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Urokinase plasminogen activator receptor-associated protein (uPARAP,
or Endo180) is a transmembrane endocytic receptor that mediates
collagen internalization and degradation. uPARAP may be a novel
pathway for collagen turnover and matrix remodeling in the lung.
The function of uPARAP in lung injury has not been described. We
analyzed the pulmonary mechanics of uPARAP™/~ and wild-type
mice at baseline and examined their response after bleomycin instil-
lation. We compared collagen internalization in primary mouse lung
fibroblasts (MLFs) from wild-type and uPARAP ™/~ mice using flow
cytometry and fluorescent microscopy, and we examined the role of
cytokines in regulating uPARAP expression and collagen internaliza-
tion. We show that uPARAP is highly expressed in the lung, and that
uPARAP /™ mice have increased lung elastance at baseline and after
injury. uPARAP ™/~ mice are protected from changes in lung perme-
ability after acute lung injury and have increased collagen content
after bleomycin injury. uPARAP is the primary pathway for internal-
ization of collagens in MLFs. Furthermore, collagen internalization
through uPARAP does not require matrix metalloproteinase diges-
tionandisindependent of integrins. Mediators of lunginjury, includ-
ing transforming growth factor-, TNF-«, and IL-1, down-regulate
both uPARAP expression and collagen internalization. uPARAP is
highly expressed in the murine lung, and loss of uPARAP leads to
differences in lung mechanics, lung permeability, and collagen con-
tent after injury. uPARAP is required for collagen internalization by
MLFs. Thus, uPARAP is a novel pathway that regulates matrix remod-
eling in the lung after injury.
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Urokinase plasminogen activator receptor—associated protein
(uPARAP, Endo180, or mannose receptor, C type 2) is a 180-
kD transmembrane receptor that can bind and internalize both
fibrillar and nonfibrillar collagens (1, 2). After internalization,
uPARAP targets collagen to the lysosome for degradation and
then uPARAP recycles to the plasma membrane (3). uPARAP
is expressed in mesenchymal cells, predominantly fibroblasts.
In addition, dermal macrophage and human placental endothe-
lial cells express low levels of uPARAP (1, 4, 5).

We previously demonstrated high expression of uPARAP in
the mesenchyme throughout lung development (6). Despite the
high expression of uPARAP in the developing lung, development
proceeds normally in uPARAP ™/~ mice, and is not associated
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CLINICAL RELEVANCE

Matrix remodeling is important for lung injury and repair. In
this study, we demonstrate that the newly described endo-
cytic receptor, urokinase plasminogen activator receptor—
associated protein (UPARAP), plays a role in regulating
lung mechanics, lung permeability, and collagen content
after injury. Thus, uPARAP is a novel pathway that reg-
ulates matrix remodeling in the lung after injury.

with any differences in matrix metalloproteinase (MMP), tissue
inhibitor of metalloproteinases, or collagen expression in the lung
(6). uPARAP™'~ mice appear phenotypically normal in the un-
challenged state, and have a normal lifespan. One possible ex-
planation for the lack of lung phenotype is use of an alternative
pathway for collagen internalization. Although previous work
demonstrated that uPARAP was the primary receptor for colla-
gen internalization in dermal fibroblasts and mouse embryonic
fibroblasts (3, 7-9), other studies have implicated integrins
(specifically, a2B1) and MMPs for collagen internalization
in different cells (10, 11). Therefore, we asked whether lung
fibroblasts required uPARAP for collagen internalization.
Given the potential role of uPARAP in extracellular matrix
remodeling during injury and repair, we also examined the re-
sponse of uPARAP ™'~ mice to lung injury induced by bleomy-
cin instillation.

MATERIALS AND METHODS

Bleomycin-Induced Lung Injury

UPARAP ™~ mice (8) or wild-type (WT) littermates underwent intra-
tracheal instillation with 2 U/kg bleomycin (SICOR Pharmaceuticals,
Inc., Irvine, CA) or saline. At the time mice were killed, the right main
stem bronchus was tied off and the left lung was lavaged and processed
as previously described (13). The left lung was snap frozen and used for
hydroxyproline measurement (13). Hydroxyproline concentration was
extrapolated from a standard curve. For measurements of alveolar
permeability, FITC-Dextran 70 kD (Invitrogen, Carlsbad, CA) was
injected retro-orbitally 3 hours before death. After necropsy, bron-
choalveolar lavage (BAL) fluorescence-to—plasma fluorescence ratio
was measured with a standard plate reader.

Collagen Internalization by Fluorescence Microscopy

Collagen internalization studies were performed using a modified protocol
from Curino and colleagues (12). uPARAP ™~ and WT mouse lung
fibroblasts (MLFs) were plated onto poly-L-lysine coated coverslips and
serum starved overnight. MLFs were then preincubated with 20 pM
(25,35)trans-epoxysuccinyl-L-leucylamindo-3-methylbutane ethyl ester,
a lysosomal cathepsin inhibitor (Calbiochem, San Diego, CA), at 37°C
for 1 hour to prevent degradation of internalized collagen. We then added
Oregon green-labeled type IV collagen (Invitrogen) or Oregon green—
labeled gelatin (Invitrogen) at 25 pg/ml for 24 hours at 37°C. To confirm
that internalized collagens were targeted to the lysosomal compartment,
0.5 uM LysoTracker Red (Invitrogen) was added 1 hour before the end
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Figure 1. Expression of urokinase plasminogen activa-
tor receptor-associated protein (UPARAP) is highest in
the mouse lung. (A) Real time PCR analysis of uPARAP
mRNA expression. Data were normalized to hypoxan-
thine phosphoribosyltransferase expression. Y axis rep-
resents fold increase compared with lung. (B) Western
blot analysis of uPARAP expression from whole-organ
lysates. Graph demonstrates densitometry analysis of
UPARAP expression normalized to glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) loading control.
S.I., small intestine. (C) uPARAP immunoreactivity in
adult mouse lung. Left panel, isotype control antibody;
right panel, uPARAP immunoreactivity (brown), counter-
stained with hematoxylin. Bar, 20 um. (D) Real-time
PCR analysis of uPARAP mRNA expression after bleomy-
cin administration. Data were normalized to HPRT ex-
pression. Y axis represents fold increase compared with
Day 0. Each point represents an individual mouse. Mean
value is indicated. *P < 0.05 compared with Day 0. RQ,
relative quantity.
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of collagen incubation. The cells were then washed, fixed in 4% paraformal-
dehyde, and nuclei were counterstained with 4’,6-diamidino-2-phenylindole
(1 wg/ml). Coverslips were mounted with Vectashield Hardset (Vector,
Burlingame, CA). Images were obtained using a Nikon Eclipse 80i mi-
croscope with a DS Camera Head for fluorescent microscopy and a Nikon
Eclipse TE200 inverted fluorescent microscope (Nikon, Melville, NY)
with a Bio-Rad Confocal Laser Scanning System Radiance 2,000 (Bio-
Rad Laboratories, Hercules, CA) equipped with krypton-argon and
red diode lasers, using LaserSharp 2,000 software (Bio-Rad). Images
were superimposed and processed with Adobe Photoshop version 7.0
(Adobe, San Jose, CA).

Collagen Internalization by Flow Cytometry

MLFs were serum starved overnight, preincubated with 20 uM EST
(Calbiochem) for 1 hour, followed by 1-hour incubation with 10 pg/ml
integrin subunit B1 blocking antibody (Ha2/5; BD Biosciences, San
Diego, CA), 10 pg/ml of integrin subunit a2 blocking antibody (Hal/
29; BD Biosciences), isotype control (Hamster IgM; BioLegend, San
Diego, CA), or 25 pg/ml MMP inhibitor (GM6001; Calbiochem).

To determine the role of cytokines in collagen internalization, serum-
starved MLFs were incubated for 24 hours with: 10 ng/ml transforming
growth factor (TGF)-B1 (R&D Systems, Minneapolis, MN), 10 ng/ml
TNF-a (R&D Systems), 10 ng/ml IFN-y (Chemicon, Temecula, CA),
10 ng/ml platelet-derived growth factor-BB (R&D Systems), or 1 ng/ml
IL-1a (R&D Systems). After incubation with cytokines, EST 20 pM
was added for 1 hour.

Oregon green-labeled type IV collagen or gelatin was added for
8-24 hours. Fibroblasts were washed and incubated with 0.4% trypan
blue (Hyclone; Thermo Scientific, Logan, UT) to quench extracellular,
uninternalized fluorescent collagens. Fibroblasts were then trypsinized,
resuspended in dye-free Dulbecco’s modified Eagle’s medium/10% FBS,
fixed in 2% paraformaldehyde, and analyzed using the Guava PCA
System (Guava Technologies, Hayward, CA) with the Guava Express-
Plus program, and analyzed using CellQuest 2.0 (BD Biosciences).

RESULTS

uPARAP Is Highly Expressed in Mouse Lung

We compared the protein and RNA expression of uPARAP in
different murine whole-organ lysates. We found that uPARAP is
expressed highest in the lung compared with other whole-organ
homogenates (Figures 1A and 1B). uPARAP immunoreactivity

was visualized throughout the lung parenchyma, especially at
the junctures of alveolar septae (Figure 1C). We then examined
expression levels of uPARAP after bleomycin lung injury (Fig-
ure 1D). We found that uPARAP expression was maintained
for the first 7 days after injury, then decreased significantly from

35 q B
A 8 WT Owr
- UPARAP-- 1 uPARAP--
30 1
£ 30
o]
b 4
5 £ 20
25 4 g
et %
% % % % E 10
20 T T T 1 0 T T
0 50 100 150 200 Closed Open
TIme (sec) Chest Chest
80
C -o- UPARAP-- D O wr
8 WT 1 uPARAP--
80 1
60
E
o] i 604
g £
§ S w0
40 T
0 % % W £
o
204
20 . ; ; . 0 T -
0 50 100 150 200 Saline Bleomycin

Time (sec)

Figure 2. UPARAP™/~ mice have increased elastance compared with
wild-type (WT) mice at baseline and after bleomycin lung injury. (A)
Repeated measurements of thoracic elastance after total lung capacity
(TLC) maneuver at baseline. (B) Initial elastance after TLC in open and
closed chest at baseline. (C) Repeated measurements of thoracic ela-
stance after TLC maneuver at Day 7 after bleomycin instillation. (D) Initial
elastance after TLC at Day 7 after bleomycin instillation. n = 7-8/group.
P < 0.001T WT versus uPARAP ™/~ in all conditions.
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baseline by 14 days, which persisted through Day 21. uPARAP
expression increased in a subset of mice by Day 28.

uPARAP ™/~ Mice Have Increased Elastance Compared
with WT Mice

Despite no obvious differences upon gross histological
evaluation in uPARAP ™/~ versus WT, we did found that
uPARAP ™'~ mice have higher elastance compared with WT
mice in the uninjured state (Figure 2A). This difference per-
sisted after thoracotomy, indicating that the mechanical differ-
ence observed is due to lung structure rather than the chest wall
(Figure 2B). The differences in elastance persisted after lung
injury (Figures 2C and 2D). Despite the difference in elastance,
UPARAP ™'~ mice had similar total lung hydroxyproline con-
tent to WT mice (Figure 3F).

235

Response of uPARAP ™/~ Mice to Injury

To determine whether absence of uPARAP impacted response to
lung injury and fibrosis, we analyzed the uPARAP™'~ and WT
mice after bleomycin instillation. There was a trend toward im-
proved survival in uPARAP ™~ mice compared with WT mice
(Figure 3A), although this did not achieve statistical significance.
We also noted less weight loss in uPARAP ™'~ mice (Figure 3B).
We found significant differences in lung permeability at Day 3
after bleomycin, as measured by FITC-dextran extravasation into
the lung and wet lung weight (Figures 3C and 3D). At baseline,
no FITC-dextran extravasation was detected in BAL of WT or
UPARAP ™'~ mice. There was a small, but statistically significant,
decrease in BAL total protein in saline-instilled uPARAP™/~
mice (Figure 3E). At Day 3 after bleomycin, BAL total protein
and IgM were also decreased in uPARAP™'~ mice, although this
did not achieve statistical significance (Figure 3E and data not
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Figure 3. Response of uPARAP™/~ mice after bleomycin instillation. (4) Kaplan-Meier survival curve after bleomycin instillation (2 U/kg; n = 10-13/
group). (B) Percent weight loss after bleomycin instillation. (C) Wet lung weight at Day 3 after bleomycin or saline instillation. (D) Bronchoalveolar
lavage (BAL) FITC dextran at Day 3 after bleomycin or saline instillation. (E) BAL total protein at Day 3 after bleomycin or saline instillation. (F) BAL
total cell count at Day 3 after bleomycin or saline instillation (n = 7-8/group). (G) Hydroxyproline content at Day 28 after bleomycin instillation or
saline instillation (n = 9/WT, 13/uPARAP /7). Mean (+SEM) is shown for all assays. (H) Histology of WT (top) and uPARAP ™/~ mice (bottom) at Day
28 after bleomycin instillation. Two mice per group are shown. Hematoxylin and eosin stain.
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shown). There were no differences in total BAL cell count or
differential at any time point examined (Figure 3F and Figure E1
in the online supplement). We analyzed hydroxyproline content
as a measure of lung fibrosis at Day 28 after bleomycin instilla-
tion (Figures 3G and 3H). We found increased hydroxyproline
in uPARAP ™'~ mice compared with WT mice after injury,
consistent with the role of uPARAP in collagen clearance. To
look for compensatory changes in other proteins involved in
matrix remodeling and injury response, we examined levels of
collagen type I, MMPs, tissue inhibitor of metalloproteinases,
and several cytokines in WT and uPARAP ™/~ mice at baseline
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and after injury. We did not find significant differences at any
time point examined (Figure 4).

uPARAP Is the Primary Pathway of Internalization of Type IV
Collagen and Gelatin in Primary Lung Fibroblasts

We compared collagen internalization by uPARAP ™'~ MLFs
and WT MLFs. WT lung fibroblasts internalized type IV colla-
gen and gelatin beginning at 1 hour (Figure 5 and data not
shown). In contrast, there was minimal internalization of colla-
gen IV or gelatin by uPARAP ™'~ MLFs at any time point up to
24 hours (Figure 5 and Figure E2). Internalized collagen IV and
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Figure 4. Real-time PCR analysis of select cytokines, matrix metalloproteinases (MMPs), and tissue inhibitor of metalloproteinases, in mouse lungs
after saline or bleomycin instillation (Day 7). Data were normalized to GAPDH expression. Each point represents an individual mouse. Mean value

(£SEM) is indicated. Col, collagen.
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gelatin localized to the lysosomes in WT fibroblasts by confocal
microscopy (Figure 5B and gelatin not shown). Collagen inter-
nalization findings were confirmed and quantified by flow
cytometry (Figures 5C and 5D). Integrin o2 or B1 antibodies
or MMP inhibitor (GM6001) did not block internalization of
type IV collagen or gelatin in WT fibroblasts (Figures 5C and
5D). Similar results were found in lung fibroblasts derived from
both FVB and C57Bl/6 mice.

uPARAP Is Down-Regulated by Cytokine Mediators of Lung
Injury and Inflammation

Given the role of uPARAP in matrix turnover, we asked whether
cytokine mediators of extracellular matrix remodeling in lung in-
jury regulate uPARAP expression or function. TGF-B1 has been
previously shown to up-regulate uPARAP RNA expression in
human gingival fibroblasts (14). In contrast, we found decreased
uPARAP RNA expression in lung fibroblasts incubated with
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TGF-B1, TNF-q, IL-1a, but not PDGF-BB (Figure 6). Con-
sistent with decreased uPARAP expression, we found de-
creased collagen internalization in lung fibroblasts incubated
with TGF-B1, TNF-a, IFN-y, IL-1a, but not PDGF-BB (Fig-
ure 6C). Myeloid differentiation primary response gene 88
(Myd88) is an adapter protein necessary for IL-1 signaling (15).
We demonstrated that MyD88 ™'~ MLFs did not down-regulate
uPARAP expression or collagen internalization in response to
IL-1 (Figures 6D and 6E). However, uPARAP expression and
collagen internalization were still decreased by TGF-B1. These
results demonstrate that Myd88 regulates IL-1, but not TGF-
B-mediated down-regulation of uPARAP expression and
function.

DISCUSSION

We now demonstrate that although uPARAP™'~ mice appear
phenotypically normal, are fertile, and have a normal lifespan,
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media, transforming growth factor (TGF)-81 (10 ng/ml),
TNF-ac (10 ng/ml), IFN-y (10 ng/ml), platelet-derived
growth factor-BB (10 ng/ml), or IL-1a (1 ng/ml) for
24 hours. (A) Real-time PCR analysis of uPARAP mRNA
expression. Data were normalized to HPRT expression.
Y axis represents fold increase compared with serum
free media. (B) After 24-hour incubation with cyto-
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alone.
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they demonstrate differences in lung mechanics, as illustrated by
increased lung elastance in uPARAP™'~ mice at baseline, which
persists after injury. We also demonstrate that uPARAP™'~ mice
are partially protected from increases in lung permeability after
acute lung injury and, furthermore, that uPARAP '~ mice have
increased collagen content after bleomycin-induced lung injury.
Consistent with these findings, we demonstrate that uPARAP is
the primary pathway for collagen internalization in MLFs, and
that internalization was not dependent on the integrins, a1l and
B2, or MMP-mediated proteolysis. These results demonstrate an
unsuspected role of uPARAP in maintaining lung integrity, in
addition to a role in matrix remodeling during injury.

Although uPARAP internalizes collagen I and collagen IV,
we previously demonstrated that uPARAP colocalized most
closely with collagen IV, not collagen I, during lung development
(6). Collagen type IV is a major component of the alveolar
basement membrane basal lamina. In the lung, the basal lamina
of the alveoli and capillary are fused to facilitate gas transfer.
The importance of type IV collagen in regulating basement
membrane integrity is well illustrated in Goodpasture’s syn-
drome, an autoimmune disease in which antibodies against type
IV collagen result in alveolar and renal hemorrhage (16). We
speculate that loss of uPARAP-mediated collagen IV internal-
ization decreases basement membrane turnover. Absence of
uPARAP-mediated collagen IV internalization and degradation
may subtly alter the basement membrane conformation such
that it is more resistant to breakdown after injury. For example,
decreased collagen IV turnover may lead to increased crosslink-
ing of collagen and increased functional integrity that is only
apparent with stress. Despite differences in elastance, we did
not find differences in total hydroxyproline content in the lung
at baseline. Because turnover in the lung of extracellular cross-
linked collagen is relatively slow (20-22), the assay may not
detect small changes in collagen content that may be physiolog-
ically relevant. In addition, differences in the basement mem-
brane, such as increased collagen cross-linking, would not be
reflected by hydroxyproline measurements. In concert, our data
suggest that collagen IV may be the physiologically relevant sub-
strate for uPARAP in the lung during normal homeostasis.

We also found that uAPARAP ™'~ mice had increased collagen
content after bleomcyin-induced injury. This finding is consis-
tent with the known function of uPARAP in collagen internal-
ization and degradation, which would lead to increased
accumulation of collagen. Much focus has been paid to extra-
cellular pathways of collagen degradation, including MMPs and
cathepsin-mediated degradation (17). In contrast to these other
pathways of degradation, uPARAP-mediated collagen internal-
ization and degradation allows cells to clear matrix components
after protease cleavage and recycle collagen components, key
features of cell housekeeping. This makes uPARAP an attrac-
tive candidate for collagen turnover during active matrix
remodeling such as with lung injury and repair. Collagen that
has been precleaved by a mammalian collagenase, such as
MMP-14, is internalized much more efficiently than intact col-
lagen, suggesting that fibroblast-mediated collagen degradation
proceeds as a sequential mechanism in which extracellular col-
lagen degradation is followed by uPARAP-mediated endocyto-
sis of collagen fragments (10, 23).

Due to the profibrotic role of TGF-B1 in extracellular matrix
remodeling in lung injury, we asked whether TGF-B1 regulated
collagen clearance through uPARAP. Honardoust and colleagues
(14) showed that uPARAP is up-regulated by TGF-B1 in human
gingival fibroblasts. In contrast, we found that uPARAP expres-
sion and collagen internalization were both decreased in MLFs
treated with TGF-B1. This suggests that uPARAP is differen-
tially regulated in fibroblasts derived from different tissues.

Furthermore, our finding is consistent with the general role of
TGF-B in extracellular matrix accumulation (18, 19). Differences
in results may be related to the different baseline expression of
uPARAP in MLFs compared with gingival fibroblasts. Interest-
ingly, additional mediators of injury (TNF-a, IFN-y, IL-1) also
decreased uPARAP expression. We also find that in vivo ex-
pression of uPARAP is decreased by Day 14 after bleomycin
injury, when collagen accumulation occurs. These data suggest
that cytokine mediators of lung injury may promote develop-
ment of fibrosis by decreased uPARAP-mediated clearance of
collagen.

In summary, we demonstrate that uPARAP™'~ mice have
increased lung elastance, decreased lung permeability, and in-
creased collagen deposition after bleomycin-induced lung in-
jury. We demonstrate that uPARAP, but not other receptors,
is required for collagen internalization in lung fibroblasts. Fur-
thermore, we demonstrate that uPARAP and collagen internal-
ization are down-regulated by several cytokine mediators of
lung injury and fibrosis, in contrast to studies using fibroblasts
of different origins. Thus, uPARAP-mediated collagen internal-
ization contributes to both structural integrity and matrix re-
modeling after lung injury.
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