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Abstract

Although fitness landscapes are central to evolutionary theory, so far no biologically realistic examples for large-scale fitness
landscapes have been described. Most currently available biological examples are restricted to very few loci or alleles and
therefore do not capture the high dimensionality characteristic of real fitness landscapes. Here we analyze large-scale fitness
landscapes that are based on predictive models for in vitro replicative fitness of HIV-1. We find that these landscapes are
characterized by large correlation lengths, considerable neutrality, and high ruggedness and that these properties depend only
weakly on whether fitness is measured in the absence or presence of different antiretrovirals. Accordingly, adaptive processes on
these landscapes depend sensitively on the initial conditions. While the relative extent to which mutations affect fitness on their
own (main effects) or in combination with other mutations (epistasis) is a strong determinant of these properties, the fitness
landscape of HIV-1 is considerably less rugged, less neutral, and more correlated than expected from the distribution of main
effects and epistatic interactions alone. Overall this study confirms theoretical conjectures about the complexity of biological
fitness landscapes and the importance of the high dimensionality of the genetic space in which adaptation takes place.
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Introduction

The fitness landscape is one of the central concepts in evolutionary

biology. Ever since Sewall Wright [1], it has been used to study and

conceptualize the process of long-term evolutionary adaptation.

Fundamentally, knowledge of fitness landscapes is required to

translate microevolutionary adaptation (i.e. changes in gene fre-

quencies) into macroevolutionary change (i.e. speciation events and

large-scale phenotypic modifications). One of the major limitations

of the concept of fitness landscapes, however, is the near complete

lack of knowledge of any large-scale and biologically realistic fitness

landscapes. Most of the landscapes currently available are restricted

to very few loci or alleles [2,3,4,5,6,7,8]. Due to their limitation in

size, these landscapes do not allow the study of properties that might

arise from the high dimensionality that is characteristic for real fitness

landscapes. Current examples for large-scale landscapes are based

on RNA secondary structure [9] or enzymatic activity of RNA [10].

However, the relation of RNA structure to fitness is unclear and the

relation between enzymatic activity and fitness is often highly non-

linear [11].

The centrality of the concept of fitness landscapes for

evolutionary biology, combined with the absence of good

biological examples has necessitated the study of theoretically

conceived and idealized fitness landscapes, often tailored to the

particular question studied. The so-called NK landscapes are an

example for a broad class of theoretical fitness landscapes [12],

which have tunable ruggedness ranging from smooth, single-

peaked Mount-Fujiyama-like landscapes to maximally rugged

uncorrelated landscapes, in which the fitness of each sequence is

independent of the fitness of its neighbors. These NK landscapes

have been used, among other things, to study properties of land-

scapes arising from high dimensionality [13]. Landscapes based on

neutral networks [14,15] reconcile Kimura’s neutral theory [16]

with natural selection, and have been used to explain phenomena

such as punctuated equilibria observed for example in the

evolution of the antigenic profile of influenza [17]. The related

holey landscapes, which consist of a network of high-fitness

genotypes with embedded fitness-holes, have been very influential

as models of speciation [18]. All these examples have been

tremendously valuable in studying processes of evolutionary

adaptation, but are purely conceptual and it is unclear to what

extent they reflect properties of real fitness landscapes.

Recent progress in high throughput data generation now allows

measuring both fitness and genotype for a large number of

mutants [19,20,21]. Combining such data sets with appropriate

computational methods enables for the first time the reconstruc-

tion of large-scale and biologically realistic fitness landscapes. Here

we analyze fitness landscapes that are based on predictive models

for fitness of HIV in an in vitro replication assay [21]. These

models predict fitness based on estimated effects of individual

mutations (main effects) and of pair-wise combinations of

mutations (epistasis) and can thus be considered as a quadratic

approximation to the real HIV fitness landscape.

Results/Discussion

The fitness landscapes analyzed here are based on statistical

models that are based on extensive measurements of in vitro
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replicative fitness. These models allow to predict the fitness of HIV

from amino acid sequences (see Materials and Methods and ref.

[21]). The entire landscape consists of approximately 21800>10600

fitness values. Clearly, it is impossible to generate all these values

despite the fact that the predictive model would allow in principle

to compute the fitness for any sequence. Therefore, we describe

the properties of the fitness landscapes by using summary statistics

based on different types of random or directed walks on these

landscapes. Specifically we use such walks to compute three

measures that characterize different properties of the landscapes:

ruggedness, correlation length and neutrality (see Materials and

Methods).

Ruggedness refers to the number of local fitness optima; i.e.

genotypes whose fitness exceeds that of every one of its neighbors.

We determine ruggedness as the number of different local optima

reached by adaptive walks that climb the fitness landscape by

means of steepest ascent from random positions on the landscape.

These adaptive walks always move to that neighboring sequence,

which has the highest fitness of all the neighboring sequences.

Local optima act as attractors for such steepest-ascent walks: if a

walk is started within the ‘‘attraction domain’’ of the optimum, the

walk will converge to this optimum. Depending on the structure of

the landscape, such walks need not end up in the same optima,

even if they are started from similar initial conditions. Conversely,

walks that end up in the same optima need not originate from

similar areas of the fitness landscape. We use such simple hill-

climbing walks here as tools to analyze structural properties of the

underlying fitness landscape such as ruggedness or the attraction

domain of the local optima. To characterize the process of

adaptation of populations evolving on these fitness landscapes such

hill-climbing walks have limited validity and may overly simplify

more complex aspects of evolution. The correlation length

quantifies to what extent proximity in sequence space translates

into similarity in fitness. To measure correlation length, we

perform random walks, which start at a random genotype in the

landscape and then randomly move in each step to neighboring

genotypes. Recording the fitness values along such a random walk

we then determine correlation length as the characteristic distance

over which the autocorrelation of fitness decays. Neutrality

measures to what extent populations can move on the landscape

without changing their fitness. To measure neutrality, we perform

quasi-neutral walks, where random steps to neighboring genotypes

are only accepted if they do not change fitness by more than a

defined small threshold value. We determine neutrality as the

maximal distance from the starting genotype that is attained by

such a neutral walk.

We first explore these measures for a reference landscape (RL),

which is based on the model that best predicts replicative capacity

in the drug-free environment (see Materials and Methods and ref.

[21]). We then examine different variations of the RL (see

Materials and Methods) in order to explore how these measures

depend on the features of the underlying landscape. These

variations include landscapes based on fitness measured in the

presence of different antiretroviral drugs; landscapes, in which the

strength of epistasis is reduced; and landscapes in which the

coefficients determining main effects and pair-wise epistasis in the

RL are randomized (see below).

The RL is characterized by a large number of optima, a large

correlation length and considerable neutrality (Figure 1). For an

increasing number of starting points we find an increasing number

of optima, with only a weak saturation of the increase up to 105

different starting points. For the 105 starting points tested in

Figure 1, on average every fourth one leads to a different

optimum. By contrast, in a completely smooth landscape such

walks would always converge to the same optimum. The large

number of optima indicate (Figure 1A) a high degree of ruggedness

and hence a multitude of basins of attraction (i.e. the set of starting

points from which adaptive walks end up in a given optimum).

Moreover, the starting genotype of an adaptive walk has a strong

influence on the long-term evolutionary trajectory and neighbor-

ing starting points can lead to completely different trajectories

(Figure 1B). The basins of attraction of the different optima differ

greatly in structure. Some optima have an attraction domain that

is confined to a small region of sequence space and is sparsely

distributed within this region (type a in Figure 1B). Other optima

have an attraction domain, which also covers a small region of

sequence space, but is densely distributed in that region (type b).

Finally, optima of the last type have an attraction domain that

spans a large part of sequence space but is only sparsely distributed

(type c). The long correlation length of random walks on the RL

(Figure 1C) indicate that almost all loci characterizing a genotype

(here, genotypes consist of 404 loci, see Materials and Methods)

have to be mutated until the memory of the initial fitness value is

lost.

In the landscapes considered here, mutations may have

extremely small effects, but they are never completely neutral.

To define a sensible concept of neutrality we therefore need to

define a threshold for the maximal fitness effect that a mutation is

allowed to have to be considered neutral. The exploration range of

the resulting quasi-neutral walks strongly depends on the

magnitude of this threshold (see Figure 1D). If this threshold is

1024 or lower, the exploration range is very small with a maximal

distance of 5–10 mutations. For thresholds of 1023 or higher, on

the other hand, neutral walks can reach considerable distances of

100 mutations or more. Thus, although there are no fully neutral

mutations in the RL, the landscape is characterized by large

networks over which fitness changes only minimally.

Comparing the RL to the corresponding best-fit landscapes for

15 different environments each characterized by the presence of a

different antiretroviral drug (see Materials and Methods), we find

that ruggedness, correlation length, and neutrality are of similar

magnitude in all these environments (Figure 2). However, the no-

drug environment exhibits less neutrality and longer correlation

length than all environments with antiretrovirals present. Inter-

estingly, there are also consistent differences between drug-classes.

Author Summary

Evolutionary adaptation can be understood as populations
moving uphill on landscapes, in which height corresponds
to evolutionary fitness. Although such fitness landscapes
are central to evolutionary theory, there is currently a lack of
biologically realistic examples. Here we analyze large-scale
fitness landscapes derived from in vitro fitness measure-
ments of HIV-1. We find that these landscapes are very
rugged and that, accordingly, adaptive processes on these
landscapes depend sensitively on the initial conditions.
Moreover, the landscapes contain large networks along
which fitness changes only minimally. While the relative
extent to which mutations affect fitness on their own or in
combination with other mutations is a strong determinant
of these properties, the fitness landscape of HIV-1 is
considerably less rugged than expected from the individual
and pair-wise effects of mutations. Overall this study
confirms theoretical conjectures about the complexity of
biological fitness landscapes and the importance of the high
dimensionality of the genetic space in which adaptation
takes place.

The Complexity of the HIV-1 Fitness Landscape
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Figure 2 shows results for the 3 main classes of antiretroviral drugs:

protease inhibitors (green), nucleoside reverse transcriptase

inhibitors (blue), and non-nucleoside reverse transcriptase inhib-

itors (cyan). For instance, the landscape is particularly rugged in

the presence of protease inhibitors. Interestingly, protease

inhibitors are also known to have the most complex resistance

profiles [22,23,24], in the sense that resistance against them is

mediated by a large number of interacting mutations.

To assess the impact of the strength of epitasis relative to that of

main effects, we consider alternative landscapes in which fitness

interactions between mutations are weaker. We chose the RL as a

reference because it has the highest predictive power (see [21] and

Figure S1). However, this landscape might overestimate the role of

epistasis for statistical reasons (see Materials and Methods). A

landscape based on a more conservative estimate of the role of

epistasis can be obtained by fitting a hierarchical model that first

estimates the effects of individual mutations (‘‘main effects’’) and

then uses pair-wise interactions between mutations (‘‘epistasis’’) to

explain the remaining variance in the biological data (see

Materials and Methods). This hierarchical landscape (HL) has a

predictive power almost equal to that of the RL (see Materials and

Methods). As both the RL and the HL represent equally valid

approximations of the true biological fitness landscape, the true

magnitude of epistasis will presumably lie between these two

Figure 1. Properties of the reference landscape. (A) Number of different optima attained from steepest-ascent hill-climbing walks starting from
random genotypes plotted as a function of the number of starting genotypes. (B) Distribution of attraction domains of steepest-ascent hill-climbing
walks: Starting genotypes are chosen in the neighborhoods of 500 randomly chosen reference genotypes. Of each reference genotype, 100 random
single, double, triple, fourfold, and fivefold mutants are considered as starting genotypes. Each dot corresponds to a local optimum. Coordinates
indicate from how many unique neighborhoods (y-axis) and from what fraction of starting-genotypes in these neighborhoods the optimum is
reached (x axis). Thus the y- and x-axis correspond to the global and local density of the attraction domain respectively. (C) Autocorrelation of log-
fitness along random walks as a function of the number of steps. The red line corresponds to the linear least square fit of the autocorrelation and the
correlation length is given by 21/(slope of the line). (D) Range explored by quasi-neutral walks for different discrete values of the maximal fitness-
effect e which quasi-neutral mutations are allowed to have. Points correspond to the mean over 105 walks of length 1000. 95%-confidence-intervals
of the mean (inferred through 1000 bootstrap samples) are smaller than point size.
doi:10.1371/journal.pgen.1002551.g001

The Complexity of the HIV-1 Fitness Landscape
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Figure 2. Fitness landscapes across different environments characterized by the absence of drugs or by the presence of a single
antiretroviral. (A) Ruggedness (i.e. number of different optima reached from 1000 steepest-ascent hill-climbing walks) for the no-drug and 15
single-drug environments. X-axis labels indicate the antiretroviral drug characterizing each environment (see Materials and Methods) and color
indicates drug-class (red: no drug; cyan: non-nucleoside reverse transcriptase inhibitor; blue: nucleoside analog reverse transcriptase inhibitor; green:
protease inhibitor). Each point corresponds to the mean over 100 such measures of ruggedness. 95%-confidence-intervals of the mean (inferred
through 1000 bootstrap samples) are smaller than point size. (B) Correlation-length of log-fitness on random walks. Correlation-length is inferred from
104 random walks of length 50 starting from random initial conditions. Points correspond to the mean over 100 such measurements of correlation
length. 95%-confidence-intervals of the mean (inferred through 1000 bootstrap samples) are smaller than point size. (C) Range explored by quasi-
neutral walks (threshold e= 0.001) for different environments. Points correspond to the mean over 105 walks of length 1000. Error-bars correspond to
the 95% confidence-interval of the mean, inferred through 1000 bootstrap samples.
doi:10.1371/journal.pgen.1002551.g002

The Complexity of the HIV-1 Fitness Landscape
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extremes. To further explore the role of epistasis we can reduce its

magnitude beyond the realistic range by reducing all epistatic

interactions in the HL by a factor e (0#e#1). The predictive

power of the corresponding landscapes (HLe) decreases for small e,

but even for e = 0 the predictive power is only reduced by 13% (see

Materials and Methods). This continuum of the HLe landscapes

allows us to study the effect of the relative strength of epistasis on

ruggedness, correlation length and neutrality.

We find that ruggedness and neutrality consistently increase

with the magnitude of epistatic effects (Figure 3). With increasing

epistasis, the HLe gradually shift from a single-peaked smooth

landscape without neutral networks (e = 0) to a very rugged

Figure 3. The impact of epistasis on the structure of fitness landscapes. Ruggedness (A), correlation length (B), and neutrality (C) as a
function of the magnitude of epistasis in HLe. For all panels, the 95% confidence interval of the mean (inferred through 1000 bootstrap samples) is
smaller than the size of the data point symbol.
doi:10.1371/journal.pgen.1002551.g003

The Complexity of the HIV-1 Fitness Landscape
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landscape with large quasi-neutral networks (e = 1). In contrast to

the other two measures, correlation length in the HLe depends

only weakly on epistasis. All three measures continue to exhibit the

same type of dependence on epistasis when switching from the HL

to the more epistatic RL (Figure 3). Taken together, these results

indicate that the relative strength of pair-wise epistasis is a major

determinant of the structure of fitness landscapes.

An intuition for the impact of the strength of epistasis on

ruggedness can be obtained as follows: If main effects dominate, a

given mutation is always either beneficial or deleterious, indepen-

dent of its background. However, if epistatic interactions dominate,

a change in the genetic background can turn a beneficial mutation

into deleterious one and vice versa. Thus the landscape only has one

peak if main effects dominate, but may have multiple peaks if

epistatic effects dominate. Note that epistasis need not necessarily

increase ruggedness. For example, this would not be the case if most

epistatic interactions were of the same sign (as has often been

assumed [25,26]). Thus the increase in ruggedness with epistasis is a

particular feature of the landscapes studied here. The fact that

neutrality increases with epistasis might seem contradictory at first,

given that epistasis contributes to the selective effects of mutations.

One should note, however, that non-trivial neutrality (i.e. a

mutation being neutral in some genetic backgrounds but not in

others) requires epistasis by definition. This type of non-trivial

neutrality is responsible for the observed increase in neutrality with

increasing epistasis. In contrast to the trivial type of neutrality that

would be due to synonymous mutations, the neutrality observed

here is exclusively due to the cancelling out of selective effects.

Finally, the correlation length of a random walk decreases with the

strength of epistatic effects for the following reason: In the case of

independent loci, correlation is lost if on average every locus has

been mutated. If loci interact epistatically, then a mutation at one

locus affects the fitness-contribution of the mutations at other loci as

well and hence the number of changes required to loose correlation

decreases. Given these interpretations, our results (that ruggedness

and correlation length are high) suggest that epistasis is strong

enough to increase ruggedness, but too weak to strongly affect

correlation length. Interestingly Fontana et al. [9,27] found that

landscapes in which fitness is predicted by RNA secondary structure

combine neutrality and ruggedness similarly to the landscapes

described here. However, these RNA-derived landscapes exhibit

short correlation lengths, in contrast to our HIV landscapes. As

correlation length decreases with the strength of epistatic interaction

(see Figure 3), one reason for this difference might be that the

epistatic or pair-wise interactions are much stronger in RNA

landscapes than in the HIV landscapes analyzed here.

The strong impact of the relative strength of main effects and

epistasis raises the question whether the properties of fitness

landscapes also depend on the detailed correlation structure

between different epistatic effects and main effects or whether they

are only determined by the distributions of these effects. In order to

address this question, we use three different schemes to randomize

the main and epistatic effects underlying the RL (Figure 4) and then

measure ruggedness, neutrality and correlation length for the

different types of randomized landscapes. We find that, despite its

large number of peaks, the RL is still considerably smoother (smaller

number of peaks) than the randomized landscapes (see Figure 4A).

Furthermore, the RL is also less neutral and more correlated (see

Figure 4C and 4B). This implies that the fitness landscape of HIV is

considerably less rugged, less neutral, and more correlated than

expected from the distribution of main effects and epistatic

interactions alone. Moreover, it suggests that, although the overall

strength of epistasis is an important factor, knowledge of the

distributions of main effects and epistatic interactions does not fully

characterize fitness landscapes in general, because the correlational

structure between epistatic effects plays an essential role in

determining the properties of the landscapes.

It should be noted that the structure of the fitness landscapes

discussed here might be affected by selection biases in the data used

for the development the fitness-prediction model. The viral isolates

have been obtained from HIV-infected individuals and therefore

the mutations found in these isolates do not represent a random

sample of all possible mutations. On the one hand, because all

isolates harbour replication competent viruses, the sample is biased

Figure 4. The impact of the correlation structure of epistasis on the fitness landscape. Distribution of ruggedness (A), correlation length
(B), and neutrality (C), for different randomizations of the reference landscape. The following randomization schemes are used: In scheme 1 we draw
main effects randomly with replacement from the distribution of main effects underlying the RL, whereas epistatic effects are kept as they are in the
RL. This destroys any correlation between epistasis and main effects. In scheme 2 we additionally shuffle the non-zero epistasis values. This retains the
information of which loci interact epistatically, but shuffles the value of any such interaction. Finally, in scheme 3, we fully shuffle all epistasis and
main effect values, and thus destroy all correlations between effects. Each measure is inferred for 100 randomizations of each randomization type and
the interpolation of the resulting distribution is plotted. : No randomization (i.e. the 100 realizations are done on the same landscape; black), scheme
1 (red), scheme 2 (blue), scheme 3 (green). For the latter two cases it should be noted that main effects and epistatic effects are shuffled separately,
i.e. main effects remain main effects and epistatic effects remain epistatic effects.
doi:10.1371/journal.pgen.1002551.g004
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against lethal or highly deleterious mutations. On the other hand,

most viral isolates carry drug resistance mutations. These resistance

mutations are beneficial in the presence, but typically detrimental in

absence of drugs. Hence, in the drug free environment (or in an

environment containing drugs to which a give mutation does not

confer resistance) the isolates may be enriched in deleterious

mutations. In any event, the mutations found in the isolates

represent the standing variation of mutations that are present on the

level of the host population. Clearly, however, it is likely that the

complete fitness landscape of HIV does contain much more fitness-

holes/troughs than the landscapes described here, because of the

observation bias against lethal mutants.

Comparing the fitness landscape of HIV with various theoretical

landscapes that have been used to study evolutionary processes

[12,14,15,18] shows that these classical landscapes can capture

certain aspects of a real landscape while failing to describe others. For

example, the fitness landscape of HIV resembles uncorrelated

landscapes with regard to the high ruggedness. However, unlike

uncorrelated landscapes, it is characterized by considerable neutrality

and large correlation length. In these respects, the HIV fitness

landscape is closer to neutral landscapes (such as holey landscapes) or

single-peaked Mount-Fujiyama-like landscapes. Finally, the structure

of the attraction domains—in particular the existence of attraction

domains which are at the same time very sparsely and widely

distributed—strongly contrasts the situation in low dimensional

spaces. Overall, these results highlight the complexity and the high

dimensionality that need to be taken into account to describe adaptive

processes in real biological systems.

Materials and Methods

Fitness Landscapes
The fitness-landscapes analyzed here are based on models that

predict the fitness of HIV from amino acid sequences. Fitness is

measured as the reproductive capacity (RC) of HIV-derived

amplicons (representing all of Protease (PR) and most of Reverse

Transcriptase (RT)) inserted into a constant backbone of a

resistance test vector. The models are then trained to predict this

fitness from the amino-acid sequence of the amplicons. Although

the fitness, which is predicted by these models, is an in-vitro RC,

we could show in [28] that this predicted RC is significantly

correlated to HIV virus load in vivo. Details on the experimental

measurement of the RC values and on inferring the predictor have

been published in [29] and [21]. Here, we briefly reiterate the

principles of the models fitted to the data.

In essence, the predictor is based on fitting the data consisting of

amino acid sequences (s), coded here as a binary string, and the

corresponding RC values (w) with the following model

log(w(s))~Iz
X

ij

mijsijz
X
ijkl

eij;klsijskl ðM1Þ

For the purpose of this paper, sij denotes the presence (sij = 1) or

absence (sij = 0) of allele j at position i. (Although the present work

is restricted to this simple binary case, a more general definition is

used in the data fitting procedure [21]: If an ambiguity in the

population sequencing is consistent with several amino acids at a

given position, then sij denotes the probability of allele j at position

i.) Thus s is a valid sequence only if for all positions i,
P

j

sij~1. In

total, there are 1859 alleles at 404 positions. The vast majority

(1848/1859) of these alleles are amino acids (thus not all possible

amino acids at the 404 positions are allowed); only 11 alleles

correspond to either insertions or deletions. The model parameters

I, sij and eij;kl can be interpreted as intercept, main effects (effects of

individual alleles on their own), and epistatic effects (effects of an

allele at one locus in combination with an allele at another locus).

As the number of parameters exceeds the number of data-points,

the model M1 has been fitted to the data on the basis of a machine

learning approach (generalized kernel ridge regression). With this

approach over-fitting is no concern because the sub-dataset on

which the predictor is evaluated is independent from the sub-

dataset from which the predictor is inferred (see [21]).

Note that equation (M1) can also be written as a second order

cluster expansion [30] of the log-fitness

log w(s)ð Þ~f (S)~Iz
X

i

f 1
Si

z
X

ij

f 2
SiSj

ðM2Þ

where Sj denotes the allele at position j of the amino-acid sequence,

f 1
Si

the impact on log-fitness of allele Si at position i, and f 2
SiSj

denotes the combined impact of allele Si at position i and Sj at

position j. The first-order effects f 1
Si

in equation (M2) correspond

to the main-effects in equation (M1) and the second order effects

f 2
SiSj

to the epistatic effects in equation (M1). For instance if i is a

bi-allelic locus with alleles Si/Si’ and k/k’ denote the position

corresponding to those alleles in the binary representation used

above, then f 1
Si

= mk and f 1
Si
0 = mk’.

The different landscapes are all based on model M1, but differ

with respect to the relative weight that is given to epistasis and

main effects:

N The reference landscape RL is obtained by fitting the full

model M1 to the data. Thus main effects and epistatic effects

are fitted simultaneously. As main and epistatic effects are

given the same weight in model fitting, while epistatic effects

greatly outnumber main effects, this approach will explain the

variance in RCs using mainly epistasis. Therefore this

approach tends to overestimate the role of epistasis relative

to that of main effects.

N The hierarchic landscape (HL) avoids this overestimation of

epistatic effects by first fitting model M1 only with the main

effects (i.e. the eij;kl in M1 are set to 0) and then fitting the

residuals of the first fit only with the epistatic effects (i.e. mij in

M1 are set to 0). This fit may however underestimate the

magnitude of epistatic effects, because they are only used to

explain that part of the variance, which cannot be explained by

main effects.

N The HLe are derived from the HL by scaling the epistatic

effects by a factor e (i.e. by replacing the eij;kl with eij;kl e).

Figure S1 shows the predictive power of the different models.

Environments
If not stated otherwise, the RC values underlying the fitness-

landscapes RL, HL and HLe are measured in the absence of

drugs. In addition we consider 15 alternative versions of the RL

based on RC values measured in the presence of 15 different single

drugs. The drugs used here are the protease inhibitors amprenavir

(AMP), indinavir (IDV), lopinavir (LPV), nelfinavir (NFV),

ritonavir (RTV), and saquinavir (SQV), the 6 nucleoside reverse

transcriptase inhibitors abacavir (ABC), didanosine (ddI), lamivu-

dine (3TC), stavudine (d4T), zidovudine (ZDV), and tenofovir

(TFV) and the non-nucleoside reverse transcriptase inhibitors

delavirdine (DLV), efavirenz (EFV), and nevirapine (NVP). For

each drug, the replicative capacity of a virus on drugs was given by

The Complexity of the HIV-1 Fitness Landscape
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the interpolated value measured at the drug concentration at

which the NL4-3 based control virus has 10% of its replicative

capacity in the absence of drug (i.e. the IC90 for NL4-3 is used as

the reference drug concentration for every subsequent measure-

ment) [21].

Characteristics of Fitness Landscapes
The landscapes are characterized by adaptive, neutral and

random walks. Each walk consists of a series/succession of

genotypes s0Rs1Rs2Rs3…. . The different types of walks differ

with respect to the updating rule (i.e. on how genotype sk+1 is

determined from sk). Unless stated otherwise the start genotype of

each walk is chosen randomly, i.e. at each position one of the

possible alleles is chosen randomly and independently from alleles

at the other positions.

The ruggedness of the fitness landscapes is measured as the

number of different end-points reached from a pre-specified

number of steepest-ascent hill climbing walks (SAHCW) starting

from different, random start genotypes. In each step skRsk+1 of a

SAHCW, the fitness of all single mutants of sk is determined. If the

single mutant with the maximal fitness (smax) is less fit than sk, the

walk is terminated, as sk represents a local maximum. Otherwise,

the fittest single mutant smax is chosen as the next genotype in the

walk (sk+1 = smax).

The neutrality of fitness landscapes is measured as the range

explored by quasi-neutral walks (QNW) of a pre-specified length L

(typically 1000 steps). In each step skRsk+1 of a QNW, a single

random amino-acid substitution is performed on the genotype sk,

yielding the genotype sk’. If the log-fitness of sk’ differs by less than

e from the log-fitness of sk, then sk’ is chosen as the next step in the

QNW (sk+1 = sk’). If the difference is larger than or equal to e, the

step is rejected and an alternative single mutant of sk is probed in

the same way for its neutrality etc. If after 104 trials, no quasi-

neutral mutation has been found, the QNW stays at sk (sk+1 = sk).

The range of such a neutral walk is determined as the maximal

Hamming distance of one the genotypes s1….sL from the start-

genotype s0.

The correlation length of a fitness landscape is measured as the

inverse decay rate of the autocorrelation of the log-fitness along

random walks (RW). Specifically, a pre-specified number (typically

105) of random walks are initiated each from a different random

start genotype. In each step of a given RW a single randomly

chose amino acid substitution is performed. The autocorrelation

after k steps is then determined as

ak~
Slog w(s0)

� �
log w(sk)
� �

T{Slog w(s0)
� �

TSlog w(sk)
� �

Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Slog w(s0)ð Þ2T{Slog w(s0)ð ÞT2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Slog w(sk)ð Þ2T{Slog w(sk)ð ÞT2

q ,

where the brackets refer to averaging over all random walks

performed. An exponential decay is then fitted to these auto-

correlation coefficients by performing a linear least-square fit

according to

log akð Þ~a-b k typically for 50wkw0ð Þ:

The correlation length is then given by 1/b.

Supporting Information

Figure S1 Predictive power (measured as the fraction of the

deviance explained) of the fitness models underlying the fitness

landscapes considered. The dashed line corresponds to the RL.

Points correspond to the HLe for different values of e. See Hinkley

at al. [21] for details on how predictive power was measured.

(PDF)
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