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TheNationalHeart,Lung,andBloodInstituteSevereAsthmaResearch
Program (SARP) has characterized over the past 10 years 1,644
patients with asthma, including 583 individuals with severe asthma.
SARP collaboration has led to a rapid recruitment of subjects and
efficient sharing of samples among participating sites to conduct
independent mechanistic investigations of severe asthma. Enrolled
SARP subjects underwent detailed clinical, physiologic, genomic, and
radiological evaluations. In addition, SARP investigators developed
safeprocedures for bronchoscopy inparticipantswithasthma, includ-
ing those with severe disease. SARP studies revealed that severe
asthma is a heterogeneous disease with varyingmolecular, biochem-
ical, andcellular inflammatory featuresanduniquestructure–function
abnormalities. Priorities for future studies include recruitment of
a larger number of subjects with severe asthma, including children,
to allow further characterization of anatomic, physiologic, biochemi-
cal, and genetic factors related to severe disease in a longitudinal
assessment to identify factors that modulate the natural history of
severe asthma and provide mechanistic rationale for management
strategies.
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In asthma, patients with severe disease represent the greatest un-
met need in terms of understanding mechanisms, morbidity,
healthcare costs, and effective treatment. To meet these needs,
two events occurred in 2000 to change direction in the study of
severe asthma: (1) the National Heart, Lung, and Blood Insti-
tute (NHLBI) convened a workshop to review severe asthma
pathophysiology and provide recommendations for future

directions, which led to the funding of a Severe Asthma Re-
search Program (SARP) (1); and (2) the American Thoracic
Society (ATS) published the proceedings of a workshop on refrac-
tory asthma, which included a working definition of severe asthma
(2). The initial efforts of SARP benefited greatly from a preceding
effort by the European Network for Understanding Mechanisms of
Severe Asthma (ENFUMOSA), which conducted a cross-sectional
study comparing 163 subjects with severe asthma to 158 subjects
with well-controlled asthma. In that study, patients with severe
asthma were more likely to be female, and they had neutrophil-
predominant inflammation based on sputum analysis (3). How-
ever, the study had limited support, thus restricting its sample
size and scope of evaluations performed in each subject. To gain
much-needed insight into severe asthma and eventually improve
its treatment, a collaborative network approach was believed to be
essential, because one site would not have sufficient subjects re-
quired to address these questions. A major innovative aspect of
SARP was a requirement that its investigators, with independently
funded mechanistic studies, collaborate within the program to
recruit subjects and obtain biological samples that were made
available to all investigators in the network for site-specific and
network-wide mechanistic studies. The results of SARP investiga-
tions led to the largest and most comprehensively characterized
cohort of patients with severe asthma ever assembled, significantly
advanced our understanding of asthma in general and severe
asthma in particular, and have positioned SARP and other inves-
tigators on a trajectory to advance the treatment of severe asthma.

DEFINITION OF SEVERE ASTHMA

Asthma guidelines classify disease severity as mild, moderate,
and severe, largely based on symptoms and lung functions,
but do not fully account for the medications required to maintain
control (4). The ATS workshop on refractory asthma proposed
two major criteria to define severe asthma based on medications
(daily use of high-dose inhaled corticosteroids and/or use of
systemic corticosteroids) and seven minor criteria (symptoms;
frequent, severe, or life-threatening exacerbations; lung func-
tion; controller use; and loss of control when corticosteroids
were tapered). The workshop recommendations for refractory
asthma required at least one major and two minor criteria,
which became the working definition for severe asthma in
SARP (2, 5). Implicit in this definition is the establishment of
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the diagnosis of asthma and addressing known comorbidities.
Assessment of adherence was based on patient history, which
resulted in limitations in the interpretation of some SARP stud-
ies. An initial characterization of patients with asthma recruited
into SARP found that a major factor differentiating severe from
mild/moderate asthma was a significantly greater frequency and
severity of high-risk outcomes, such as emergency department
visits, hospitalizations, intensive care admissions, and intuba-
tions. Subjects with severe asthma not only had a greater need
for more medications, more persistent symptoms, and lower
lung function but also had serious outcomes despite what would
be considered effective treatment. Similar characteristics were
identified in children (6). Based on improved understanding of
the distinguishing features of severe asthma gained from SARP
and other global efforts in severe asthma, an ATS and Euro-
pean Respiratory Society Workshop was recently organized to
further refine the definition of severe asthma and distinguish it
from difficult to manage asthma, thus extending current knowl-
edge to a worldwide level (7).

RISK FACTORS FOR SEVERE ASTHMA

SARP studies identified several key risk factors associated with
severe asthma, including sex, race, obesity, and environmental to-
bacco exposure. Severe asthma was shown to be more prevalent
in women after puberty (8, 9). In addition, obesity appeared to be
associated with increased asthma severity in adult-onset disease
(10), which in obese women may be related to sex hormones (8)
or obesity-related inflammation (11, 12). Asthma in blacks was
diagnosed at an earlier age, with IgE level and a family history of
asthma being strong independent risk factors for severe disease
(13). Secondhand smoke exposure, as measured by urinary coti-
nine levels, was associated with greater airflow obstruction and
hyperresponsiveness as well as lower levels of serum superoxide
dismutase (SOD) activity (14). Finally, a history of gastroesoph-
ageal reflux, sinopulmonary infections, and pneumonia was
more commonly seen in patients with severe asthma (5, 10).

LUNG STRUCTURE–FUNCTION RELATIONSHIPS

In addition to incomplete reversal with bronchodilation, severe
asthma was associated with a marked increase in air trapping
across the range of airflow limitation, suggesting a disproportion-
ate involvement of small airways (Figure 1) (5, 10, 15). After
inhaled bronchodilator, the improvement in FEV1 appears due,
in large part, to reversal of the air trapping (15). In children
aged 6 to 17 years, the airway closure/air trapping component of
airway obstruction was more prominent in boys (6, 16). Severe
asthma, male sex, and age were independent predictors of in-
complete reversal post-bronchodilator (16, 17).

To further investigate airway structure–function abnormali-
ties, SARP incorporated imaging modalities, including multide-
tector computed tomography (CT) and magnetic resonance
imaging with hyperpolarized helium (He3). The network per-
formed 424 CT studies using a common protocol tailored for
measurement of the airways and parenchyma. Airway wall
thickness and area were increased in patients with severe
asthma and correlated with epithelial thickness on biopsies from
a subset of participants (Figure 2). In addition to airway wall
thickness, the degree of air trapping was also associated with
severity of disease (18). Risk factors for the air trapping phe-
notype included atopy, neutrophilic inflammation, duration of
disease, and history of pneumonia. Magnetic resonance imaging
with He3 demonstrated focal ventilation defects, which are
areas of reduced signal distal to airway obstruction. In asthma,
ventilation defects had a heterogeneous pattern, occurred more
frequently in severe disease, persisted over time, and often

coincided with regions of air trapping on multidetector CT
(19). Molecular imaging techniques, such as positron emission
tomography, that image areas of inflammation, when combined
with CT allow colocalization of pulmonary inflammatory signals
to specific structures, further advancing the characterization of
patients with asthma. These findings could provide useful correlates
for lung physiology and lung inflammation parameters measured
directly by bronchoscopic techniques (19).

AIRWAY INFLAMMATION AND REMODELING

Although several studies reported on the safety of investigative
bronchoscopy in asthma, few included significant numbers of
patients with severe disease (20). National Institutes of Health
workshops on investigative bronchoscopy concluded that more
experience was needed to establish the safety of bronchoscopy
in severe asthma (21–23). To meet this need, SARP investigators
developed guidelines for bronchoscopy in participants with in-
creasingly severe airflow obstruction and disease. The experience
of SARP with 505 bronchoscopies, of which 151 were performed
on individuals with severe asthma, confirmed that bronchoscopy is
safe and well tolerated (5, 10, 24), thus enabling SARP investiga-
tors to obtain airway samples to define the accompanying histo-
pathology and immunobiology of severe asthma (25–33). Lung
inflammation specific to severe asthma has been poorly defined.
Studies from SARP revealed that mast cells differed in severe
asthma by numbers, phenotypes, location, and Th2 pathway ge-
notype with the chymase-positive mast cell subtype present in
higher numbers in severe asthma, particularly in the epithelium
(26, 34). Although severe asthma was not characterized by mu-
cosal eosinophilia on biopsy, a combined increase in both eosi-
nophils and neutrophils in sputum identified individuals with the
lowest lung function, worst asthma control, increased symptom
severity, and higher healthcare use (35). The airway epithelium
and lamina reticularis were thicker in airway biopsies compared
with patients with mild asthma, healthy individuals, or patients
with chronic bronchitis (29), and strongly correlated with FEV1,
suggesting that remodeling contributes to airway obstruction in
severe asthma. The role and contribution of other cell types is
under study (36, 37).

BIOMARKERS OF SEVERITY

SARP studies have identified novel biomarkers associated with
asthma severity and expanded on previously identified biomarkers.

Figure 1. Comparison of physiological characteristics among adults

with normal airways (n ¼ 51), nonsevere asthma (n ¼ 109), and severe

asthma (n ¼ 61), showing total lung capacity (box height), FEV1, and

residual lung volume (RV). Note prominent air trapping (elevated RV)
and airflow limitation (reduced FEV1) in severe asthma. Lung volumes

are adjusted for differences due to height, age, sex, and race.
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For instance, the fraction of exhaled nitric oxide (FENO) exhibited
broad heterogeneity in SARP and was partly determined by dif-
ferences in atopy (30) and pH-dependent nitrite conversion to
nitric oxide (38) and less dependent on corticosteroid therapy.
High FENO identified patients with severe asthma who were char-
acterized by the greatest degree of airflow obstruction and hyper-
inflation as well as most frequent use of emergency care. Adult
patients with low FENO had increased arginase and decreased
SOD activity, with low serum SOD activity being an independent
biomarker for low FEV1 in severe asthma (31, 39). Urinary bro-
motyrosine, a marker for eosinophil peroxidase activity, predicted
risks for exacerbations, particularly in children with severe disease
(40, 41). Consistent with our findings in adults, there were striking
airway redox disturbances in children with severe asthma (6, 42–44)
as well as increased catabolism of endogenous S-nitrosothiols
(45), impaired airway macrophage function (46), and sustained
expression of proinflammatory cytokines and chemokines result-
ing in a molecular phenotype that was neither Th1- nor Th2-
predominant (42, 43, 47). Importantly, individual patients with
severe asthma have overlapping features, highlighting the com-
plexity and heterogeneity of this disease subclass. In addition to
proinflammatory processes, persistent inflammation in severe
asthma was related to a dysregulation of lipid proresolving sys-
tems with reduced lipoxin A4 biosynthesis and receptor expression
(48), which related to a greater corticosteroid use (49). Circulating
chitinase-like protein (YKL-40) levels were also higher among
patients with severe asthma in several cohorts, including SARP
(50). Supervised and unsupervised cluster analysis of cytokines in
bronchoalveolar lavage fluid samples from SARP identified dis-
tinct and novel molecular phenotypes, including one that is Th2-
rich and another with evidence for innate immune activation (27,
28). These two molecular patterns corresponded to nonsevere and
severe asthma, respectively. Importantly, it was a panel, not a sin-
gle cytokine, that was required to define phenotypes (27, 28).

Consequently, the biologic heterogeneity found among patients
with severe asthma will likely serve as a reference for individual-
ized therapeutic approaches that target specific cells or immune,
biochemical, or endocrine responses (51, 52), such as antioxidant-
mimetics and buffers, mast cell and Th2 pathway inhibitors, lip-
oxins, and/or prostaglandin D2 receptor antagonists.

CORTICOSTEROID INSENSITIVITY

Because patients with severe asthma require large doses of corti-
costeroids in attempts to maintain disease control, relative corti-
costeroid insensitivity is implicated in this phenotype. SARP
mechanistic studies identified that corticosteroid insensitivity in
blood mononuclear cells and lung macrophages was linked to ex-
cessive activation of mitogen-activated protein kinases (53, 54)
and decreased activity of nuclear histone deacetylase and histone
acetyltransferase (55). Further SARP-wide studies have shown
that tobacco smoke exposure and elevated oxidant burden are
associated with corticosteroid insensitivity (14, 39, 42, 56, 57).

GENETICS OF ASTHMA SUSCEPTIBILITY AND SEVERITY

The detailed subject phenotyping in SARP allowed for an exam-
ination of associations of genetic variations with asthma severity
and its characteristics. Coding variants in IL-4 receptor a (IL4R-
a), which regulates Th2 responses, were associated with more
severe asthma (34). Mechanistically, IL4R-a polymorphisms
were associated with increased numbers of tissue mast cells and
higher levels of IgE bound to mast cells (34) and were more
commonly found in African Americans. Polymorphisms in hedge-
hog interacting protein on chromosome 4q31, which is important
in tissue development and cell proliferation, were associated with
increased airflow limitation (58, 59). Furthermore, single-
nucleotide polymorphisms in hedgehog interacting protein, com-
bined with additional single-nucleotide polymorphisms in other

Figure 2. Chest multidetector

computed tomography (MDCT)
images and bronchial biopsy

from subjects with mild and se-

vere asthma. Chest MDCT scans

were performed in (A) mild
asthma and (B) severe asthma.

A screen capture of the cross-

sectional MDCT image dem-

onstrates an outline of a central
airway and reported average

wall thickness. Note that the av-

erage wall thickness is signifi-

cantly greater in the subject
with severe asthma. Quantita-

tive CT using the Pulmonary

Workstation software (VIDA)
allows accurate assessment of

air trapping (defined as voxels

within the lung field falling be-

low 2856 Hounsfield units) as
demonstrated by sphericals pro-

portional to area of air trapping

(volume rendered view). Each

lobe is color-coded. Note the in-
crease in air trapping in all lobes

of (D) the subject with severe

asthma compared with (C) the subject with mild asthma. Representative images from hematoxylin-eosin sections from an endobronchial biopsy from
(E) a subject with mild asthma and (F) a subject with severe asthma are demonstrated. The epithelial layer (Epi) and lamina reticularis (LR) are indicated.

This histopathology demonstrates key features of airway remodeling that can now be correlated with quantitative imaging of the airways (airway wall

thickness) and lungs (air trapping).
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pulmonary function genes, predicted lung function abnormalities
and asthma severity in whites (60). These studies suggest a genetic
basis for asthma severity and associated airflow limitation, some
of which may be shared among racial groups that are predisposed
to more severe disease. SARP also contributed data on genome-
wide association studies and actively participated in the NHLBI
EVE consortium to gain better understanding of the variation
in genetic risk patterns between European American, African
American and African Caribbean, and Latino individuals (61).
Association was found for several genes that were also observed
in European genome-wide association metaanalyses (62), confirm-
ing their collective importance in asthma susceptibility, although
each gene alone only conferred a minor risk. The results of these
studies suggest that asthma heterogeneity, progression, and sever-
ity are caused by some of the same genes that are responsible for
asthma susceptibility; however, there is increasing evidence that
additional genes are important in asthma severity (63).

CLINICAL PHENOTYPES IN ADULTS AND CHILDREN
WITH ASTHMA

SARP studies have all identified clinical, physiologic, and bio-
logic heterogeneity among patients with asthma. Studies linking
clinical characteristics with biomarkers of inflammation, genetic
analyses, and imaging should provide a framework for improved
subject characterization in severe asthma and potentially allow
for a stratified management approach. To identify potential
unique clinical phenotypes in asthma, an unsupervised hierarchi-
cal cluster analysis was performed on adult SARP enrollees with
asthma spanning the full spectrum of disease severity from mild
to severe disease (10). This approach allowed for grouping of
patients based on similarities free from a priori bias. Using
34 qualitative and quantitative variables that included age of
asthma onset and duration, sex, race, lung function, atopy,
and questionnaire data, five clusters emerged (Figure 3). Three
clusters with divergent characteristics were more likely to in-
clude patients with severe disease (clusters 3, 4, and 5). A clus-
ter analysis of nearly 300 children (aged 6–17 yr) who also
participated in SARP (6, 47) confirmed that there is marked

heterogeneity in childhood severe asthma similar to that seen
in adults with severe asthma (47). However, in contrast to adults,
children with severe asthma were highly atopic with peripheral
blood eosinophilia, aeroallergen sensitivity, elevated serum IgE
concentrations, and sustained increases in FENO (6, 30). The onset
of puberty may be a critical phase of development wherein the
phenotypic features of severe asthma progress toward the adult
pattern (17). Characteristic features of severe asthma in compar-
ison with nonsevere asthma in children and individuals after pu-
berty are shown in Table 1. Longitudinal cohort studies will be
required to define the outcomes of adults and children with se-
vere asthma as well as to assess the effectiveness of cluster anal-
ysis to define heterogeneity in this population.

ROLE OF SARP IN THE 2009 PANDEMIC
H1N1 INFLUENZA

The contribution of influenza to asthma morbidity became evi-
dent during the 2009 H1N1 pandemic, when information on the
efficacy and safety of the 2009 H1N1 pandemic vaccine in the
high-risk asthma groups was lacking (64). The SARP cohort
enabled rapid implementation of an open-label vaccination tri-
al, with a two-month enrollment, to evaluate seroprotection and
seroconversion in time to put vaccination strategies into prac-
tice for the public (65). Age, not asthma severity or corticoste-
roid use, was associated with diminished antibody response to
the H1N1 vaccination. The study set a paradigm for use of
established networks to rapidly implement clinical trials gov-
erned by federal mandates.

LESSONS LEARNED THROUGH SARP

When the concept for SARP was initiated, selected investigators
planned to use materials for study from many centers to accom-
plish their individual goals. It was essential to design and agree
on uniform procedures for obtaining data, collecting samples,
and establishing a database. This was a lengthy process, requiring
nearly 2 years. The challenges of starting the unique program
were rewarded by rigorous quality control, which has been

Figure 3. Cluster analysis of all adults with asthma

in the Severe Asthma Research Program. BMI ¼
body mass index; COPD¼ chronic obstructive pul-
monary disease.
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key to the success of the SARP in general and site-specific re-
search programs. Perhaps the most important aspect of SARP
was the development of a “team effort.” Over the decade of
SARP, the group evolved shared goals and studies, some of
which were high risk and would not have been possible to de-
velop in a traditional network structure or feasible in a single-
site study. For example, SARP embarked on the application of
imaging across several sites to investigate the structure–function
relationship of the airway to clinical characteristics. The study
of pathology of airway remodeling occurred through the bron-
choscopic biopsies at all sites. The integration of individual
strengths to achieve site-specific and common goals led to gen-
erous cooperation and innovative discoveries. Collectively, the
science was enhanced and mechanistic studies were more com-
prehensively evaluated from multiple perspectives.

The recent renewal of SARP underscores a number of the les-
sons learned in the previous cycle that have been incorporated into
the new program. First, the cross-sectional noninterventional na-
ture of SARP limited assessment of adherence to asthma med-
ications. To fully appreciate the presence and persistence of
severe asthma, longitudinal studies and determinations of med-
ication adherence are included in the upcoming SARP. Second,
as asthma typically begins in childhood, a pediatric component,
which was limited in the first 10 years, is now included in all par-
ticipating sites. Third, although the use of imaging has been ama-
jor advance, its application in the past 10 years of SARPwas in its
infancy. This aspect has been changed with uniform and shared
acquisition and analysis protocols across the network to enhance
safety and usefulness of these studies. Finally, it is predetermined
that investigations will have a common component. Participating
sites continue to have individual hypotheses and aims, but they
are now expected to also have a common SARP-wide longitudi-
nal protocol with joint hypotheses and aims. Overall, the goal of
longitudinal SARP is the comprehensive study of the evolution
of severe asthma, so that mechanism-based diagnostic, prognos-
tic, and treatment strategies can be applied to treat and in the
future prevent severe asthma in children and adults.

FUTURE DIRECTIONS AND IMPLICATIONS
FOR SEVERE ASTHMA

The understanding of severe asthma has evolved substantially
over the past decade. It is now recognized that severe asthma

is a heterogeneous disease with varied phenotypes, each with po-
tentially unique pathogenic mechanisms that may be linked to
more effective therapy. Past efforts to characterize severe asthma
were largely based on a single evaluation of history, physical ex-
amination, and physiology in limited numbers of patients, often
without comparative groups or children. Investigations under
SARP have advanced the study of severe asthma by allowing
for a more comprehensive phenotyping including clinical charac-
teristics, imaging, and biologic and genetic analyses. Future studies
will be critical to definewhy certain phenotypes evolve, what leads
to the disabling features of severe asthma, and what may be the
most effective therapeutic approaches for these patients. These
efforts in the United States will be complemented and enhanced
by the recently funded European consortium, U-BIOPRED (Un-
biased BIOmarkers in PREDiction of respiratory disease out-
comes). SARP and U-BIOPRED have initiated cooperative
efforts at many levels. Extension of efforts on a worldwide basis
holds the promise of accelerated discoveries, comparative and con-
trasting observations across populations and environments that
deepenmechanistic understanding, and a robust variety of expertise
to plan implementation of advances. As a consequence, the collec-
tive observations will inform a universal perspective on this pheno-
type and lower barriers to achieve optimal care in severe asthma.
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