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Adaptations to suppress the viability of conspecifics
may provide novel ways to control invasive taxa.
The spread of cane toads (Rhinella marina)
through tropical Australia has had severe ecologi-
cal impacts, stimulating a search for biocontrol.
Our experiments show that cane toad tadpoles
produce waterborne chemical cues that suppress
the viability of conspecifics encountering those
cues during embryonic development. Brief (72 h)
exposure to these cues in the egg and post-
hatching phases massively reduced rates of survival
and growth of larvae. Body sizes at metamorphosis
(about three weeks later) were almost twice as great
in control larvae as in tadpole-exposed larvae. The
waterborne cue responsible for these effects might
provide a weapon to reduce toad recruitment
within the species’ invaded range.
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1. INTRODUCTION
The damaging ecological impacts of invasive species
have spawned a search for novel approaches to control
[1,2]. One such opportunity involves the exploitation of
species-specific competitive mechanisms, such as phero-
mones that suppress the reproduction, growth or survival
of conspecifics [3–8]. We studied cane toads (Rhinella
marina), bufonid anurans whose spread through
Australia has killed many native predators [9–11]. High
densities of toad tadpoles [12,13] result in intense
competition, reducing survival, growth and size at meta-
morphosis [14–17]. Older tadpoles search out and
consume eggs before they hatch, thereby reducing com-
petition [17,18]. After they hatch, however, the mobile
larvae are invulnerable to attack [17]. If it is difficult for
cannibalistic tadpoles to find eggs in muddy weed-
choked ponds,we might alsoexpectpheromonal suppres-
sion to evolve. Anuran tadpoles use sophisticated
chemical communication systems [19] and exhibit plastic
developmental responses to chemical cues [20,21]. If
toad tadpoles exploit those sensitivities to interfere
with their competitors, larval chemical cues might offer
novel approaches for targeted control of toads [8,22].
We conducted experiments to look for such effects.

2. MATERIAL AND METHODS
(a) Tadpole husbandry and experimental treatments

We collected adult cane toads from Middle Point Village (128340 S,
1318180 E) in the Northern Territory, and injected them with
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leuprorelin acetate to stimulate oviposition (see [23] for details). A
10-egg section of the egg string was placed into each of 20 containers
(17 � 11 � 7 cm; with 750 ml non-chlorinated well water) in a
shaded outdoor area. Containers were divided into half with 1 �
1 mm vertical flyscreen mesh. In half of the containers, we added
three cane toad tadpoles collected from a local pond (snout–vent
length (SVL) 8.75–10.15 mm; Gosner stage 34–36 [24]), to the
opposite side of the mesh (no food was provided). Thus, eggs were
exposed to waterborne cues from tadpoles, but no physical contact.
The remaining 10 containers (randomly allocated) served as controls
(no tadpoles).

After 72 h, when the eggs had developed into free-swimming tad-
poles (Gosner stage 25), we tested water quality (dissolved oxygen and
temperature using a YSI 85 meter (Yellow Springs, OH, USA); ammo-
nia and pH using API test kits (Chalfont, PA, USA) and SSS Universal
Indicator Paper (Murarrie, Queensland)). Each group of 10 newly
hatched tadpoles was then transferred to a larger container (37�
28 � 20 cm; 20 tubs total) containing a 2 cm deep sediment from a
nearby pond, and filled to a depth of 15 cm with non-chlorinated
water, and 1 g Hikari algae pellets (Kyorin Co. Ltd., Himeji City,
Japan) per tub to provide additional nutrients.

Five days later, we randomly euthanased all tadpoles in five replicates
per treatment (with MS-222; Argent Chemicals, Redmond, WA, USA),
and counted and measured them (SVL, mass after blotting dry, Gosner
stage). The remaining tadpoles were checked daily, and placed individu-
ally in moist paper-lined containers when they began to metamorphose.
When the limbs had emerged and the tail was resorbed, metamorphs
were measured (snout–urostyle length (SUL), blotted dry mass) and
the length of the larval period was calculated.

(b) Data analyses

Data were analysed using MANOVA and t-tests, using mean values
per container to avoid pseudoreplication. If necessary, data were
log-transformed to assure normality and variance homogeneity. Sur-
vival data were arcsine transformed. Non-normally distributed
ammonia data were analysed using the Kruskal–Wallis test.
3. RESULTS
The two treatments did not differ in mean dissolved
oxygen concentration (control ¼ 6.91 mg ml–1, conspe-
cific exposure ¼ 6.85 mg ml–1; t18 ¼ 1.04, p ¼ 0.31),
temperature (27.18C, 26.78C; t18 ¼ 1.78, p ¼ 0.09)
or pH (6.0 in all containers), but ammonia
concentration increased (0.5, 1.0 mg ml–1; x2

1 ¼ 19.0,
p , 0.0001).

Exposure to chemical cues from conspecific tad-
poles reduced the viability of larvae hatching from
those eggs, at 5 days post-hatching (figure 1;
MANOVA, F4,5 ¼ 12.45, p , 0.001) and at metamor-
phosis (figure 2; MANOVA, F4,5 ¼ 5.19, p , 0.05).
When assessed after 5 days, exposure did not affect
survival rate (t8 ¼ 0.79, p ¼ 0.45), but reduced the
treatment tadpoles’ body length (24% decrease, t8 ¼
4.06, p , 0.005), body mass (41% decrease, t8 ¼
3.40, p , 0.01) and developmental stage (t8 ¼ 5.43,
p , 0.001). The effects of embryonic exposure were
evident more than 20 days later (figure 2). Larvae
from tadpole-exposed eggs took greater than 8 per
cent longer to complete development, but this differ-
ence was not significant (t8 ¼ 1.20, p ¼ 0.26).
Metamorphs from the tadpole-exposure treatment
averaged 11 per cent shorter (t8 ¼ 2.270, p , 0.03)
and 45 per cent lighter (t8 ¼ 2.79, p , 0.03) than did
unexposed siblings, and their survival rates were
reduced by 40 per cent (t8 ¼ 3.24, p , 0.05; figure 2).
4. DISCUSSION
Embryonic exposure to chemical cues from cane toad
tadpoles had devastating long-term consequences for
conspecific larvae, even though water quality remained
well within the range tolerated by cane toad tadpoles
[25]. Larval survival, growth and development were
This journal is q 2011 The Royal Society
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Figure 1. Phenotypic traits of cane toad tadpoles at 5 days post-hatching, as a function of exposure to chemicals from conspe-
cific tadpoles during the egg stage. These chemicals reduced the younger tadpoles’ (a) body length, (b) mass and
(c) developmental stage, but (d) survival rates were unaffected. Graphs show means and standard errors.
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Figure 2. Phenotypic traits of metamorph cane toads as a function of exposure to chemical cues from conspecific tadpoles
during the egg stage. Exposure to these cues reduced the (a) body length and (b) mass of metamorphs, (c) non-significantly
extended the duration of the larval stage and (d) reduced larval survival. Graphs show means and standard errors.
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substantially reduced, with metamorphosis at smaller
body sizes. Delayed metamorphosis can impose a
heavy fitness cost [26], and smaller tadpoles are
more vulnerable to predation [27] and competition
[28,29]. Smaller metamorphs are more vulnerable to
Biol. Lett. (2012)
desiccation [30], predation [31], cannibalism [32]
and parasitism [33].

Bufonid tadpoles possess specialized epidermal
secretory cells (‘riesenzellen’) that produce phero-
mones [34–36], possibly including these suppressors
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of the viability of conspecific larvae. Pheromonal pro-
duction by the older tadpoles may be continuous, or
may have been evoked by the presence of eggs (tad-
poles can detect eggs from waterborne cues [17,18])
or by starvation [37]. These possibilities could be
tested by exposing eggs to water from tadpoles that
had or had not been exposed previously to conspecific
eggs, or from fed versus unfed tadpoles. Chemical sup-
pression of embryos might be owing to an adaptation
of tadpoles, an adaptive plastic response of embryos
and/or a fortuitous (unselected) effect. Future work
could usefully explore these alternatives, as well as
assessing the consistency of this response across pond
conditions, sibships and the like.

Unlike other toad pheromones [18,35], these effects
reduce toad viability in the long term only after brief
exposure. Thus, they have great potential as a
species-specific pheromonal control for invasive cane
toads. Australian native anurans do not respond to
the alarm or attractant pheromones produced by
cane toad tadpoles [18,38], and so may well ignore
these development-suppressing toad pheromones. Sex
pheromones have been used as attractants and
mating disruptors for biocontrol [6,7,39]. Agricultural
scientists exploit allelopathic effects to suppress weed
growth [40]; and indeed, the effects we have documen-
ted would qualify as allelopathy under some but not all
definitions of this term [41]. In a similar vein, anuran
pheromones that reduce the viability of conspecifics
may provide powerful weapons for the control of
selected species.

The work was approved by the University of Sydney Animal
Ethics Committee.
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