynaptic D2 receptors with both en-
dogenous DA and the exogenous agonist PPX are likely tak-
ing place within the mesolimbic system as well because VTA
gives rise to the DA innervation in both circuits. Stress re-
sponse and cognitive functions, regulated by the mesocortical
DA, as well as hedonia, regulated by the mesolimbic DA, are
impaired in patients with depression.66–68 Major depression is
characterized by abnormalities in activity and/or functional
connectivity within both these systems,69,70 thus changes in
their function produced by prolonged PPX administration
likely contribute to the clinical benefits of this drug in pa-
tients with MDD. Indeed, a recent clinical study documented
that depressed patients responding to long-term treatment
with PPX showed normalization of the regional blood flow in
the orbitofrontal cortex, anteromedial and ventrolateral PFC,
posterior cingulate, hippocampus and accumbens.16 Import -
antly, activity of these brain regions is known to be altered in
the depressed state.23,24 It is noteworthy that the metabolic
changes produced by sustained PPX closely follow those of
antidepressants and deep-brain stimulation.71–73

Conclusion

Despite the lack of affinity toward any component of the 
5-HT system, PPX produces a significant increase in 5-HT
neuro transmission in an indirect manner. These observations
with PPX therefore add to the large body of data showing the
commonality of this change by all effective antidepressants
tested thus far.42

The current study thus put into evidence that chronic treat-
ment with the D2 agonist PPX increased DA neurotransmis-
sion in the PFC and 5-HT neurotransmission in the hip-
pocampus in rats. Given the documented normalization of
the brain function within the same regions in depressed pa-
tients treated with PPX,16 it is likely that the observed changes
in the function of the above-mentioned modulatory mono -
aminergic systems may underlie to some degree the clinical
effectiveness of PPX in the treatment of depression.
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