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Global environmental changes, including ocean acidification, have been identified as a major threat to

scleractinian corals. General predictions are that ocean acidification will be detrimental to reef growth

and that 40 to more than 80 per cent of present-day reefs will decline during the next 50 years. Cold-

water corals (CWCs) are thought to be strongly affected by changes in ocean acidification owing to

their distribution in deep and/or cold waters, which naturally exhibit a CaCO3 saturation state lower

than in shallow/warm waters. Calcification was measured in three species of Mediterranean cold-water

scleractinian corals (Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus) on-board research

vessels and soon after collection. Incubations were performed in ambient sea water. The species

M. oculata was additionally incubated in sea water reduced or enriched in CO2. At ambient conditions,

calcification rates ranged between 20.01 and 0.23% d21. Calcification rates of M. oculata under variable

partial pressure of CO2 (pCO2) were the same for ambient and elevated pCO2 (404 and 867 matm) with

0.06+0.06% d21, while calcification was 0.12+0.06% d21 when pCO2 was reduced to its pre-industrial

level (285 matm). This suggests that present-day CWC calcification in the Mediterranean Sea has already

drastically declined (by 50%) as a consequence of anthropogenic-induced ocean acidification.
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calcification; ocean acidification
1. INTRODUCTION
Cold-water corals (CWCs) have recently come into the

focus of research as biodiversity hotspots in the deep

oceans [1]. Although, they have been described since the

early eighteenth century, their more comprehensive study

has been, and still is, restricted by the fact that they predo-

minantly occur in deep depths or on steep cliffs, canyon

walls or under overhangs. Technological developments

with respect to shipboard logistics, as well as acoustic

and video survey techniques, has led to the discovery of a

large number of CWC sites during the last decades [2–9].

CWCs are ecosystem engineers which need to outgrow

sedimentation and other destructive forces in order to main-

tain a three-dimensional structure that serves as the

foundation for the ecosystem. Skeletal extension rates

between 6 and 26 mm yr21 for Lophelia pertusa were derived

from indirect measurements of stable isotopes [10–13] and

from corals growing on artificial substrate [14,15]. For

corals maintained in aquaria, skeletal extension rates were
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9.4 mm yr21 and 15–17 mm yr21 for L. pertusa from

Norwegian fjords and the Mediterranean Sea, respectively

[16,17], and 3–18 mm yr21 for Madrepora oculata from the

Mediterranean Sea [17]. One study reported average exten-

sion rates of 3.77 mm yr21 and 2.44 mm yr21 for branches of

L. pertusa stained with Alizarin Red S and re-deployed in situ

at coral and non-coral areas, respectively [18]. Studies of

CWC growth usually refer to linear or radial extension

which, without information on skeletal density, provides no

information on calcification rates (mass of CaCO3 precipi-

tated per unit time) [19]. So far, only two studies have

reported rates of calcification in CWCs. Average calcification

rates measured with the buoyant weighing technique ranged

between 0.02 and 0.11% d21 in four Mediterranean

species [20]. Maier et al. [21] reported average rates of

0.02–0.07% d21 obtained through labelling of colonies

of L. pertusa with the radiotracer 45Ca.

It is well known that the distribution of CWCs is lim-

ited by temperature rather than depth and they are most

commonly distributed at temperatures between 48C and

128C [1]. In the Mediterranean Sea, they occur at temp-

eratures between 12.58C, to almost 148C, which might

already be at the higher tolerance limit [2]. Furthermore,

the uptake of anthropogenic CO2 by the ocean generates
This journal is q 2011 The Royal Society
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Figure 1. Sampling sites in the Mediterranean Sea: Lacaze-

Duthiers (LD), Gulf of Cassidaigne (CS) and south of
Malta (MC).
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ocean acidification which has recently been proclaimed as

one of the perhaps most harmful threats to CWCs [1].

That is because CWCs are mostly distributed at relatively

high latitudes and/or deep water. Both environments

will be the first to be affected by the lowering in ocean

pH and a shallowing of the aragonite saturation (Va)

horizon [22–24]. The Mediterranean Sea with its two

Western and Eastern main basins, separated by the Straits

of Sicily, and some smaller regional basins, can be

regarded as a miniature ocean that is expected to react

faster to global change than the open ocean [25]. Over

the last decades, there appears to have been a warming

trend attributed to global warming in deep [26] and sur-

face waters [27,28]. A very recent study has shown that

there is a high imprint of anthropogenic CO2, which

has already affected Mediterranean pH by a decrease of

0.05–0.14 pH units since pre-industrial times [29].

Owing to the high alkalinity in the Mediterranean, more

atmospheric CO2 is absorbed than in the open ocean

[30]. It is consequently important to understand how

anthropogenic partial pressure of CO2 (pCO2) has

already affected and how it will affect Mediterranean

Sea ecosystems and its key taxa.

Because of their restricted accessibility, it is a demanding

task to study the biology and physiology of CWCs, making it

important to develop reproducible methods for experimen-

tation. One option is to maintain corals under controlled

laboratory conditions, and attempt to mimic their natural

environment. However, the maintenance of CWCs in the

laboratory is very time consuming and prone to technical

problems. We therefore conducted on-board experiments

with freshly collected CWCs and ambient sea water. The

aim of the study was to compare rates of calcification in

three Mediterranean species at three study sites and to test

the effects of ocean acidification on M. oculata calcification

rates by subjecting colonies to three pCO2 levels: 280 matm

(pre-industrial), 400 matm (present-day) and 800 matm

(as projected for the end of this century).
incubation vials

multiple aeration
tubings 3/1 mm

Figure 2. (a) Experimental set-up showing a large container
with open and closed system incubation vials and some coral
samples. In the right corner of the container is a double layer
of micron bags (5 and 1 mm) to filter the recycled and chilled
sea water. Next to the container is the chiller unit that is con-

nected to a pump (1000 l h21), which exchanges sea water
between the container and chiller. (b) Aeration system to
supply a multiple set of incubation vials. Tubing is joined
by several silicon tubes with various diameters to fit to a
standard aeration (4/6 mm inner/outer diameter) tube and

an air pump. The space between tubing is sealed air-tight
using silicone glue, and an (c) open system incubation vial
containing a small branch of M. oculata. Inside the vial is
another small tube of ca 1 cm in diameter in which the
small 1 mm air tubing ends. The upward moving air bubbles

inside the 1 cm tube generate an upward flow of sea water
and thus water mixing.
2. MATERIAL AND METHODS
(a) Study sites and sampling

CWCs and ambient sea water were sampled during several

cruises: June 2009 in the canyon of Lacaze-Duthiers

(42832.980 N; 03825.210 E), in September 2009 in the Gulf

of Cassidaigne (43806.760 N; 05827.710 N), both on board

the R/V Minibex (COMEX, France), and in December

2009 in the Strait of Sicily at a site southwest off the island

of Malta (35849.770 N; 14804.900 E) on board the R/V

Urania (Italy; figure 1).

During the Minibex cruises, CWCs were sampled with a

remotely operated vehicle (ROV), while during the R/V

Urania cruise a mini-dredge had to be deployed for a hit-

and-go sampling because of technical problems with the

ROV. At all sites, sea water next to living CWC was sampled

using 6 l or 10 l Niskin bottles. After collection, corals were

directly transferred to a plastic container (1040 � 640 �
515 mm), containing about 120 l of sea water, which was

continuously flowing through two layers of micron bags

(5 and 1 mm) and a chilling unit at a rate of 1000 l h21.

Temperature was maintained at 12.5+0.58C (figure 2).

Sea water was sub-sampled to determine the concentration

of inorganic nutrients (phosphate and ammonium), total

alkalinity (AT) and dissolved inorganic carbon (CT). Another
Proc. R. Soc. B (2012)
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part of the sea water collected from CWC sites was used for

on-board incubation to determine calcification rates of corals

by the alkalinity anomaly technique.

(b) On-board incubation to determine calcification

rates of CWCs in ambient sea water

Small fragments were broken off from CWCs placed in either

open or closed vials containing 150 ml or 180 ml sea water,

respectively, and directly incubated after fragmentation (table

2 and figure 2). Sea water for incubation was sampled close

to CWC sites to provide similar conditions with respect to

the carbonate chemistry and nutrients. Open vials contained

a small tube (Ø 1 cm) in which the outlet of a thin air

tubing (Ø 3 mm) ended (figure 2b,c) to aerate the sea water

with ambient air and to equilibrate the pCO2 during incu-

bation. In the open system set-up, the vials were aerated with

ambient air, which served two purposes: (i) to keep pCO2

stable and (ii) generate an air lift and thus a vertical flow and

mixing of the incubation water. For closed incubation, vials

were filled almost to the rim (180 ml) with sea water, and

closed with a screw-on lid after corals were placed inside.

Closed vials had a couple of millilitre of air space to avoid

large changes in dissolved oxygen and to allow for some

water mixing via ship movement. As controls, at least three

vials contained no corals (blank) and also sea water was sub-

sampled prior to starting incubation (T0) to determine initial

carbonate chemistry and inorganic nutrient concentration.

Corals were incubated for 24 h, and then sea water was sub-

sampled for determination of inorganic nutrients, CT and AT.

(c) Repeated incubation of CWCs under

variable pCO2

First, seven fragments were used in open system incubation

and eight in closed system incubation to assess calcification

rates using ambient sea water and thus ambient pCO2

(table 2, CS5_500) directly on board. This on-board incu-

bation served as a control to assess if calcification rates

change over time (in a couple of days) and as a function of

handling and transport. The same 15 coral fragments

(seven open and eight closed system) were then used for

repeated incubation at variable pCO2 using the closed

system set-up for all 15 coral fragments. About 2 h after

transport back to the laboratory the first incubation was car-

ried out at elevated pCO2 (ca 867 matm), then at ambient

pCO2 (404 matm) and reduced pCO2 (285 matm) for 24 h

each without feeding the corals. The timespan between the

first on-board incubation and the last incubation at reduced

pCO2 was 5 days. Over this time period, we can also exclude

that starvation affects calcification rates of CWCs [31]. For

each treatment, at least three additional controls containing

only sea water at respective pCO2 (blank) were incubated

along with coral samples. Except for ambient pCO2, the

pCO2 level of bulk sea water was regulated before incubation

using mass flow controllers (AnalytMTC, GFC 171) using a

mix of CO2-free air and pure CO2. CO2-free air was produced

by stripping CO2 from ambient using soda lime. pCO2 was

measured using an infrared gas analyser (LI-COR-6262).

(d) Analyses of inorganic nutrients

Approximately 30 ml of sea water from Niskin bottles or

experimental incubation vials were sub-sampled for in-

organic nutrient analysis. Most of the sea water was used

for rinsing syringe, filter and vials before a final volume of

ca 5 ml of sea water was filtered over a 0.2 mm Acrodisc

into 6 ml Pony Vials (Perkin Elmer). The samples were
Proc. R. Soc. B (2012)
frozen and stored at 2208C pending analysis at the Royal

Netherlands Institute for Sea Research. Ammonium and

dissolved inorganic phosphorus concentrations were deter-

mined using an AxFlow Bran & Luebbe Traacs800

autoanalyser [32]. Precision (+1 s.d.) of an internal standard

was 0.009 mmol kg21 and 0.023 mmol kg21 for phosphate and

ammonium (n ¼ 17 each), respectively.

(e) Analysis of AT and CT and determination

of sea water carbonate chemistry

Ambient sea water was sampled to analyse the dissolved in-

organic carbon (CT) and total alkalinity (AT) and to

calculate other parameters of the carbonate system. Tripli-

cate 500 ml samples were collected from a Niskin bottle.

Sea water was poisoned with 100 ml saturated mercuric

chloride, the stoppers of the bottles was greased (Apiezon)

to seal bottles air-tight, and samples were stored at 108C
pending analysis. Analyses of CT and AT were performed by

the Service National d’Analyse des Paramètres Océaniques

du CO2 (http://soon.ipsl.jussieu.fr/SNAPOCO2/) following

the method of Edmond [33] and the software described

by DOE [34]. Reproducibility of the Dickson standard

(batch 99, http://www.andrew.uc.edu/co2qc/batches.html)

was 3 mmol kg21 for AT and 2.8 mmol kg21 for CT.

Initial and final CT and AT of the incubations were measu-

red on 125 ml samples at the Laboratoire d’Océanographie

de Villefranche. They were processed and stored as described

earlier for the in situ samples. Bottles were carefully filled as

described for samples from Niskin bottles, poisoned with

25 ml mercuric chloride, sealed air-tight and stored at 108C.

CT was determined immediately after opening the bottle

using an inorganic carbon analyser (AIRICA, Marianda,

Kiel, Germany) coupled to an infrared gas analyser (LI-

COR 6262). This system was calibrated prior to sample

analysis against a certified standard [34].

The sample bottle was kept in a water bath at a constant

temperature (258C). The coefficient of variation of at least

three replicate measurements was 0.08 per cent and 2 mmol

kg21. Also, an internal laboratory standard was measured at

regular intervals and revealed a precision of +2.54 mmol kg21

(mean ¼ 2281.87, n¼ 17).

AT was determined on samples filtered on 0.2 mm mem-

branes by a potentiometric titration (Metrohm Titrando 80

titrator) coupled to a glass electrode (Metrohm, electrode

plus) and thermometer. The pH electrode was calibrated on

the total scale using Tris/HCl and 2-aminopyridine/HCl

buffer solutions with a salinity of 38 (Dickson and co-workers

[35]). Measurements were carried out in triplicate at 258C
with pre-weighed samples of ca 25 g and 0.1 N HCl (TitriPAC,

Merck) was used for titration. AT was calculated as descri-

bed by Dickson and co-workers [35]. Standards provided by

Dickson (batch 99 and 102) were run regularly. Accuracy

was on average 2.38 mmol kg21 and 0.94 mmol kg21 below

the nominal values of batches 99 and 102, respectively. Pre-

cision (+1 s.d.) of repeated measurements was 3.53 and

4.63 mmol kg21 for the same batches (n ¼ 34 and n ¼ 70).

Other parameters (pCO2, Va, pH) of the carbonate chemistry

were determined from CT, AT, temperature, depth, and salinity

using the software package SEACARB [36].

(f) Determination of calcification rates (G) by the

alkalinity anomaly technique

The alkalinity anomaly technique was used to estimate rates of

calcification using the 2 : 1 stoichiometric relationship between

http://soon.ipsl.jussieu.fr/SNAPOCO2/
http://soon.ipsl.jussieu.fr/SNAPOCO2/
http://www.andrew.uc.edu/co2qc/batches.html
http://www.andrew.uc.edu/co2qc/batches.html


Table 1. In situ sea water chemistry of CWC sampling sites. (Total alkalinity (AT), concentration of dissolved inorganic

carbon (CT), bicarbonate (HCO�3 ), carbonate (CO2�
3 ), phosphate (PO4) and ammonium (NH4) (all in mmol kg21). Also

shown are pCO2 (matm), pH on total scale (pHT), and the saturation state of aragonite (Va). Numbers given in italics were
calculated from TA and CT, at respective depth (metre), salinity and temperature using the software package SEACARB, under
the program R. For the stations of Lacaze-Duthiers (LD_9, LD_10) and the Gulf of Cassidaigne (CS_5) salinity and
temperature were 388C, and 138C, and at the site south of Malta (MC_30) they were 38.758C, and 12.758C, respectively.)

station depth AT CT HCO3
2 CO3 CO2 pCO2 Va pHT PO4 NH4

LD_9 500 2577 2317 2114 187 15.4 395 2.6 8.07 0.41 0.29
LD_10 267 2577 2316 2112 189 15.4 394 2.7 8.08 0.22 0.16

CS_5 200 2615 2333 2115 204 14.4 368 3.0 8.11 0.28 0.20
MC_30 690 2623 2328 2104 210 13.7 349 2.8 8.11 0.20 0

Table 2. Results from on-board incubation of CWC in ambient sea water at three Mediterranean CWC sites: Lacaze-

Duthiers (LD), Gulf of Cassidaigne (CS) and south of Malta (MC), numbers no._no. indicate station number and depth,
respectively. (The three CWC species were L. pertusa (LP), M. oculata (MO) and D. dianthus (DE). Corals were either
incubated in a closed or open system, DW is skeletal dry weight, average pCO2 and Va are average between beginning and
end of incubation, G is calcification rate (corrected for inorganic nutrient excretion). CS5_500*: initially, seven corals were

incubated, but only three could be evaluated with respect to carbonate chemistry and G in the open system. Nevertheless,
DW and no. of polyps are given for all seven fragments because they were later used along with the eight fragments of the
closed system of CS5_500 for repeated measurements of G under variable pCO2 (figure 4).)

station species
open/
closed n DW (G)

no. of
polyps

initial
pCO2

average
pCO2 Va G (% d21)

LD9_500 LP open 3 0.49+0.09 3.3+1.5 354 378+4 2.6+0 0.090+0.020
LD10_267 LP open 3 2.03+0.72 8.3+1.5 354 389+10 2.5+0.1 0.033+0.011
LD9_500 LP closed 3 3.36+2.63 7.0+1.7 347 441+56 2.1+0.4 0.034+0.013

LD9_500 MO closed 3 2.21+1.38 n.a.+n.a. 347 387+20 2.5+0.2 0.018+0.018
CS5_500 MO open 7 1.42+0.15 47.1+10.6 n.a. n.a. n.a. n.a.
CS5_500* MO open 3 1.33+0.10 40.3+5.0 367 444+127 2.4+0.8 0.021+0.017
CS5_500 MO closed 8 1.03+0.42 43.3+12.5 404 863+588 1.5+0.8 0.068+0.068
MC25_690 LP open 1 3.53+0 7.0+n.a. 433 686+n.a. 1.3+0 0.028+0

MC25_690 MO open 6 2.79+2.38 23.5+8.3 433 614+72 1.6+0.3 0.037+0.036
MC25_690 DE open 5 4.49+2.50 3.4+1.1 433 563+57 1.8+0.2 0.011+0.007

all groups 40 2.15+1.85 25.4+20.1 390 585+340 1.9+0.6 0.042+0.040
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the decrease of ATand the precipitation of CaCO3 [37]. How-

ever, other biogeochemical processes, such as changes in

inorganic nutrient concentration can also affect AT [35]. Pre-

vious work has shown that the CWC L. pertusa can release

significant amounts of inorganic nutrient during incubation

[38]. Changes of AT during the incubations were therefore cor-

rected for the release of phosphate and ammonium as follows:

G ¼ �2DTA þ DNH3 þ DPO4:

Calcification rates were normalized to initial skeletal weight of

the corals and are given in per cent per day (% d21).

(g) Statistical analyses

Statistical analyses were conducted using the software

package STATISTICA v. 7.0. The tests used are mentioned

in the results subsections. Values are reported as mean+
standard deviation.

For parameters of the carbonate chemistry and inorganic

nutrients at the start and end of the experiments, see tables in

the electronic supplementary material.
3. RESULTS
(a) In situ sea water carbonate chemistry and

inorganic nutrients

AT and CT of ambient sea water ranged from 2577 to

2623 and 2316 to 2333, respectively (table 1). The

calculated pCO2, pHT and Va values ranged between
Proc. R. Soc. B (2012)
349 matm and 395 matm, 8.07 and 8.11, and 2.58 and

2.95, respectively. Average phosphate and ammonium

concentrations ranged between 0.20 mmol kg21 and

0.41 mmol kg21 and 0.03–0.29 mmol kg21, respectively.
(b) Changes of inorganic nutrient concentrations

during the incubations

The average phosphate and ammonium release during

the incubations was 0.06+0.07 mmol g21 and 1.12+
1.19 mmol g21 skeleton per day, respectively. The lowest

release of phosphate was found for Desmophyllum dianthus

with 0.002+0.002 mmol g21 skeleton per day (n ¼ 2),

while in M. oculata and L. pertusa incubations, phosphate

release was 0.06+0.07 mmol g21 skeleton per day (n ¼

27) and 0.08+0.06 mmol g21 skeleton per day (n ¼ 10),

respectively. For ammonium, the highest release rates

were found for M. oculata with 1.32+1.37 mmol g21

skeleton per day, while L. pertusa released an average of

0.77+0.53 mmol g21 skeleton per day and D. dianthus

0.92+0.53 mmol g21 skeleton per day. Between species

effects were tested for L. pertusa and M. oculata, while

inorganic nutrient release was only determined for two

D. dianthus specimens and was thus not considered for

statistical testing. There was no species-specific effect on

the release of phosphate or ammonium (t-test, t ¼ 0.65,

p ¼ 0.52 for phosphate and t ¼ 21.22, p ¼ 0.23 for

ammonium, n ¼ 35 for both nutrients). Also, phosphate
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Figure 4. Average calcification rates of M. oculata of repeated
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(445 matm) and low (285 matm) pCO2. Data are from repeated
incubations in the laboratory shortly after return from the
cruise using the same coral fragments (n ¼ 15). A repeated-
measures ANOVA revealed a significant effect of pCO2 on
calcification. Vertical bars denote 0.95 confidence intervals.

1720 C. Maier et al. Mediterranean cold-water coral growth
and ammonium excretion exhibit a positive and significant

correlation when normalized to skeletal weight (R ¼ 0.79,

p� 0.001, n ¼ 39).

(c) Contribution of changes in nutrient

concentration to changes in AT

There is a significant correlation between the release of

nutrients and the rate of calcification (PO4: R ¼ 0.72,

NH4; R ¼ 0.79, p� 0.001 for both, n ¼ 39). The calcifica-

tion rates estimated without (Guncorr) and with (G)

correction for changes in the concentration of nutrients

are significantly correlated (figure 3; G ¼ 1.11 � Guncorr þ
0.001, r ¼ 0.995, p� 0.001; n ¼ 37). Therefore, the rate

of calcification is underestimated by ca 10 per cent if nutri-

ent excretion is not accounted for. As not all incubation

vials were sub-sampled for inorganic nutrients, this linear

regression function was used to correct for nutrient

excretion where respective data were missing.

(d) Calcification rates in ambient sea water

The overall mean calcification rates of corals incubated in

ambient sea water was 0.04+0.04% d21 and ranged
Proc. R. Soc. B (2012)
between 20.01 and 0.23% d21 (n ¼ 36). Species-specific

rates for L. pertusa, M. oculata and D. dianthus were

0.05+0.03% d21 (n ¼ 10), 0.05+0.05% d21 (n ¼ 21)

and 0.01+0.01% d21 (n ¼ 5). Rates of calcification of

L. pertusa were on average higher in the open incubation

system with 0.05+0.04% d21 (n ¼ 7) versus 0.03+
0.01% d21 (n ¼ 3) in the closed system, while the opposite

was true for M. oculata with 0.03+0.03% d21 (n ¼ 9) and

0.06+0.06% d21 (n ¼ 12) in open and closed systems,

respectively (table 2). There was no significant species

effect on calcification rates between M. oculata and

L. pertusa, between open and closed system incubation nor

a combined effect of species and type of incubation (two-

way ANOVA, p¼ 0.98 for the species effect, p¼ 0.93 for

the incubation effect and p¼ 0.23 for the interaction term).

(e) Repeated incubations of Madrepora oculata

under various pCO2 levels

During the on-board incubation, there was a problem with

the open system and only three of the seven corals were

sub-sampled for AT. Calcification of the three corals was

0.02+0.02% d21 and 0.03+0.03% d21 for on-board

and laboratory (closed system) incubation, respectively.

Calcification rates for the corals incubated in the closed

incubation system were 0.07+0.07% d21 for both

on-board and laboratory incubation. Under ambient

pCO2, paired t-tests revealed no significant difference

between on-board and laboratory incubation (open

system: p ¼ 0.74, n ¼ 3; closed system: p ¼ 0.93, n ¼ 8).

Pooling the calcification data for the 11 corals (open and

closed system), average calcification rates were 0.06+
0.06 and 0.06+0.07% d21 and were not significantly

different from each other (paired t-test: p ¼ 0.84, n ¼ 11).

The initial pCO2 levels for the three subsequent exper-

iments were 867, 445 and 285 matm, corresponding to Va

values of 1.9, 2.6 and 3.7, respectively. pCO2 increased

during the closed system incubations owing to respiration

and calcification. The average final pCO2 levels were

1186+461, 629+248 and 331+57 matm, which

decreased Va to 1.3+0.6, 1.8+0.6 and 2.9+0.6,

respectively.

Average calcification rates were 0.06+0.06, 0.06+0.06

and 0.12+0.06% d21 for high, ambient and low pCO2

levels, respectively (figure 4). Repeated-measures ANOVA

revealed that pCO2 had a significant effect on calcification

rates (F2,28¼ 11.3, p , 0.001). Post hoc comparison

showed, that G of high and ambient pCO2 levels were

significantly different from the low pCO2 (Tukey honest sig-

nificant difference test (HSD): p ¼ 0.001 and p , 0.001,

respectively), while G at ambient and high pCO2 were not

significantly different (Tukey HSD: p ¼ 0.98).
4. DISCUSSION
(a) Methodological constraints

(i) On-board experiments

Measuring calcification of CWCs on board allows investi-

gation of corals in ambient sea water over a broad

biogeographic range. It requires a method that is not logis-

tically demanding in terms of laboratory facilities. The

set-up used for maintaining and incubating corals served

that purpose well. It uses small incubation chambers that

enable measurement of changes in total alkalinity large

enough to estimate rates of calcification with satisfactory
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replication. We also tested the use of a closed incubation

system. In closed systems, the CO2 released to the incu-

bation water by coral respiration and calcification changes

the sea water carbonate chemistry during incubation.

This is likely to affect calcification rates as pCO2 increases

and Va and pH decrease. However, systematic comparison

revealed no significant difference in calcification between

open and closed system incubation. Working with relatively

simple and small incubation systems makes replication

easier. This is an important experimental prerequisite

given the high natural growth variability of CWCs that is

largely owing to the age composition of polyps of a

branch [16,21] and sporadic skeletal growth [16,18].

(ii) Pitfalls of alkalinity anomaly technique

The three most common methods to determine calcification

rates of corals are 45Ca-labelling [39], the buoyant weight

determination [40] and the AT anomaly technique [37].

The alkalinity anomaly technique used in this study has the

advantage that it is sensitive enough to use for short-term

incubations and that corals can be kept alive. However, it

has been shown that L. pertusa and M. oculata excrete inor-

ganic nutrients and that bacterial growth is stimulated

during incubations owing to the release of organic matter

[38,41,42]. This may also alter the TA during incubation.

Negatively charged surface groups of phytoplankton and

bacteria can react during titration with hydrochloric acid

and the acid-base functional groups of dissolved organic

carbon (DOC) in sea water can also have a small influence

on TA [43]. It is therefore critical to pre-filter sea water over

a 0.2 mm Acrodisc. Changes in the DOC pool during incu-

bation was not accounted for in the present study, but Kim

et al. [43] suggested that the influence of DOC on AT

might be rather small. The release of inorganic nutrients

induces a 10 per cent underestimation of calcification

which was accounted for by an empirical relationship (this

study). Also, a 10 per cent bias is relatively small when com-

pared with the large natural variability of CWC calcification,

with a coefficient of variation of up to 100 per cent.

(b) Calcification under ambient conditions

Calcification data are now available on L. pertusa determi-

ned by the three methods mentioned earlier. Calcification

ranges between 0.02 and 0.07% d21 under initial ambient

conditions for corals collected in Mingulay and Skagerrak

and investigated with 45Ca [21]. For Mediterranean

samples, Orejas et al. [20] estimated calcification rates of

0.02% d21 using the buoyant weight technique, and rates

ranging between 0.03 and 0.09% d21 were found in the pre-

sent study with the alkalinity anomaly technique. The rate

of calcification of the Mediterranean species D. dianthus

and M. oculata determined by buoyant weight were

0.04% d21 and 0.11% d21, respectively [20], and 0.01

and 0.02–0.07% d21 determined by the alkalinity anomaly

technique (this study). Interestingly, there seems to be no

systematic bias to either higher or lower calcification rates

between the methods used, which provides some confi-

dence that all three methods provide similar estimates.

The method used by Orejas et al. [20] was based on long-

term aquarium maintenance (256 days), while the 45Ca

and AT approaches were based on short-term on-board

incubations (1 day) with freshly collected colonies. Our

results suggest that calcification of L. pertusa and M. oculata

is similar. By contrast, Orejas et al. [20] reported a
Proc. R. Soc. B (2012)
calcification rate fivefold higher in M. oculata than in L. per-

tusa and they hypothesize that this might be owing to

different allocation of energy into tissue and skeletal

growth. However, there is no evidence yet that M. oculata

allocates more energy into skeletal growth than L. pertusa

or D. dianthus.

(i) Size matters

It has been demonstrated in L. pertusa that calcification is

four orders of magnitude lower in older than in younger

polyps [38]. Hence, calcification rates normalized to skeletal

weight diminish relative to increasing size and age of a

colony. There is no information available on the weight of

coral fragments used in the study of Orejas et al. [20], but

the average polyp numbers were 2.9 and 6.2 polyps per frag-

ment for L. pertusa and M. oculata, respectively. This means

these fragmentswere very small with half and one-fifth of the

polyp number used in the present study, respectively. One

exception was the size of L. pertusa used in the first open

system incubation (table 2) of the present study, as these

specimens were as small as the ones used by Orejas et al.

[20]. The calcification rate of these small fragments was

0.09% d21 while a rate of 0.02% d21 was found by Orejas

et al. [20]. This indicates that the long-term aquarium con-

ditions were less favourable for calcification of L. pertusa

of the same size class than were the short-term on-board

incubations, while the calcification rates of M. oculata

reported by the two studies are in good agreement.

(ii) Site-specific calcification rates

The present study also reports calcification measured

in three distinct sites, providing the opportunity to assess

geographical differences. Although, the Mediterranean

exhibits an east–west trend in nutrient concentration [44]

and in anthropogenic CO2 uptake [29], the in situ carbon-

ate chemistry was very similar between the sites (table 1)

and there is no significant difference in calcification rate

between sites. However, on a broader biogeographic and

depth scale where parameters of the carbonate chemistry

are more distinct from each other, patterns in calcification

rates might exist. In situ studies would be the ideal method

to investigate the response of CWCs to changing envi-

ronmental conditions, but are logistically too demanding

for empirical comparisons on a broad geographical and

depth scale. However, it is important to gather comparable

and empirical datasets as close to in situ as possible to derive

a baseline understanding, and moreover, to better predict

the potential response to environmental change scenarios.

(c) Response to reduced and elevated pCO2

Our results clearly show that there is no negative response on

calcification rates at the higher pCO2 level (867 matm). How-

ever, calcification almost doubled at the pre-industrial pCO2

level (285 matm) relative to calcification under the control at

ambient pCO2. So far, only one study has tested the effect of

ocean acidification on the calcification of CWCs. It revealed

a negative response with decreasing pH (higher pCO2) in L.

pertusa from the Skagerrak [21]. However, in contrast to the

study on L. pertusa, Va did not drop below 1 for M. oculata

in the higher pCO2 treatment, which might explain why

M. oculata did not reveal a similar negative response at

higher pCO2. While for most reef-building zooxanthellate

corals a negative and often linear response to increasing

pCO2 levels and lower Va had been reported [45–47],
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it had already been shown for temperate corals that calcifica-

tion rates can remain unaffected by pCO2 levels as high as

that projected for the end of the century [48,49]. In the

study of Ries et al. [48], a nonlinear response was shown

with calcification rates of Oculina arbuscula remaining con-

stant at pCO2 levels between 400 and 900 matm and

decreasing at a pCO2 of 2850 matm. It is therefore possible

that M. oculata exhibits a similar nonlinear response and

additional studies would be necessary to determine at

which pCO2 level (or Va) calcification rates start to decrease.

Few studies are actually available where calcification rates

were tested for lower pCO2 levels. For the tropical coral

Porites lutea, a linear response to Va, and increasing calcifica-

tion rates with decreasing pCO2 were revealed [50]. For the

Mediterranean Sea, it has been shown, that pH has

decreased by 0.1 pH units owing to anthropogenic CO2

[29] and our results thus indicate that ocean acidification

already has had a detrimental effect on calcification rates of

M. oculata with a reduction by 50 per cent since pre-indus-

trial time. Desmophyllum dianthus, M. oculata and L. pertusa

have distinct sensitivities to increased temperature, with

L. pertusa being the least tolerant to higher temperatures

(C. Maier 2009, personal observation). This species is prob-

ably already at its highest temperature limit in the

Mediterranean Sea. If the pCO2 increase since pre-industrial

time had a similarly negative effect on L. pertusa calcification

than it had on M. oculata, it could mean that L. pertusa might

already be more negatively affected by climate change in the

Mediterranean, where both temperature rise [26] and

anthropogenic CO2 [29] are well documented. This might

also partly explain, why M. oculata is, at the present-day,

more widespread in the Mediterranean Sea than L. pertusa

despite the fact that in the North Atlantic L. pertusa is the

dominant CWC species. However, more studies including

other parameters that may influence coral growth are

needed to draw a final conclusion on a species-specific

response to climate change scenarios.
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39 Tambutté, É., Allemand, D., Mueller, E. & Jaubert, J.
1996 A compartmental approach to the mechanism of
calcification in hermatypic corals. J. Exp. Biol. 199,
1029–1041.

40 Davies, P. S. 1989 Short-term growth measurements of
corals using an accurate buoyant weighing technique.
Mar. Biol. 101, 389–395. (doi:10.1007/BF00428135)

41 Wild, C., Mayr, C., Wehrmann, L., Schöttner, S.,
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