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Abstract
Prediction methods as well as experimental methods for T-cell epitope discovery have developed
significantly in recent years. High-throughput experimental methods have made it possible to
perform full-length protein scans for epitopes restricted to a limited number of MHC alleles. The
high costs and limitations regarding the number of proteins and MHC alleles that are feasibly
handled by such experimental methods have made in silico prediction models of high interest.
MHC binding prediction methods are today of a very high quality and can predict MHC binding
peptides with high accuracy. This is possible for a large range of MHC alleles and relevant length
of binding peptides. The predictions can easily be performed for complete proteomes of any size.
Prediction methods are still, however, dependent on good experimental methods for validation,
and should merely be used as a guide for rational epitope discovery. We expect prediction
methods as well as experimental validation methods to continue to develop and that we will soon
see clinical trials of products whose development has been guided by prediction methods.
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Background
Why epitope discovery?

The immune system, which is the ‘natural’ defense system of most multicellular organisms,
can be manipulated in the fight against infections, cancer and autoimmune diseases. The
immune system as a whole reacts against a large number of factors, many of which are not
of protein origin. The innate immune system, in particular, reacts quickly against a number
of compounds supposed to be foreign or very rare in a healthy and uninfected individual [1].
The adaptive immune system is able to very specifically react against proteins and peptides
specific for pathogenic cells and foreign organisms. The immune system has for centuries
primarily been a tool for prophylactic treatments in the form of vaccination against
pathogens and toxins. However, most vaccines, including those that are the most successful,
have been developed empirically without much utilization of specific immunological
knowledge [1]. The insight obtained within the last decades, on the other hand, has revealed
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an intriguing potential for more rational approaches. This is not only an opportunity in the
field of vaccine design, but also opens up the possibility of highly specific therapeutic
interventions [2].

Epitopes were originally defined as the part of an antigen that defines the binding to an
immunoglobulin [3]. For antibodies, this is an obvious and straightforward definition as the
immunoglobulin generally binds to the native antigen with unambiguously and well-defined
interactions without any help or interactions with other proteins. When considering the
cellular arm of the adaptive immune system, the active immunoglobulin is the T-cell
receptor (TCR) and the binding partner, the antigen, is generally a processed part of a
protein in complex with an MHC protein. Thus, in this definition, the epitope will consist of
part of a processed protein and parts of the host-expressed MHC protein. What is usually of
interest, though, is which part of a protein (peptide) is responsible for an immune response.
Thus, often this part is referred to as the epitope and the native protein from which the
epitope originates as the antigen. In the following text, an antigen will thus refer to a protein
that is able to induce an immune response in a given host context. The definition of a T-cell
epitope will be a subpeptide from the antigen, which is able to complex with a host MHC
and, in this context, can be recognized by antigen-specific TCRs.

Epitope discovery is obviously of major interest in traditional protective vaccine research.
Here, the identification of specific epitopes can lead to the identification of important
antigens and help define the most important parts of selected antigens [4]. In traditional
vaccine development, such information is important in order to ensure that selected
production strains and subtypes carry the relevant versions of the most important antigens.
Recently, the knowledge of specific antigens and epitopes has been used to guide the design
of minimal vaccines consisting of only the relevant antigens [5], which will very likely soon
lead to vaccines consisting of minimal artificial polypeptides designed to contain several
strong epitopes relevant for the specific disease [6]. In addition to protective vaccinology,
the potential of using immune-related tools to fight established diseases such as cancer and
chronic infections attracts increasing interest. Immunotherapy is the general term of two,
conceptually very different, approaches. First, most mature, and increasingly used in the
clinic, is the use of monoclonal antibodies against a specific disease target [7]. The second
approach is to manipulate a patient’s immune system to focus on specific disease-related
targets that are otherwise being ignored by the host immune system. Here, carefully selected
epitopes might be used to induce a more potent and efficient immune response.

The knowledge of which strong epitopes a protein contains has further importance when
considering the use of proteins and peptides as therapeutic drugs. Here, epitope
identification can be used for deselection or de-immunization purposes, where therapeutic
proteins, including monoclonal antibodies, that might otherwise have unwanted
immunogenic effects can be deselected early in the preclinical phase or the proteins may be
de-immunized by removal of identified epitopes [8]. Finally, epitope identification is of
general interest in basic immunology. The studies of how and when specific epitopes will or
will not lead to immunogenic responses and which signaling pathways coincide with
specific epitopes is an important part of immunology research that can help in the general
understanding of the behavior and evolution of the immune system.

From antigen to epitope: processing & presentation of T-cell epitopes
For the sake of the later descriptions of different prediction approaches, the key events in
cellular immune responses are briefly summarized here with an emphasis on the events that
have been successfully characterized by prediction methods, and other known important
events that are presently not predictable by mathematical models or computational
algorithms.
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T-cell epitopes in complex with MHC proteins are recognized by TCRs on the surface of T
cells with different functionality, T-helper (Th) cells and cytotoxic T lymphocytes (CTL).
Besides having different coreceptors, CD4 and CD8, respectively, the MHC molecules
presenting Th epitopes or CTL epitopes have some important differences that seem to be
universal for jawed vertebrates, with one recently discovered exception in cod, as this fish
seems to be lacking the genes that are specific for Th responses [9]. Furthermore, only a
limited panel of animals have been investigated in depth with respect to their immune
systems, thus this section will consider primarily the knowledge obtained by studying the
human immune system.

The CTL response is induced when a TCR on a CD8+ T cell is able to bind to an MHC class
I–peptide complex presented by a nucleated cell. Peptides bind to the MHC class I in a
defined binding groove that is closed at the end so that binding peptides are limited in
length, where most MHC class I molecules prefer binding to peptides of nine amino acids in
length (Figure 1A). The MHC class I proteins are able to exchange bound peptides with free
peptides in solution if available, but generally the peptides presented on the surface of a cell
originate from longer polypeptides and proteins produced within the cell. The pathway of
MHC class I peptide presentation is described in detail in a number of recent reviews
[10-12], and is an extension of the general protein turnover machinery present in all
eukaryotic cells. The proteasome complex digests proteins labeled with the regulatory
protein ubiquitin, producing short peptides. Thus, under normal circumstances, this process
is performed by the constitutive proteasome that has strong stochastic elements in cleavage
preferences [13,14]. However, careful mapping of cleavage sites has led to a general
description of the cleavage specificity [15]. In immune-alert cells, certain subunits in the
proteasome complex that are responsible for the actual cleavage are replaced, and the
cleavage becomes more specific, but still with stochastic elements. This variant of the
proteasome is generally referred to as the immunoproteasome, and the change in specificity
moves the length distribution of the peptide products towards longer peptides. Some of the
generated peptides will be able to bind to the transporter associated with antigen processing
(TAP) and transported into the endoplasmic reticulum (ER). Upon entrance to the ER, the
peptide will encounter semifolded MHC class I molecules anchored at the inner side of the
ER membrane. Suitable peptides will induce further folding of the MHC as the peptide fully
enters the ER, further enabled by the protein tapasin that has a chaperone-like function
[16,17]. Fully folded MHC–peptide complexes will be transported to the cell surface where
they will be available for binding by a suitable TCR.

Th responses will be induced if a TCR on a CD4+ T cell binds to an MHC class II–peptide
complex, which is generally expressed in professional APCs [18]. The MHC class II binding
groove is open at both ends allowing binding of peptides of any length (Figure 1B). Also,
the MHC class II-presented peptides have usually been subject to substantial processing
before presentation at the cell surface, and this process has been reviewed in detail
elsewhere [19-22]. Generally, the presented peptides originate from from native or partly
degraded proteins or protein complexes from the extracellular space. The proteins have
entered the APC by phagocytosis and continued into the endosomic pathway, where the
protein will be denatured and processed by proteases such as the cathepsins, although the
specificity of these are not fully understood [23,24]. Membrane-anchored MHC class II
molecules are present in the endosomes, fully folded with the invariant chain (Ii) in the
binding groove. The Ii undergoes proteolysis, and the MHC class II binding groove will
finally be occupied by only a part of the Ii, the MHC class II-associated invariant chain
peptide (CLIP). CLIP is then exchanged with free peptides resulting from proteolysis of the
phagocytosed antigens facilitated by the action of HLA-DM. Local structural properties of
the source antigen have been shown to influence antigen processing and/or the accessibility
of peptides to the MHC class II molecule, imposing a bias so that fragments that are exposed
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in the native fold of antigens are more likely to be presented compared with peptides from
the antigen protein core [25]. Loaded MHC class II is next transported to the cell surface,
available for potential recognition by CD4+ T cells carrying an appropriate TCR.

The above-described pathways are simplified and a number of exceptions have been
described, such as alternative routes for MHC class I-presented peptides to be processed and
enter the ER [26-28]. Furthermore, in recent years it has become more evident that the
pathways for MHC class I and MHC class II peptide presentation are not always separated
and that peptides from autophagocytosed extracellular proteins can end up being presented
by MHC class I proteins. This phenomenon is generally described as cross-presentation
[29,30].

MHC genes & proteins
MHC class I and II proteins share extensive overall structural similarities (Figure 1) but are
constructed differently. MHC class I proteins consist of a membrane-anchored α chain and a
smaller β-2-microglobulin chain. The α chain has three structural domains and is linked
noncovalently to the β-2-microglobulin chain via interactions of the three domains. The
binding groove is made up by the α 1 and α 2 domains and is closed at the ends, which
restricts the length of the peptides that will be able to bind to the MHC. Generally, peptides
8–13 amino acids in length are considered able to bind to the MHC, with a preference of
nonamer peptides. However, even longer epitopes have been reported [31]. The structure of
the MHC molecule has revealed a number of binding pockets important for peptide binding
specificity, and for MHC class I two major pockets exist, placed in each end of the binding
groove in such a way that generally peptide amino acid number 2 and the C-terminal amino
acid will bind in these pockets [32,33]. In humans the α chains for the classical MHC class I
proteins are encoded by genes at the HLA-A, -B and -C loci. These genes are highly
polymorphic, and thousands of HLA-A, -B and -C alleles have at present been reported [34].
Most of the polymorphic sites are placed in the binding groove and will influence which
peptides will be able to bind the particular MHC (Figure 1A).

MHC class II proteins consist of two membrane-anchored polypeptide chains, an α and a β
chain. The binding groove is made up of domains from both the α and the β chain, the α-1
and the β-1 domains (Figure 1B). The binding groove is open ended, which enables binding
of longer peptides, and generally peptides 12–20 amino acids in length are observed [35].
However, the length of the binding groove resembles that of MHC class I and only nine
consecutive amino acid residues from the binding peptide are in contact with residues in the
binding groove. The MHC class II binding groove has special pockets that will fit defined
amino acids of the binding peptide, and have a major influence on the binding energy [36].
In humans MHC class II chains are encoded by genes in the HLA-DR, -DQ and -DP loci.
HLA-DRα chains are expressed from a single locus (HLA-DRA) and no functional
variations have been reported. HLA-DRβ chains (HLA-DRB) can be expressed from several
loci (HLA-DRB-1, -3, -4 and -5) where most individuals will express the gene present at the
HLA-DRB1 locus. Almost 1000 HLA-DRB1 alleles have presently been identified,
expressing more than 700 variant proteins, whereas just 46, eight and 16 protein variants
have been identified for HLA-DRB-3, -4 and -5, respectively [34]. For HLA-DQ and -DP
only one α (HLA-DQA1 and HLA-DPA1, respectively) and one β (HLA-DQB1 and HLA-
DPB1, respectively) locus is active at each chromosome. However, for HLA-DP and -DQ,
both the α and β chains are polymorphic with one to two dozen α variants and a little more
than 100 β variants each. Furthermore, α and β chains can combine with the corresponding
partner expressed from either the cis or the trans chromosome, resulting in up to four
different class II proteins per locus. As for MHC class I the polymorphic sites are
predominantly present in the binding groove and will thus be responsible for diversities in
peptide binding specificities. Thus, in principle each allelic version of an MHC molecule
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will bind a specific set of peptides. As epitopes are a true subset of what are able to bind the
MHCs of a given individual, the high degree of polymorphism imposes a big challenge on
epitope discovery. Fortunately, not all alleles are equally (in)frequent. Almost half of the
European population will have the class I HLA-A*02:01 allele according to the two major
web-accessible allele frequency databases, alllelefrequencies.net [37] and dbMHC [38]. The
HLA-A*02:01 allele is also the most investigated HLA allele so far, with 1287 reported
CTL epitopes available from the major epitope deposit, the ImmuneEpitope database
(IEDB) [39]. For other frequent european alleles such as HLA-A*01:01 (~30%) and HLA-
B*07:02 (~25%), the numbers are 68 and 136, respectively. Despite this bias, a number of
different alleles have actually been examined and it appears that some alleles have
similarities at sequence positions coinciding with the major binding pockets, and that these
alleles also show similarities in peptide binding preferences. This observation led to the
suggestion that the alleles could actually be clustered into a dozen functional clusters, named
supertypes [32].

Experimental approaches for T-cell epitope discovery, detection &
validation

A number of assays have been developed to detect and verify T-cell epitopes, and these
methods have recently been described in more detail [40-42]. Each of these methods have
various benefits and pitfalls and should be carefully considered with respect to the purpose
of the experiment.

Stimulation in vitro or in vivo
In classical antigen discovery, T cells were stimulated to proliferate with antigens and
cytokines. Proliferated T cells were cloned and used to screen COS cells expressing both the
relevant HLA and one of several potential antigens in a cDNA library setup. This approach
would reveal which antigen was the parent of the stimulating epitope. Other, very tedious,
steps could be included in order to reveal the actual epitope. T-cell cultures could also be
stimulated by bare peptides; however, this procedure imposes the question of whether the T
cells will react to cells that have processed the parent antigen [40]. Lack of recognition
could be due to the fact that the native antigen might not be processed correctly, and such
peptides are referred to as cryptic. Today, the concept of being cryptic is often interchanged
with being subdominant. Epitope dominance is the concept that only certain peptides from a
given antigen/pathogen will be epitopes in a given individual (dominant epitopes), but in
cases where the dominant epitopes are absent from the antigen, other peptides will now be
able to induce an immune response [43]. This phenomenon has not been pinpointed as being
caused by any single or few events but is most probably a result of competition on several or
all steps in the immunogenic pathway [44]. These steps includes expression level, stability
of the antigen, all the different steps in the given presentation pathway and finally the TCR
affinity towards the MHC–peptide complex [43,45]. Even if subdominant epitopes are not
immunogenic determinants in the native antigen or pathogen context, it is often possible to
detect a strong recall response against the native antigen using T-cells stimulated with the
subdominant epitope either in vitro or in vivo.

Instead of in vitro stimulation of T cells, it has been shown to be possible to use peripheral
blood mononuclear cells (PBMCs) consisting of T cells, B cells, NK cells, basophils and
DCs. If taken from an individual (animal or human) that has been exposed to a given
antigen, either by vaccination or natural infection, it is possible to detect a T-cell response
when the PBMC is stimulated with the peptides containing the right epitopes. This response
can be detected by the amount of released cytokines (e.g., IFN-γ) in ELISA, enzyme-linked
immunosorbent spot assays or by intracellular staining. All three methods demand that
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antibody staining reagents have been developed for detection of the given cytokine. This has
been achieved for mice and men, but for many animals the reagents are not readily available,
if at all. The first two methods can easily be performed in multiwell plates, but have the
disadvantage that additional extensions have to be introduced in order to be able to
distinguish between responses from different cell types, such as CD4+ and CD8+ T cells. By
use of intracellular staining in combination with flow cytometry it is possible to
simultaneously detect the activation state and cell type of a given cell. This can in principle
be done in a high-throughput (HTP) system; however, the preparation of the collected data
still needs a large degree of human intervention. Using PBMCs from infected (previous or
current) or vaccinated individuals will lead to the discovery of basically only dominant
epitopes. In order to optimally discover subdominant epitopes by purely experimental
methods, several rounds of immunizations have to be performed with new antigens in which
the dominant epitopes are no longer present.

However, subdominant epitopes might be important in vaccine development for several
reasons. Regions containing subdominant epitopes are less influenced by selective pressure
by the human immune system and therefore cover more of the pathogen strain variation, or
might for other reasons turn out to be more effective for use in vaccines [44,46-48].

Peptide pools
When mapping immune responses using peptides, the binding nature of the MHC has to be
considered. As described earlier, preferentially nonamer peptides will bind to MHC class I
molecules, but it is possible to use longer peptides in the recall assays [41]. Often peptides
15–20 amino acids in length will be used when a full antigen, or even a full viral proteome,
is to be scanned. As the binding core of both MHC class I and class II binding peptide is
nine consecutive amino acids, peptides will have to overlap with at least eight amino acids
in order for all nonamer binding cores to be present in at least one peptide. To lower the
considerable experimental effort, the peptides are pooled in samples with up to 64 peptides
per pool and prepared in a matrix system. The longer peptides often give a cytotoxic
immune response even if the actual reacting peptide is usually 8–11 amino acids in length.
This is most likely because the peptides will be partly digested by proteases present in the
monocyte suspension, even though the origin of such protease/peptidase activity has at
present not been fully identified [49]. The use of longer peptides also has the benefit that the
same peptides may be used both in CTL and Th epitope mapping [41,50]. In order to
identify the exact epitope, often referred to as the ‘minimal’ epitope, new shorter versions of
the reactive peptide must be designed and used in additional assays, preferably without the
interference of the proteolytic effects. This can, however, be a challenge, as the living cells
in the assays might potentially secrete proteases, which can lead to the observation that
peptides with weak binding to the relevant MHC molecules give strong CTL responses
whereas peptides with more optimal binding do not. To unambiguously verify the minimal
epitope, MHC–peptide binding should be tested by biochemical assays, as described in the
next section. If the peptide can in fact bind to the restricting MHC protein, a strong method
of verification of the minimal epitope is to create MHC–peptide multimers in order to detect
T cells with a compatible TCR. The concept has recently been reviewed [51]. The MHC-
multimer is prepared with synthetic peptides of interest that are able to bind the MHC and
are subsequently used as markers in flow cytometric assays. MHC multimers are ideal to
verify whether the T cells of interest recognize the particular MHC–peptide complex, and to
assess the amount of specific T cells. MHC-multimers are most commonly used in the
original form, as tetramers [52]; however, several variants have been made with higher
number MHC–peptide complexes per entity (e.g., as pentamers or dextramers [53,54], or
improved functionality in the form of streptamers [55]). In the end, however, it can be hard
to estimate whether a given epitope is actually presented on infected or malign cells. For this
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purpose, it should be possible to clone TCRs generated by artificial stimulation and tested
for specificities using MHC multimers. The TCRs can then be used as markers in flow
cytometric assays in order to detect cells presenting the peptide.

MHC class I–peptide binding assays
The MHC–peptide binding is the most restrictive step in the peptide presentation pathway
[43]. Thus, the affinity of peptides to a given MHC is a strong indication of whether the
peptide is a potential epitope or not. For this reason, a number of biochemical assays have
been developed in order to determine the MHC–peptide affinity. A classic method is a
competition assay where a usually radioactively labeled reference peptide is bound to the
MHC. The labeled peptide is then competed out with increasing concentrations of the
peptide in order to estimate the IC50 value, which, depending on the reference peptide
affinity, is considered to be close to the constant of dissociation (Kd). Several HTP affinity
assays have been developed, spanning from spin column-based gel filtration, over ELISA, to
highly automated proximity assays [56]. The automatization of the measurement of MHC–
peptide binding has been an important factor leading to the fact that now more than 100,000
different MHC–peptide affinities have been measured and are available from the IEDB.

Predictions of T-cell epitopes
The above-described experimental methods are all relatively resource intensive even using
the newest HTP methods, especially if several HLA types must be considered. The cost of
synthetic peptides alone are still in the order of US$10–100 per peptide dependent on purity,
and with a standard protein length of 200–300 amino acid residues, the price of a complete
protein scan is still significant and a full scan of all potential antigens from more complex
organisms such as bacteria and large viruses is not presently feasible, even for a single HLA
type.

Prediction of peptide binding to MHC class I
Because of the amount of resources demanded for complete epitope scans, in silico
predictions of T-cell epitopes is of major interest in epitope discovery. Here, it is worth
mentioning that not only is it a necessity for a peptide to be able to bind an MHC to become
an epitope, it is also the most restrictive step in the pathway from native protein to an
immune response. On average, only one in 200 of the possible peptides that can be
generated from a native protein will be able to bind a given MHC class I protein [43]. Even
though these numbers are more uncertain regarding MHC class II, in both cases, specific
positions in the binding peptide are responsible for the majority of the binding affinity,
making MHC–peptide binding an interesting subject for development of prediction methods
[14,35,57,58]. Any prediction method is dependent on data, at least for evaluation, although
some approaches, such as structure-based methods using knowledge of docking and
molecular interactions [59-61], have been developed using only very few measurements of
MHC–peptide binding. The most accurate prediction methods, however, are data-driven and
depend on large amounts of binding data in order to be able to develop various prediction
models. For these methods, it has been a clear observation that the more data, the more
accurate the predictions. Pre-experimental use of, and filtering by, successful prediction
methods naturally greatly improve the success rate in experimental assays as more of the
tested peptides will turn out to be binders. However, as the information that a peptide is able
to bind a given MHC is much more valuable in prediction development than a nonbinder,
this increase in binder identification has further improved the prediction methods. Thus,
very beneficial scientific collaborations generating iterative assay–prediction–assay loops
have been practiced between experimentalists, assay developers and bioinformatics
prediction developers, which have further sped up the process of developing accurate
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prediction methods [62]. As the price of synthetic peptides is not insignificant, only peptides
predicted to bind to an MHC will be synthesized and tested. This iterative process has an
inherent risk of developing predictors that are only able to predict a limited part of the
potential MHC binders. In the next iteration of training the newly measured data will be
used and only in the cases were the predictions are false will the system be given new
information in the next iteration. False predictions will then always be a predicted binder
that turned out to be a nonbinder. The complementary situation will not occur as predicted
nonbinders will never be tested. In order to at least partly circumvent this problem, methods
have been developed to assess the confidence of the predictions. These measures have then
been used to select peptides believed to be in the periphery of the known space. The affinity
of such peptides is then measured and fed back into the loop [62]. This method will not
guarantee that submotifs very different from those already estimated will not be missed.
Thus, full peptide scanning of various antigens of interest is still of major importance in
order to get unbiased inputs into the development cycle. Full antigen scans will also be
important in order to get an unbiased validation of the prediction methods.

As described previously in the text, the HLA molecules are highly polymorphic and the
issue of identifying which peptides bind any given HLA is important in order to understand
how different individuals and populations react to certain stimuli. Thus, in principle, the
whole peptide identification, binding measurement and prediction cycle should start from
scratch for each new MHC allele, of which thousands of different alleles are known at
present [34]. Furthermore, MHC–peptide binding assays have been broadened to include
most of the more common HLA types in human as well as MHCs from the most used strains
of inbred mice. As described, a HLA supertype consists of a number of HLA-encoded
proteins binding basically the same peptides. However, how to cluster the HLAs and how to
score the overlap in peptide binding space is not a trivial task, indicated by the fact that a
number of different methods have been used for the purpose [32,63-66]. Naturally, the
smaller the sequence distance between two proteins, the bigger the chance that they will
bind the same peptides, but many exceptions have been observed, and even for two HLAs
that have a high degree of homology, a significant number of the peptides that will bind to
one protein might not bind to the other. This can be exemplified with the two very similar
HLAs, HLA-A*30:01 and HLA-A*30:02. According to the definitions of Sidney et al. these
could both belong to the A1 supertype [32]. However, HLA-A*30:01 are also assigned to
the A3 supertype, which is confirmed by the work of Lamberth et al. [67]. Using the web
accessible tool, MHC Motif Viewer [68], it is also apparent that the two HLAs have
considerable differences in their peptide binding motif (Figure 2). These distinct binding
patterns have been verified using peptides parented by a Mycobacterium tuberculosis
antigen [69].

One of the most complicated parts in MHC–peptide binding assays is to get folded or
refoldable MHC proteins expressed from a large number of different alleles, and one of the
more expensive parts is the synthesis of peptides. However, it has been a relatively
inexpensive and uncomplicated task to test peptides already synthesized, for their ability to
bind to several of the MHC proteins available. This synergy has enhanced the quantity of
available affinity data for each HLA allele significantly as peptides synthesized with the
assumption of being able to bind a specific HLA allele have been measured by testing them
against a large number of different MHC proteins. These kinds of data have been of great
value in developing prediction systems because peptides not necessarily predicted to bind to
a given MHC nevertheless sometimes turn out to be able do so. The data are important for
the iteration loops because they limit the risk of only being able to predict a part of the
possible motif space. Furthermore, having peptide binding data for a large diversity of
different peptides to a high diversity of MHCs has made it possible to create prediction
systems that are able to predict not only whether new peptides will bind to previously
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characterized MHCs, but also predict the affinity of new peptides to new MHCs for which
no peptide affinity data are yet available [70,71]. Where the single allele predictors are
trained to deduce a binding motif from a large number of peptides known to bind to a given
MHC, the most successful pan-allele predictors have been trained to predict the affinity of a
given MHC–peptide combination. The amino acid sequence information from the full
binding peptide is combined with the amino acid information regarding the residues in the
MHC sequence known to influence binding so as to be used as input for the training (Figure
1) [58,72,73]. With these systems, accurate predictions can now be made for basically all
HLA class I proteins and for several animal class I MHCs as well, including those of pigs,
mice and nonhuman primates. Predictions of peptide binding to most HLA class I and
chimpanzee MHC class I variants are at present very accurate. The errors between measured
and predicted affinities are generally very close to the difference in the measured affinity
using two slightly different binding assays [57,70,74]. The pan-specific method often
outcompetes the single allele trained methods, and a combination of the two is generally
even better. For this reason, a new web server has been developed that will automatically
decide the optimal combination of predictions to use [75]. Concerns have been raised that
available MHC–peptide binding prediction methods can only be used to predict binding of
peptides eight, nine and maybe ten amino acid residues in length [31,76]. However, methods
have been developed that are able to predict longer peptides [77] and these methods have
been included in a number of different prediction schemes [74,78,79]. The length
approximation method has currently been benchmarked to perform well on peptides ten and
11 amino acids in length, which are the lengths that have enough available binding data to
carry out statistically robust validations. However, the method can, in principle, also be used
for longer epitopes. Both proteasomal cleavage and TAP binding can be predicted, and
integrated prediction systems have been developed (for more information, see [15,58,80]).
However, even though the improvement of prediction accuracy regarding verified MHC
ligands has been statistically significant, the impact seems to be marginal compared with
MHC binding predictions alone [79]. This fact is probably linked to the coevolutionary
effect on connected steps in the pathway [81,82].

Prediction of Th epitopes
For MHC class II binding, it is inherently harder to go from peptide binding data to a
defined motif of the binding core as this is a continuous stretch of nine amino acid residues
placed somewhere in a larger peptide usually in the range of 12–20 residues in length
(Figure 1B). Furthermore, MHC class II proteins consists of two chains and both chains
participates in peptide binding. Also, in the case of HLA-DQ and -DP, both chains contains
polymorphic residues. Whereas the issue regarding defining the binding core is mainly a
theoretical problem that can in principle be deduced from large sets of binding data, MHC
class II is also an experimental challenge as it has turned out to be much harder to do in vitro
folding of recombinantly expressed MHC class II. Thus, at present, we do not have the same
degree of HTP biochemical assays for MHC class II proteins as for MHC class I, and far
fewer different MHC class II proteins have been investigated in relation to peptide binding.
As mentioned before, placing the binding core correctly is a challenge; thus, not only do we
have far less binding data available for MHC class II protein–peptide binding, but we do not
get the same improvement in prediction accuracy per data point because of this higher
degree of uncertainty. Since the first prediction methods on MHC class II binding, the fields
have developed slowly compared with MHC class I. However, at present, validated accurate
predictions of peptide binding to several HLA-DR alleles, and some HLA-DQ and -DP
alleles, are available [83].

Moreover, for MHC class II peptide binding, pan-MHC prediction methods have been
developed, enabling predictions for basically any mammalian MHC class II protein.
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However, the predictions of nonhuman mammal MHCs have only been validated for a very
limited number of alleles owing to lack of data [84]. Even though it is possible to create
class II multimers, it has turned out to be technically more complicated to produce
refoldable MHC class II recombinantly [85,86].

Accuracy of in silico methods
The HLA class I binding predictions for some alleles have for some time been very accurate,
as exemplified with a test on predicted HLA binding peptides from the SARS proteome.
Here, 86–93% of the tested peptides turned out to be binders for alleles for which a mature
prediction system aleady existed [87]. Some of the methods have recently been compared in
an open competition [88], where it was clearly shown that basically all newer prediction
methods are better than the two pioneer methods BIMAS [89] and SYFPEITHI [90], which,
despite this fact, are still widely used in epitope discovery. Hopefully, these kinds of
competitions will continue and develop to concern not only MHC class I binding but also
class II binding and actual epitope discovery success rates. Based on accuracy, speed and
consistent availability, we generally recommend the tools listed in Table 1.

In terms of the accuracy of epitope prediction, the validation is more complicated, as what is
immunogenic in one might not be in another, for various reasons. Thus, the more individuals
that are tested, the higher the chance of getting a positive response, provided the peptide is
immunogenic at all. In an experiment where highly conserved influenza peptides were tested
in individuals supposed to have had an infection within the last 3–7 years we found that 10%
of the binding peptides could elicit a CTL recall response [91]. However, the time span from
the immunogenic event to detection has a major influence on the success rate, as
exemplified by the attempt to detect CTL responses more than 30 years post-vaccinia virus
vaccination [92]. Here, only 6% of the predicted binders were able to induce a recall
response. The state of an infection is also important, as in acute infections the hit rate has
been shown to be much higher. That prediction methods are strong prefiltering tools has
been shown in an attempt to discover all possible epitopes in vaccinia in mice after
vaccination [93]. In this scenario, only 1% of peptides were selected based on MHC class I
binding predictions, and 95% of the immunogenicity could be explained by 50 peptides
within this selection.

Prediction of peptide binding to animal MHCs
Whereas we have extensive knowledge of the HLAs and MHCs of the most animal models
used in research (i.e., mice and chimpanzees), we lack fundamental knowledge of many
other animal species. Some genetic variations are known for important animals in food
production, but the variation and differences in these genes between mammals are extensive.
Rhesus monkeys, for example, have several MHC class I loci that individually are less
variable than HLAs, but turn out not to all be expressed in a given individual. Also, MHC
class II genes show species differences, as in cattle and goat it seems that they are analogs to
the human HLA-DRB3 genes that display the most extensive polymorphism. Furthermore,
MHC binding assays and epitope discovery tools are still only developed for very few
species, including pig and cattle. However, despite the limited possibility of thorough
benchmarking, it has been shown that MHC class II predictions can to some extent be
applied to cattle [94], and pan predictors have been able to predict peptide binding to pig
MHC class I [95].

Expert commentary
In this article we have described a number of methods used for T-cell epitope discovery. At
present, HTP ex vivo assays do not have the sensitivity of the more elaborate assay types,
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and it is not feasible to make a full peptide proteome scan for an extensive number of HLA
alleles, even for relatively simple pathogens. Furthermore, by use of pure assay-based
methods it is a challenge to identify the subdominant epitopes that might be crucial in
prevention or treatment of certain diseases. On the other hand, in silico models can help
identify potential subdominant epitopes. Using in silico methods in the primary selection of
peptides can successfully be combined with other selection criteria, such as conservation
state of the potential epitope. In the previously mentioned example of discovery of CTL
epitopes induced by influenza A H1N1 infections, this led to the discovery of 13 epitopes, of
which 11 were fully conserved in the H5N1 avian strain that has been responsible for several
fatal infections in humans [91] and all were conserved in the recent H1N1 influenza
pandemic. The selection schemes have been further developed to include strain variability,
and also to benefit from predictions of all alleles of a given population and include the allele
frequencies obtained from databases. In this way, a pool of peptides has been predicted that
should optimally cover all HIV strains and most of the human population. In such
experiments, we see that up to 70% of the selected peptides will elicit a response in at least
one individual [96,97]. This approach will take over from the previously described
supertype approach as it will be more sensitive and accurate, and is better suited for taking
different populations into consideration.

Epitope prediction systems will probably never be able to detect all the possible epitopes in
a given setup. However, some experimentalists seem to neglect that experimental assays are
also only accurate to a certain sensitivity and specificity, which is in fact the general
condition for all natural sciences. It has been argued that prediction systems are in general
not sensitive enough and that resources are better spent on thorough HTP scans [76,98]. The
fact that there are no valid data that go against the generally reported high accuracy of
MHC–peptide binding predictions has been argued elsewhere [33]. Even though new
methods have been developed that are able to predict binding of longer peptides, the
Burrows paper [31] is still put forward as an argument against prediction methods [76]. It is
our strong belief that it is possible to successfully predict a large majority, if not all of the 25
longer epitopes mentioned in the paper by Burrows et al. Furthermore, Wu et al. argue that
some newly identified epitopes cannot be predicted based on the claim that they do not
contain the correct motif [76]. It is, however, possible to test for peptides 8–11 amino acids
in length using existing tools such as HLArestrictor [82] and NetMHCcons [101]. We
strongly belief that the use of these tools will show that a majority of the epitopes claimed
not to be predictable will turn out to be so.

In the end, it is our opinion that it is not a choice between two scenarios where, in one
scenario, prediction methods lead to the end of experimentally based assay procedures, or, in
another scenario, of experimental puritanism in which every step in an epitope discovery
effort has to be based on positive results in experimentally based assays alone, thereby
excluding the involvement of theoretical-based selection. It is our strong belief that a
concerted effort in a nonhostile arms race of the development of assay procedures and
computational modeling will lead to mutual benefits where each side will strongly benefit on
the progress of the other.

Five-year view
As described in the previous sections, the field of T-cell epitope prediction is expected to
develop significantly within the next few years. The amount of data for MHC class II–
peptide binding will most likely increase significantly, leading to better prediction systems
for MHC binding. Also very likely is that we will see accurate predictions not only for all
HLA-DR alleles, but also for HLA-DQ and -DP alleles, and probably for MHC class II
proteins from several other mammals as well. A new possibility for HTP assays has been
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developed in recent years that will potentially have a great impact on the amount of
available MHC class II–peptide affinity data. Peptides spotted or synthesized in microarrays
can be used to measure a very high number of different peptides in one go. The micro-array
peptide chip technology is maturing now and will be very suitable for such multipeptide
assays in the future, especially for MHC class II because of the open ends of the peptide
binding groove enabling the MHC to bind even though the peptide is immobilized in one
end.

The newly discovered involvement of MHC class I pathway elements in presentation of
MHC class II restricted peptides will certainly be investigated and might improve
significantly on Th epitope predictions [12]. The MHC class I–peptide binding prediction
systems will be highly accurate for most mammals, and it is very likely that usable
prediction systems will be available for several bird alleles as well. The development of
direct epitope prediction systems will move slower because of the resources needed in
generating the data and the complexity involved in discriminating immunogenic MHC
binding from nonimmunogenic MHC binders. The effect of MHC–peptide stability
measurements and predictions of this will be an important integration in prediction of T-cell
epitopes. New and improved knowledge of TCRs, positive and negative selection in the
development of TCR specificity, and the interactions between the TCR and the MHC–
peptide complex will also be obtained as a result of recent discoveries, combined with the
new and emerging, fast and cheap sequencing methods. Such knowledge will undoubtedly
have a significant impact on the modeling of usable true Th and CTL immune response
models already at the end of the coming 5-year period. As data increase and prediction
methods develop, a much greater understanding will emerge on what defines a dominant T-
cell epitope. We believe that we will observe a preliminary HLA hierarchy that will explain
some of the dominance effects that we see. The understanding of dominance will probably
further increase when we gain knowledge of how specific TCR germline genes influence the
preferences of the TCR for specific MHC–peptide complexes. Likewise, evidence is
emerging that suggests that the integration of signals from other immune system receptors,
such as KIR, has a strong impact on our T-cell immunity and epitope dominance [99].
Recently, a new accurate MHC–peptide stability HTP assay has been described [100], and it
will be interesting to follow in the coming years whether stability will be an even better
indicator of peptide immunity than affinity.

The first field where selected epitopes will have a clinical impact is probably in cancer
treatments based on specific selected T-cell epitopes. Several trials are already initiated for
various cancer types (for more information see [102-104]). These epitopes are often
identified using one or more in silico methods combined with more traditional assay-driven
discovery methods. Within traditional vaccine development, it is our impression that several
developers, especially smaller startup companies, are using prediction methods as a major
step in epitope discovery to design vaccines with specially selected epitopes in order to
secure and improve population coverage. The first designed vaccines on the market are
expected to be an extension of the subunit vaccine approach extended with selected T-cell
epitopes either inserted into the selected subunits or as individual peptides. Since these are
still in the early development phase we will probably not see this kind of vaccines for human
use on the market until 7–10 years from now at the earliest. However, for veterinary
vaccines, the rational vaccine design approach might go much faster for the species in which
detection protocols are established and the MHCs are known. We may even see vaccines on
the market already at the end of the next 5-year period.

The development of computational methods in combination with general obtained biological
knowledge will lead to the possibility of highly personalized treatments. Such treatments
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might be seen in trials against otherwise untreatable serious diseases within a 5-year period
and most certainly within the next 10 years.
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Key issues

• Full genome sequences of pathogens and somatic cells are available in ever-
increasing amounts.

• Traditional T-cell epitope discovery methods are resource intensive despite
development of intelligent assay methods and high-throughput systems.

• A number of T-cell epitope discovery methods are dependent on biological
materials (e.g., patient blood samples), which are usually available in limiting
amounts.

• High polymorphy of MHCs and length variation of reacting peptides further
increase the number of experiments needed for traditional T-cell discovery.

• Accurate MHC binding prediction methods exists for all HLA class I and
several mammal MHC class I proteins, for all HLA-DR proteins and several
other MHC class II proteins.

• MHC class I binding predictions can be obtained even for peptides with an
unusual epitope length.

• The use of MHC peptide binding predictions highly improve the success rates in
epitope discovery and are easily integrated with, for example, sequence
variation analysis.

• The combination of in silico, in vitro and ex vivo methods will, in the near
future, be the optimal setup in epitope discovery.

• Predictions and mathematical models will not fully replace experimental
methods.
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Figure 1. Structural surface representations of MHC class I (A) and MHC class II (B) molecules
in complex with peptide shown in stick representation
(A) The peptide is green and the residues in the α chain considered important for peptide
binding [73] is colored dust green. The rest of the α chain is dark blue and β-2-
microglobulin is light blue. (B) The binding core of the peptide is dark green, and the rest of
the peptide is bright green. The residues in the β chain considered important for peptide
binding [83] are colored dust green. The rest of the β chain is colored dark blue, and the α
chain is light blue. The figure has been created using PyMol with the PDB available
templates of an HLA-A*11:01-peptide complex structure, 2HN7 [105] (A) and an HLA-
DR1-peptide structure, 1AQD [106] (B).
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Figure 2. The Kullback–Leibler binding peptide sequence logo for the HLA-A*30:01 (A) and
HLA-A*30:02 (B) alleles is generated using the MHC Motif Viewer website
The Kullback–Leibler information content is plotted along the nonamer. Amino acids with
positive influence on binding are plotted on the positive y-axis, and amino acids with a
negative influence on binding are plotted on the negative y-axis. The height of each amino
acid is determined by their relative contribution to the binding specificity.
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Table 1

Recommended MHC binding prediction tools†.

Name Prediction Immune Epitope Database analysis tool‡ CBS prediction servers§

NetMHCpan MHC class I binding NetMHCpan NetMHCpan

NetMHCCons MHC class I binding NetMHCCons

SMM MHC class I binding smm

NetMHCIIpan MHC class II binding NetMHCIIpan NetMHCIIpan

†
Some are available from several online sources as shown below.

‡
Data from [107].

§
Data from [108].
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