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Gram-negative bacteria have evolved several secretory pathways to release enzymes or toxins into
the surrounding environment or into the target cells. The type II secretion system (T2SS) is con-
served in Gram-negative bacteria and involves a set of 12 to 16 different proteins. Components
of the T2SS are located in both the inner and outer membranes where they assemble into a supra-
molecular complex spanning the bacterial envelope, also called the secreton. The T2SS substrates
transiently go through the periplasm before they are translocated across the outer membrane and
exposed to the extracellular milieu. The T2SS is unique in its ability to promote secretion of large
and sometimes multimeric proteins that are folded in the periplasm. The present review describes
recently identified protein–protein interactions together with structural and functional advances in
the field that have contributed to improve our understanding on how the type II secretion apparatus
assembles and on the role played by individual proteins of this highly sophisticated system.
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1. INTRODUCTION
Gram-negative bacteria are surrounded by a dual mem-
brane structure establishing an interface between the
environment and the interior of the cells. The two mem-
branes are separated by an aqueous periplasmic space
containing a rigid peptidoglycan layer. This cell envel-
ope constitutes a highly selective barrier for uptake
and release of various compounds. Gram-negative bac-
teria have evolved several highly specialized secretory
pathways to release proteins into their surrounding
environment. Among them, the type II secretion path-
way is a two-step process dedicated to the secretion of
folded and/or oligomeric exoproteins. This ability to
secrete large molecules is extremely valuable and is
achieved by a sophisticated molecular nano-machine
embedded in the bacterial envelope called the secreton.

The type II secretion pathway is conserved in
Gram-negative bacteria [1] with prevalence in bacterial
pathogens of plants (Pseudomonas fluorescens, Erwinia or
Xanthomonas species), animals (Aeromonas hydrophila)
and humans (Klebsiella oxytoca, Pseudomonas aeruginosa,
Vibrio cholerae or Legionella pneumophila) [2–5]. The
number of proteins secreted via the T2SS by any given
organism is variable and ranges from one, in the case of
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K. oxytoca [6], to more than ten in P. aeruginosa [7],
V. cholerae [8] or L. pneumophila [9]. The functions of
these proteins are extremely diverse and include toxins
[10,11], surface-associated virulence factors [12,13],
cytochromes [14] and a broad range of enzymes that
hydrolyse macromolecules such as lipids, polysaccharides
and proteins [15].
(a) Genetic organization

Typical type II secretion systems (T2SSs) are encoded
by a set of 12 to 16 gsp (general secretion pathway)
genes organized into large operons including the con-
served ‘core’ genes denoted gspCP to OA and in some
bacterial species extra gsp genes such as gspAB, gspN
or gspS (figure 1). Because a different nomenclature is
used for Pseudomonas and non-Pseudomonas T2SSs,
the alternative gene or protein nomenclature is indi-
cated throughout the review. For example, in GspER

the ‘R’ refers to the Pseudomonas XcpR T2SS com-
ponent, which is reciprocally called XcpRE. Apart
from rare exceptions, mutation in any gsp gene prevents
secretion and causes accumulation of the exoproteins in
the periplasm. The genetic organization of the T2SS
clusters is remarkably conserved. However, in some
species, the position of the gspCPDQ genes is peculiar
(figure 1). In the P. aeruginosa xcp cluster, these two
genes form an operon divergent from the operon con-
taining the gspER-MZ genes. In Xanthomonas
This journal is q 2012 The Royal Society
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Figure 1. Genetic organization of the T2SS clusters. The name of each T2SS gene cluster is shown in brackets beside the name
of the bacterial species. Each gene is represented by an arrow and ‘core’ genes present in all T2SS clusters are represented in
colour. The gspER, FS, LY and MZ genes encoding components of the inner membrane platform are shown in green; the gspGT,
HU, IV, JW and KX genes encoding pseudopilins and gspOA gene encoding the prepilin peptidase are shown in orange; the

gspDQ gene encoding the secretin is shown in blue; the gspCP gene encoding the trans-periplasmic protein is represented in
shaded green and blue tones because GspCP is a component of the inner membrane surface interacting with secretin.
The gspA, B, N and S genes that are not considered to be core components of the T2SS are represented in white.
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campestris, the gspCPDQ genes are found after gspMZ at
the end of the gsp operon (figure 1). Exceptions are with
the T2SS genes in Burkholderia pseudomallei and L.
pneumophila, where gspCP and gspDQ are not next to
each other. Finally, it should be noted that the whole
P. aeruginosa hxc (for homologous to xcp) cluster [16]
has a radically different organization of its genes. This
T2SS is used by P. aeruginosa for the secretion of a
single exoprotein, the alkaline phosphatase LapA, and
the hxc genes are expressed in phosphate-limited
growth conditions [16]. The specificity of the P. aerugi-
nosa Hxc system versus the more general Xcp pathway
Phil. Trans. R. Soc. B (2012)
is probably not linked with growth in phosphate star-
vation conditions since phosphate-regulated
phospholipases (PlcH, –N and –B) [17,18], or alkaline
phosphatase, PhoA [19], are all secreted via the Xcp
machinery. Interestingly, Durand et al. [20] recently
identified specific Hxc phenotypes suggesting the exist-
ence of two T2SS subtypes called T2aSS and T2bSS to
which, Xcp and Hxc, respectively, belong. Indeed, the
authors propose that the secretion process of the Hxc
T2bSS of P. aeruginosa involves a pseudopilus whose
structure and stability may differ from the one com-
monly found in Xcp and other known T2aSSs. A
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Figure 2. Model of the type II secretion pathway in Gram-

negative bacteria. (a) The T2SS-dependent exoproteins,
shown as yellow circles, are first exported across the IM via
the Sec (purple) or Tat (brown) machineries. The exoproteins
are subsequently recognized and transported across the OM
by the secreton (blue/green). (b) Schematic of the secreton

divided into three sub-complexes. Secretin GspDQ (blue)
forms a dodecameric pore in the OM through its C-terminal
domain whilst its N-terminal part protrudes in the periplasm.
The IM surface, composed of T2SS proteins FS, LYand MZ,

and the traffic ATPase GspER are coloured green. Secretin is
connected to the IM surface through the transperiplasmic
protein GspCP (blue/green). The pseudopilus, mostly consti-
tuted by the GspGT major pseudopilin and capped by the
minor pseudopilins GspHU, IV, JW and KX quaternary com-

plex, is shown in orange and red. Gsp proteins are indicated
by their corresponding letter.
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second T2SS called Stt has also recently been identified
in Erwinia chrysanthemi (now called Dickeya dadantii )
where it involves cell-surface targeting of a non-conven-
tional T2SS substrate, PnlH, possessing a non-cleavable
Tat-dependant amino-terminal targeting signal [21].
(b) The type II secretion pathway

Exoproteins that use the T2SS are secreted into
the extracellular medium by a two-step process in
which the proteins are exported across the cytoplasmic
membrane and released into the periplasm before
being transported across the outer membrane (OM)
(figure 2a). Exoproteins requiring cytoplasmic folding
are exported through the inner membrane (IM) by the
Tat export pathway, while translocation of unfolded
protein precursors through the IM goes via the Sec
export system [5,17]. In a second step, the folded
exoproteins, transitorily localized in the periplasm, are
translocated across the OM in a T2SS-dependent
manner, thus involving the trans-envelope
Phil. Trans. R. Soc. B (2012)
supramolecular complex, called the secreton, made of
the different Gsp proteins.
(c) Structural organization of the secreton

Based on data obtained by many different experimental
approaches, including subcellular localization, protein–
protein interactions between individual components
of the T2SS and resolution of protein structure, the
current model for the secreton is represented by three
functional sub-complexes (figure 2b). An inner mem-
brane platform (IMP) (figure 2b, green) is composed
of the GspCP, FS, LY and MZ IM proteins; the cyto-
plasmic traffic ATPase GspER is associated with this
through an interaction with the bitopic protein GspLY

[22–25]. The secreton also contains five proteins that
display homologies with the type IV pilin PilA and are
designated pseudopilins [26–28]. These proteins have
been proposed to be involved in the formation of a fibril-
lar piston-like structure, the pseudopilus (figure 2b,
orange/red) [29–33]. Finally, GspDQ, the OM com-
ponent of the system, belongs to the secretin family
and likely constitutes the channel giving T2SS sub-
strates access to the extracellular medium (figure 2b,
blue) [34,35]. Whereas the proton motive force has
been shown to be involved in the translocation of
T2SS substrates across the OM [36,37], GspER,
which contains motifs characteristic of traffic ATPases,
also contributes to energize the T2SS-dependent pro-
cess [38,39] and could drive the pseudopilus through
the GspDQ channel, pushing out exoproteins to the
external medium [15,40,41].
(d) Cellular localization of the secreton

In P. aeruginosa the number of assembled secreton
machines is thought to be relatively low and has been
estimated at 50–100 secretons per cell [34]. Moreover,
while results obtained in K. oxytoca and V. cholerae
[42–44] with GFP-fused Gsp proteins indicate a cir-
cumferential distribution of the machinery into foci,
the P. aeruginosa Xcp secreton was proposed to be
polar. This was shown by adding a Lumino tag onto
XcpR or XcpS or by the visualization of protease
secretion with an intramolecularly quenched casein con-
jugate [45]. Such discrepant results could be due to
artefacts related to the artificial production of the repor-
ters used, as clearly demonstrated by Lybarger et al. [42].
Alternatively, it cannot be ruled out that cellular localiz-
ation of T2SSs might vary from one species to another.
Interestingly, further localization experiments of the
secreton, which were performed in various gsp back-
grounds, indicate that in contrast to other Gsp proteins,
secretin does not need other secreton components for
correct localization in the bacterial envelope, thus
suggesting an assembly of the secreton from the OM
[42]. This relatively new concept of molecular machines
assembly from their OM secretins was also recently
proposed for the type III secretion machinery [46].

In this review, we will summarize what is currently
known about the individual organization of the three
secreton sub-complexes briefly outlined in this intro-
duction. We will particularly highlight new findings
on solved protein structures and protein–protein inter-
actions among and between the three sub-
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Figure 3. Electron microscopy structure of T2SS secretin. Cryo-EM reconstitution of V. cholerae T2SS secretin GspDQ at 19 Å
resolution (EMDB1763 and adapted from [61] by permission from Nature Publishing Group). The GspDQ cryo-EM density

reveals a cylindrical channel assembly 155 Å in diameter and 200 Å in length. In side view, three domains are identified from
top to bottom: the extracellular cap, the outer-membrane domain and the periplasmic vestibule domain. In a cutout view,
secretin contains an extracellular chamber limited by an extracellular gate and a periplasmic gate. The vestibule domain
shows a constriction which results in a narrowing of the channel diameter from 75 to 55 Å. The crystal structure of the N-term-
inal periplasmic subdomains N0–N1–N2 from ETEC [62] is fitted into the GspDQ periplasmic vestibule (adapted from [47]

by permission from Elsevier).
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complexes. Finally, we will propose an integrative
model for T2SS assembly and mechanism.
2. THE OUTER MEMBRANE SECRETIN
Secretins are members of a protein superfamily [47]
involved not only in T2SS, but also in type III secretion
system [48], type IV pilus assembly [49], DNA uptake
and extrusion of the filamentous phage [50]. These pro-
teins form large homo-multimers of 12–15 subunits
assembled in the OM [51]. They form a ring-shaped
structure with a central cavity 50–80 Å in diameter [47].

In K. oxytoca and E. chrysanthemi, the insertion of
the secretin in the OM has been shown to depend on
the presence of a small OM lipoprotein, the pilotin
GspS [41,52]. This protein has chaperone-like proper-
ties since it is involved in the protection of the secretin
from proteolytic degradation. PulS is also involved in
secretin transport since in its absence, K. oxytoca
secretin PulD mislocalizes to the IM [53], indicating
that a lipid-anchored chaperone is required for effi-
cient and correct insertion of the secretin into the
OM. To date, genes encoding GspS members have
not been found in all T2SSs (figure 1). Therefore, it
cannot be ruled out that genes with low homologies,
and which are not associated with the gsp cluster,
could encode proteins playing the same function as
GspS [54]. Alternatively, secretin transport is assisted
in some species by the non-core components GspAB.
Since the X. campestris ExeA directly interacts with
the peptidoglycan layer, the complex may contribute
to create space in the peptidoglycan mesh to allow
the transport and assembly of the megadalton-sized
secretin multimer in the OM [55]. Finally, some
T2SS secretins do not require any specific assistance
for their transport to the OM. This is the case for
the liposecretin HxcQ of P. aeruginosa, which is tar-
geted to the OM by its N-terminal lipid anchor [56].
Phil. Trans. R. Soc. B (2012)
Interestingly, it has been shown that transport to the
OM of the T2SS secretin PulD is not dependent on
the general Bam OM protein transport pathway [57].
It is therefore possible that secretins use the Lol lipo-
protein transport route for their transport to the OM
either directly for liposecretin [56] or via their pilotin
[58]. Alternatively, it cannot be excluded that some
secretins use the Bam pathway as was demonstrated
for the Neisseria type IV pilus secretin PilQ [59].

Secretin monomers are bipartite proteins ranging
from 50 to 70 kDa in size. Homology among members
of the secretin family resides in the C-terminal half of
the protein that is important for oligomerization, whereas
the N terminus is conserved only within subgroups from
related transport pathways and thought to be involved in
system-specific interactions [60]. Recently, Reichow
et al. [61] have solved the low-resolution structure of
the V. cholerae full-length GspDQ (EspDQ) secretin
using cryo-electron microscopy (figure 3). The cryo-
EM reconstitution of the V. cholerae secretin at 19 Å
resolution suggests a dodecameric structure reminiscent
of a barrel with a large internal channel containing two
compartments separated by a closed periplasmic gate, a
periplasmic vestibule and an extracellular chamber
located in the OM (figure 3).

The N terminus of T2SS secretins comprises four
structurally independent domains, N0–N3 (figure 4).
The three-dimensional structure of the N0–N1–N2

region of the enterotoxigenic Escherichia coli (ETEC)
GspDQ secretin has been solved at 2.8 Å by X-ray crys-
tallography [62]. This structure has been used to
generate a 12-fold symmetrical ring, which was fitted
into the density map of the full length V. cholerae
EpsDQ obtained by cryo-EM [61] (figure 3). The recon-
stitution confirmed that the C-terminal and N-terminal
regions are two structurally separate domains located in
the OM and the periplasm, respectively. Since only
low-resolution structures have been obtained for the
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pore-forming part of the secretin, the precise structural
folding of this domain remains unknown. Like the
majority of the bacterial OM proteins, secretins are pre-
dicted to adopt a b-barrel structure [63]. For example,
the topology of the XcpQD secretin together with predic-
tions for b-strands in the primary amino acid sequence
has previously been assessed [64]. If this is the case,
whether this domain is formed by one large single homo-
multimeric b-barrel or by the assembly of 12 individual
b-barrels remains an open question. Alternatively, it is
still a likely possibility that secretin pores do not form
b-barrels but adopt alternative a-helical folds. Such an
original fold was first identified in the E. coli capsular
polysaccharides OM pore Wza [65], but is also required
for insertion of the type IV secretion OM protein VirB10
in Agrobacterium tumefaciens [66] or the P. aeruginosa
Phil. Trans. R. Soc. B (2012)
PelC protein [67]. The hypothesis of an a-helical fold
in T2SS secretins is supported by the observation that
transport of this group of proteins does not involve the
Bam complex [57] which is required for insertion of
OM proteins forming b-barrels [59,68].

A recent cryo-EM study showed that the T2SS-
dependent cholera toxin binds in the lower part of
the periplasmic vestibule of the V. cholerae EpsDQ

secretin [69]. This observation is in agreement with
the previous interaction found between the T2SS
secretin OutDQ and its cognate substrate PelB [41]
and confirms the role of the secretin in substrate bind-
ing. How the substrate further travels through the pore
is still unknown but the closed state of the channel
suggests that several conformational changes might
occur in the secretin core to accommodate the
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substrate and to trigger communication between the
different chambers. In addition, and as we shall see
in §3–7, other components of the secreton such as
the transperiplasmic protein GspCP and the pseudopi-
lus are also involved in this process since they also
interact with the substrate [70].
3. THE TRANS-PERIPLASMIC PROTEIN GSPCP

GspCP proteins are bitopic IM proteins that are the least
conserved of the T2SS components. Proteins of this
family are organized into several domains including
an N-terminal cytoplasmic region, a transmembrane
(TM) domain, a highly conserved central periplasmic
domain (homology region, HR) and a C-terminal part
containing specific secondary structures such as
coiled-coil domains (in P. aeruginosa and Pseudomonas
alcaligenes, for instance) or PDZ domains (in K. oxytoca
and E. chrysanthemi) (figure 4) [71]. GspCP was shown
to be active as a dimer and self-associates by its TM
domain, which is not a simple membrane anchor but
plays an active role in the function of the protein [72].
The HR domain of V. cholerae GspCP (EpsCP) was
shown to interact directly with the periplasmic N0

domain of the secretin EpsDQ [44,73]. This interaction
was also seen in E. chrysanthemi where the interaction
site of OutCP on OutDQ was localized between residues
139 and 158 of the HR domain. This peptide called
OutCP-sip ‘secretin interacting peptide’ recognizes two
different sites on the OutDQ secretin. The first one is
localized on domain N0, whilst the second one sits
astride domains N2 and N3 [74]. Furthermore, map-
ping of the interaction between XcpPC and XcpQD in
P. aeruginosa showed that the N3 domain is essential
for this interaction [70]. These different interaction
sites between secretins and GspCs suggest that
GspCP/DQ partners have evolved various strategies to
interact with each other.

Several genetic data indicate that GspCP and GspDQ

form a functional couple determining the specificity of
the machinery. For example, in the very closely related
E. chrysanthemi and E. carotovora Out systems, all
genes are individually exchangeable except for outCP

and outDQ [75]. Similar investigations performed
comparing P. aeruginosa and P. alcaligenes also indicate
that XcpPC and XcpQD are determinants of substrate
specificity [76]. In order to localize the GspCP domain
directly or indirectly involved in substrate specifi-
city, chimeras between E. chrysanthemi OutCP and
P. aeruginosa XcpPC domains have been generated
and their ability to support secretion in P. aeruginosa
tested [71]. Interestingly, XcpPC chimeras containing
the TM, HR or C-terminal domain of OutCP remain
functional, indicating that none of these domains play a
role in substrate specificity. However, the replacement of
the intermediary domain between TM and HR called
TM/HR (figure 4) leads to secretion defect, suggesting
that this domain plays an essential role in specificity
and potentially in substrate recognition. Recently, a set
of in vitro experiments has revealed direct interactions
between purified XcpPC and two substrates of the Xcp
T2SS, the elastase (LasB) and the lipase (LipA) [70].
Importantly, no interaction was detected using the sub-
strate of the second P. aeruginosa T2SS (Hxc), i.e. the
Phil. Trans. R. Soc. B (2012)
alkaline phosphatase (LapA). These observations
revealed that the species-specificity of the T2SS mechan-
ism is largely contributed by the exoproteins and
involves GspCP and GspDQ, which directly interact
with cognate substrates.
4. THE ATPASE OF THE SYSTEM: GSPER

A functional T2SS requires the presence of a traffic
ATPase, GspER. Traffic ATPases are involved in several
other transport machines such as type IV secretion, con-
jugation and type IV piliation systems. Structural
analysis on the type IV secretion and type IV piliation
ATPases indicated that they may function as dynamic
hexamers [77,78]. The members of the traffic ATPase
superfamily are characterized by two nucleotide-binding
motifs designated Walker A and B boxes and also His and
Asp boxes (figure 4) [79]. GspER proteins have a charac-
teristic Walker box A containing the P-loop of an NTP-
binding motif, and a less well-defined Walker B box in
which the second conserved aspartate residue is replaced
by either a glycine or an alanine. Mutation of a conserved
glycine residue within the Walker A motif of GspER from
P. aeruginosa, K. oxytoca, E. chrysanthemi or V. cholerae
causes the bacteria to be secretion-defective, showing
the important role played by this protein in the secretory
process [80–83]. Mutations in the less conserved Walker
B box have little or no effect on the secretion process
[83]. The T2SS traffic ATPase family is distinct from
other ATPases in three additional conserved regions:
first the aspartate box ‘Asp Box’ between the Walker A
and B boxes consisting of two short aspartate-rich
motifs (figure 4), which is required for the function of
GspER in the secretion process and may be involved in
the formation and stabilization of the nucleotide-binding
fold by interacting with Mg2þ[83]; second, the His box,
including two histidine residues, which is located down-
stream of the Walker B box, although the role of the His
box in GspER function is still unknown; last, a tetracys-
teine (Cys4) motif that appears to be essential
for function, since replacement of anyof the cysteine resi-
dues by a serine within the K. oxytoca GspER leads to a
large decrease in pullulanase secretion (figure 4) [15].

GspER traffic ATPases lack hydrophobic domains
and exhibit the general characteristics of a cytoplasmic
protein (figure 4). However, they were found to be
associated with the IM through an interaction with
the bitopic protein GspLY [80,84]. Results obtained
from V. cholerae indicate that ATP hydrolysis by the
EpsER/EpsLY complex is stimulated by acidic phospho-
lipids, whereas the activity of EpsER alone is unaffected
[85]. Further mutagenesis revealed that the membrane-
proximal region of the cytoplasmic domain of EpsLY

subtly controls the interaction of EpsER with the cyto-
plasmic membrane and influences its oligomerization,
thereby stimulating its ATPase activity [85]. Other
results from X. campestris have shown that XpsER oligo-
merization, as well as its association with XpsLY,
requires ATP binding but not ATP hydrolysis, thus
indicating that association between XpsER and XpsLY

is needed for ATPase activity [86].
The crystal structure of a truncated V. cholerae EpsER

protein lacking the N-terminal 90 residues was deter-
mined with or without the nucleotide bound [87].
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These structures reveal a two-domain architecture with
the five characteristic motifs of the GspER subfamily clus-
tering around the nucleotide-binding site in the C-
terminal domain. The EpsER subunits form a right-
handed helical arrangement in the crystal with extensive
and conserved contacts between the C and N domains
of neighbouring subunits, thus suggesting that EpsER is
organized as a hexameric structure. The hexameric
state of GspER is confirmed by results obtained in V. cho-
lerae and X. campestris showing that optimal ATPase
activity is obtained with hexameric GspER [38,86]. The
crystal structure of the N-terminal part of V. cholerae
EpsER in complex with the cytoplasmic domain of V. cho-
lerae EpsLY showed that these two proteins form a hetero-
tetramer in which EpsLY forms a central dimer and
EpsER binds at the periphery [88].

Amino acid sequence alignments have shown
that XpsER of X. campestris contains an additional N-
terminal extension not found in most other GspERs.
This additional domain appears to be essential for
XpsLY binding, therefore indicating that a more sophis-
ticated interaction process between GspER and GspLY

might occur within the Xps secreton of X. campestris
[89]. To date, the structure of a full-length GspER has
not been reported and this would provide key and defi-
nite structural information about the architecture of
GspER monomer and multimer.
5. GSPFS, LY AND MZ: THE IMP STABILIZERS
GspFS is a polytopic integral membrane protein with a
small periplasmic loop and two large cytoplasmic
domains connected by three TM regions (figure 4)
[90,91]. Two-hybrid studies have shown that the
N-terminal domain of the E. chrysanthemi OutFS

protein interacts both with OutER and OutLY [24]
suggesting that OutFS could participate in the stability
of the IMP [92]. Construction of a chimera between
P. aeruginosa and P. putida XcpSF has shown that inter-
action with other T2SS components is mediated by
the cytoplasmic domains [25].

GspLY is a bitopic IM protein organized in three
domains, the C-terminal domain localized in the cyto-
plasmic compartment, the TM domain, and the
periplasmic domain (figure 4) [22]. The structures of
both cytoplasmic and periplasmic domains of EpsL
in V. cholerae have been solved at 2.7 and 2.3 Å,
respectively [93,94]. The cytoplasmic part is com-
posed of subdomains I, II and III and was shown to
interact with the N-terminal part of GspER through
subdomains II and III [88].

GspMZ is a bitopic protein [22] with a short cyto-
plasmic domain, a TM domain and a periplasmic
domain (figure 4) involved in homo-dimerization
[24,95,96]. GspMZ was shown to be required for
GspLY stability since the amount of the former is greatly
dependent on the presence of the latter [23]. Studies on
GspMZ variants in P. aeruginosa revealed that three peri-
plasmic domains of the protein were found to be
important for interaction with GspLY. Two distinct stabi-
lizing domains were localized, respectively, at the
beginning and at the end of the periplasmic part of the
protein whereas the third one, localized next to the TM
domain, also required the presence of the
Phil. Trans. R. Soc. B (2012)
transperiplasmic protein GspCP to promote GspLY

stabilization [97]. The influence of GspCP on the stability
of the GspLY/GspMZ complex was also observed in X.
campestris since GspLY dissociates faster from the
GspLY/GspMZ complex than from the GspCP/LY/MZ

one [98]. In addition, antibodies against GspMZ co-
immunoprecipitated GspLY, GspCP, and GspER from
detergent-solubilized cell extracts, confirming the exist-
ence of a complex containing these four proteins [99].
6. THE PSEUDOPILUS: A CENTRAL STRUCTURE
OF THE T2SS MACHINE
Six of the 12 conserved gsp genes are dedicated to the
formation of a periplasmic pilus-like structure called
the pseudopilus (figure 1). Five of those genes,
gspGT-KX encode the pseudopilins which are the con-
stitutive elements of the pseudopilus, whereas gspOA

encodes the prepilin peptidase involved in their
maturation [26–28,100,101]. Like the closely related
type IV pilins involved in type IV pilus formation,
the five pseudopilins are synthesized as precursors
with a short leader peptide of 6–7 mostly charged
residues that is cleaved off by the prepilin peptidase
PilD/GspOA. Mature pilins and pseudopilins are
characterized by a highly conserved N-terminal hydro-
phobic domain of about 20 residues followed by a
C-terminal extension specific for each pilin and pseu-
dopilin [15]. Topology studies have shown that pilins
and pseudopilins are bitopic IM proteins with a
single N-terminal trans-membrane domain segment
and a periplasmic C-terminal globular domain
(figure 4) [27,101]. Similar to typical IM proteins,
pseudopilins use the Sec/SRP pathway for their mem-
brane targeting and insertion [90,102]. While it is an
essential step, the significance and role of pseudopilin
maturation by the peptidase is unknown. Nevertheless,
the removal of cytoplasmic positive charges may facili-
tate extraction of the protein from the membrane.
Interestingly, it was shown that pseudopilins co-frac-
tionate with both IM and OM fractions [28,103],
suggesting either a re-localization of these proteins to
the OM after processing or more likely the formation
of a supramolecular complex.

Among the five pseudopilins, GspGT is the most
abundant and is therefore called the major pseudopilin
[27], in contrast to GspHU, IV, JW and KX, which are
named minor pseudopilins. Biochemical data obtained
in X. campestris revealed the presence of the major pseu-
dopilin, XpsGT, within a large complex of about 440 kDa
[103]. This observation clearly favoured the formation of
a pilus-like structure spanning the bacterial envelope. In
agreement with this hypothesis, it was shown that when
GspGT is overproduced it is able to assemble into an
unusually long fibrillar structure protruding out of the
cell, which closely resembles the type IV pilus
[32,33,104,105]. Such a structure, also called a hyper
pseudopilus (HPP), is only obtained upon overproduc-
tion of GspGT pseudopilins and probably represents an
uncontrolled elongation of what could be a physiologi-
cally relevant pseudopilus. Based on crystallographic
and electron microscopy data, an assembly model of
GspGT into HPP has been generated by a molecular
modelling approach. This pseudo-atomic model was
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experimentally validated and showed how protomers of
GspGT interact with each other to form the pseudopilus
[31,106,107]. The model proposes a right-handed heli-
cal organization of the T2SS pseudopilus, consistent
with the type IV pilus structure [108].

The four minor pseudopilins GspHU–KX are un-
able to assemble into an HPP when overproduced [105],
but their role in pseudopilus formation is undeniable.
Results obtained with K. oxytoca or P. aeruginosa
pseudopilins have shown that GspIV is essential for
HPP formation and could play a major role during the
initiation step of fibre formation [33,105]. It was also
proposed that HPP elongation is controlled by GspKX

[101] since its length varied depending on the number
of GspKX subunits produced [104,105]. While none
of the four minor pseudopilins have ever been detected
in HPP structures [32,33,104], their presence in a
native pseudopilus became clear in light of identified
protein–protein interactions and resolved three-dimen-
sional structures. The four minor pseudopilins share
the typical ab-fold commonly found in major pilins
and pseudopilins with a long N-terminal a-helix
involved in their helical oligomerization [29,107,109–
118]. Three of the four minor pseudopilins (GspIV, JW

and KX) have been co-crystallized and shown to form
a ternary complex through their globular domains
[29]. Recently, a quaternary complex containing the
globular domains of the four minor pseudopilins was
identified, indicating that the fourth minor pseudopilin,
GspHU, also belongs to the minor pseudoplin complex
[30]. Structural prediction using the entire amino acid
sequence of the minor pseudopilins, i.e. including also
the N-terminal hydrophobic domain, suggests a similar
helical assembly as the one observed for GspGT. Since
extra major pseudopilins could only be added beneath
the minor pseudopilins complex [29], it was proposed
that the tetrameric complex was localized at the tip of
the GspGT pseudopilus. Given that GspHU was pre-
viously shown to interact with the major pseudopilin
GspGT [103,119], GspHU could constitute the hinge
between the tip and the core of the pseudopilus [30].
Taking into account the resemblance to the type IV pilia-
tion system, the phenotypic, structural and interaction
network data lead to a reasonable model for pseudopilus
architecture and biogenesis which consists of the prior
assembly of the quaternary tip complex in the IM. The
tip complex could then be driven to the secretin by the
addition of major pseudopilin subunits underneath.
Given that GspKX has a large globular domain and is
located at the very end of the pseudopilus, its involve-
ment in pseudopilus length control could consist of
stopping pseudopilus growth when contacting the
secretin. Therefore, when the physiological stoichi-
ometry between GspKX and GspGT is respected, the
length of the pseudopilus is likely to be restricted to the
periplasmic space. Only when a large excess of GspGT

is produced, may the pseudopilus grow without a tip
and therefore pass through the secretin channel. This
model, which requires experimental validation, is never-
theless supported by the direct interaction observed
between minor pseudopilins and secretin [61,96].

The pseudopilus assembly likely occurs as in the type
IV piliation process with the energetic assistance of the
GspER and PilB traffic ATPases, respectively. If
Phil. Trans. R. Soc. B (2012)
the retraction process exists in type II secretion, it
could be associated with a piston-like mechanism of
the pseudopilus, but probably involves a different mech-
anism since there is no counterpart in the T2SS for the
PilT ATPase that disassembles type IV pili [120,121].
Interestingly, the minor pseudopilin GspKX was found
to interact with GspGT, and this interaction triggers a
destabilization of GspGT [105]. An alternative retraction
process can therefore be proposed for the T2SS pseudo-
pilus, i.e. upon contact with the secretin pore, GspKX

acquires, possibly upon conformational changes, the
capacity to interact with GspGT, thus leading to pseudo-
pilus collapse. An ATPase-free retraction event might
thus be sufficient to support the disassembly of a short
trans-periplasmic pseudopilus.
7. SUBSTRATE RECOGNITION AND TRANSPORT
BY THE T2SS MACHINE
The type II secretion apparatus is widespread in
Gram-negative bacteria and a wide variety of enzymes
and toxins use this pathway. We have already alluded
to the species-specificity of this system; i.e. cognate exo-
proteins from one T2SS are not recognized by another
machinery [75]. T2SS substrates are loaded on the
nanomachine in the periplasm and translocated
across the OM in a folded conformation [122–124].
Moreover, studies in E. chrysanthemi, K. oxytoca and
P. aeruginosa have demonstrated that disulphide bridges
are formed within exoproteins before secretion [125–
128]. The high specificity demonstrated for T2SSs
and their substrates, as well as their specific recognition
in the periplasm among all other resident proteins,
suggests the existence on folded substrates of a secretion
motif that is required for T2SS recognition. Many
studies have been carried out on T2SS-dependent
exoenzymes in order to define this secretion motif,
which is still a biological puzzle [129]. They all converge
to the idea of a conformational signal gathering several
motifs spread along the primary amino acid sequence
of the protein. With the K. oxytoca pullulanase PulA,
it was shown that two non-adjacent regions were
together necessary to promote translocation of PulA-
b-lactamase hybrid proteins across the OM [130].
Another study suggested that at least three regions of
PulA might contain information that influences its
secretion [131]. It was also suggested that P. aeruginosa
exotoxin A (ToxA) contains two separate secretion sig-
nals [132], while alteration of another region also
affects secretion efficiency [133]. Finally, the polygalac-
turonase PehA of E. carotovora was found to contain
three separate domains involved in T2SS targeting
[134,135]. As reported above, the secretion signal may
be composed of residues from different locations in
the linear polypeptide chain, which are brought together
into a conformational patch during protein folding
[136]. One alternative to a single structural motif is
that successive specific interactions lead to the secretion
of exoproteins. These interactions may involve different
secretion signals that are not essential individually but
are required simultaneously, or sequentially, for optimal
secretion. Interestingly, secretion of the E. chrysanthemi
cellulase Cel5 involves a transitory intramolecular
interaction between the cellulase binding domain and
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of the secreton to be assembled is proposed to be the secretin 1 . The next step could be the successive recruitment of the
trans-periplasmic protein GspCP 2 and of the inner membrane surface 3 . The recognition of the substrate by the T2SS
takes place in the periplasm and may involve a peripheral element of the secreton, GspCP 4 . The substrate is then transferred
to the secretin vestibule 5 in which it could contact the pseudopilus tip complex that is emerging from the inner membrane

surface 6 . The exoprotein could then be released in the extracellular medium through the secretin pore 7 . The secretin and
periplasmic domain of GspCP are shown in blue, the components of the inner membrane surface are shown in green, the
pseudopilus and the secreted proteins are shown in orange/red and yellow, respectively.
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a region close to the active site [137]. In this case, the
exoprotein could adopt a secretion-competent confor-
mation prior to secretion and another conformation
once released in the extracellular medium [138]. This
sequence of events is probably not the case with
P. aeruginosa and V. cholerae T2SSs for which interactions
found between substrates and secreton components
were detected using purified secreted proteins
[41,61,70]. Obviously the question of specific substrate
recognition is far from being resolved. One may consider
that co-evolution of T2SS machines together with
their cognate substrate has resulted in a progressive
adaptation to obtain an optimal fit.

Recently, several direct interactions have been ident-
ified between secreted substrates and periplasmic
domains of secreton components. The previously ident-
ified interaction with the secretin [41] was confirmed by
two independent studies which both used a highly sensi-
tive technique, surface plasmon resonance or BIAcore
[61,70]. By using this technique, Douzi et al. [70] have
explored the P. aeruginosa T2SS periplasmic interaction
network and, in addition to the secretin, two other sub-
strate interactants, the transperiplasmic protein XcpPC

and the pseudopilus tip. This set of interactions may
suggest that the transperiplasmic element XcpPC might
recruit the substrate and transfer it to the pseudopilus
tip which then carries it towards the secretin through
which it could be translocated (figure 5).
8. A MODEL FOR SECRETON ASSEMBLY AND
MODE OF ACTION
Type II protein secretion occurs in two steps. Secreted
proteins are first exported across the IM and then
released in the extracellular medium thanks to a
sophisticated machine, the secreton. The secreton is
composed of at least 12 different proteins embedded in
the bacterial envelope and organized in a large multi-
protein complex capable of secreting a wide range
Phil. Trans. R. Soc. B (2012)
of folded exoproteins across the OM of Gram-negative
bacteria. Based on structural data, protein–protein inter-
actions, and phenotypic observations described in this
review, it is possible to propose an innovative model for
secreton biogenesis and functioning (figure 5). In this
model, secreton biogenesis starts by the insertion of
secretin in the OM, thus defining the secretion site
[42]. In the second step, the transperiplasmic element
GspCP binds the secretin, therefore allowing docking of
IMP. Indeed, cellular localization experiments perfor-
med in V. cholerae have shown that, in contrast to
secretin, GspCP needs GspDQ but not GspMZ which
itself needs both GspCP and GspDQ for proper local-
ization [42]. We propose that the transitory periplasmic
T2SS substrates are first recruited by the peripheral
element GspCP and then transferred to the secretin vesti-
bule. The substrate could then be contacted by the
pseudopilus tip, and could be pushed and expelled from
the cell through the secretin by a growing pseudopilus.
This tentative model is in good agreement with the
majority of the data collected so far about the T2SSs,
but as any working model, it should be challenged and
used to design experimental approaches that will confirm
or disprove the views presented in this review. For
example: (i) Is there a dedicated location for the T2SS
in the cell envelope? If yes, how is the first element of
the system, say the secretin, targeted there? (ii) Even if
we are getting closer to understand substrate recognition
by the machinery, the identity of the secretion signal
remains enigmatic. (iii) Does the binding of the substrate
to XcpPC trigger the assembly of the whole system as pre-
viously shown for the type I secretion system [139] or
does it only trigger pseudopilus elongation? (iv) Does
the pseudopilus elongate upon contact of the substrate
on GspCPor later when it is positioned in the secretin ves-
tibule? (v) How is the substrate released from the secretin?
Is it through a mechanical movement operated by the
pseudopilus or following conformational changes within
the secretin or both? (vi) Does the pseudopilus effectively
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retract? If yes, what are the molecular mechanism and
energy source associated with this event?

Whereas all these questions remained to be
addressed, it is remarkable to see the improvement of
our understanding of the T2SS over the past few years.
This is largely due to the ever increasing performance
of structural and biochemical techniques that have gen-
erated a lot of new data and come to complement and
back up all the original genetic data. Ideally, one would
like to see the three-dimensional reconstruction of the
whole T2SS machine and even better have this mega-
structure in motion while transporting the exoprotein.
Such level of achievement might not be so far away con-
sidering the advances that are currently being made in
understanding motion in proteins using molecular
dynamics computer simulations [31,140].
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