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Abstract
Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible
cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that
cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant
proliferation. It has also been postulated that cellular senescence can occur independently of
cancer and contribute to the physiological processes of normal organismal aging. Recent data have
demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics
of senescent cells, such as the ability to modify their extracellular environment, could play a role
in aging and age related pathology. In this review, we examine current evidence that links cellular
senescence and organismal aging.
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1. Introduction
Cellular senescence was first described by Hayflick and Moorfield in 1961 who observed
that cultures of normal human fibroblasts had a limited replicative potential and eventually
became irreversibly arrested (Hayflick and Moorhead, 1961; Campisi and d'Adda di
Fagagna, 2007; Sedivy et al., 2007). The majority of senescent cells assume a characteristic
flattened and enlarged morphology, and over the years a large number of molecular
phenotypes have been described, such as changes in gene expression, protein processing and
chromatin organization (Gonos et al., 1998; Shelton et al., 1999; Schwarze et al., 2002;
Semov et al., 2002; Narita et al., 2003; Zhang et al., 2003; Yoon et al., 2004; Pascal et al.,
2005; Xie et al., 2005; Zhang et al., 2005; Cong et al., 2006; Funayama et al., 2006;
Trougakos et al., 2006; Zdanov et al., 2006; Zhang et al., 2007). The growth arrest occurs
mostly in G1 phase (Pignolo et al., 1998). Although individual cells arrest rapidly, probably
within the duration of a single cell cycle, cultures are typically quite asynchronous with
increasing proportions of cells withdrawing into senescence over a period of several weeks
(Herbig et al., 2003; Herbig et al., 2004). Senescent cells maintain metabolic activity and
can remain viable essentially indefinitely (Matsumura et al., 1979; Pignolo et al., 1994). An
important component of this stability in culture may be the capacity of senescent cells to
resist apoptosis (Marcotte et al., 2004; Hampel et al., 2005).
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Conceptually, there are two broad categories of replicative cellular senescence. The first is
initiated by dysfunctional telomeres or other forms of genotoxic stress eliciting a DNA
damage response mediated primarily by the p53 tumor suppressor pathway (d'Adda di
Fagagna et al., 2003; Herbig et al., 2004). The second, much less understood response does
not involve telomeres or DNA damage, and is characterized by the upregulation of the
CDKN2A gene (cyclin dependent kinase inhibitor p16INK4a). These basic distinctions are
however complicated by the fact that p16 can be upregulated by a wide variety of stresses,
including some forms of genotoxic damage.

The relationship between elapsed cell divisions and the onset of senescence was clearly
apparent from early in vitro studies, and led to proposals that senescence may contribute to
in vivo organismal aging phenotypes (Hayflick, 1985). This view was reinforced by findings
that cells explanted from old donors were capable of fewer in vitro population doublings
than those from young individuals (Martin et al., 1970; Le Guilly et al., 1973; Rheinwald
and Green, 1975; Schneider and Mitsui, 1976; Bierman, 1978; Bruce et al., 1986). The
gradual attrition of telomeres subsequently provided the molecular mechanism for the cell
division clock (Harley et al., 1990; Bodnar et al., 1998). It has been proposed that the term
“cellular senescence” be reserved for those phenomena based on an inherent counting
mechanism, with other terms, such as “stasis” to be applied to the large variety of stress-
induced arrests (Drayton and Peters, 2002; Wright and Shay, 2002). Recent usage has
however favored irreversible cell cycle arrest as the defining feature, and “cellular
senescence” is now commonly used to encompass states induced by stress and signaling
imbalances (Collado et al., 2007).

It is important to note that the intrinsic cell division clock can be significantly affected by
extrinsic influences, such as reactive oxygen species, which accelerate the rate of telomere
shortening (von Zglinicki, 2002). Although senescent cells display a number of phenotypes
that discriminate them from quiescent cells, it has also been suggested that senescence could
be considered a form of terminal differentiation (Bayreuther et al., 1988; Seshadri and
Campisi, 1990). This view has recently been given new life by observations that
downregulation of Wnt signaling may be a factor in triggering the onset of senescence (Ye
et al., 2007). Thus, in addition to being influenced by the environment, senescence may also
respond to developmental or endocrine cues.

Given that senescence results in the arrest of proliferation, its potential for opposing cancer
development was pointed out some time ago (Sager, 1991). This notion was strongly
reinforced by the discovery that activation of oncogenes in normal cells could trigger
senescence (Serrano et al., 1997). Recent data have indeed implicated cellular senescence as
an important in vivo tumour suppressor mechanism in a variety of human and mouse tissues
(Braig et al., 2005; Chen et al., 2005; Collado et al., 2005; Michaloglou et al., 2005;
Courtois-Cox et al., 2006; Cosme-Blanco et al., 2007; Feldser and Greider, 2007; Ventura et
al., 2007; Xue et al., 2007). In addition to being on sound experimental footing, the tumor
suppressive function of senescence also provides a rational explanation for its evolution. The
possible role of senescence in age associated dysfunction is often justified by invoking the
concept of antagonistic pleiotropy (Williams, 1957; Rose, 1991; Kirkwood and Austad,
2000; Campisi, 2005), namely, that beneficial traits (such as cancer suppression) under
selection in reproductively active individuals may have unselected and unintended effects in
more advanced age.

In contrast to tumor suppression, the connections between cellular senescence and the aging
of organisms are significantly more tenuous. In this review we focus on these links and their
implications. Elucidating these relationships is expected to advance our comprehension of
the mechanisms involved in age-related diseases as well as normal aging processes.
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2. Telomeres
Telomeres shorten with each round of genome duplication, an unavoidable consequence of
the RNA priming mechanism of DNA replication (Olovnikov, 1973). The minimum rate of
telomere shortening in human cells (30–50 bp per cell division) is slightly in excess of that
predicted by the “end-replication problem”, and probably stems from further exonucleolytic
processing of chromosome ends (Sfeir et al., 2005). Telomere attrition can be accelerated by
a number of factors, such as oxidative damage (von Zglinicki et al., 1995; von Zglinicki,
2002). Dysfunctional telomeres are sufficient to trigger a full senescence response, and in
many cases constitute the primary cause of the observed growth arrest (Bodnar et al., 1998;
Wright and Shay, 2002). Even a single dysfunctional telomere may be sufficient to establish
senescence in the affected cell (Hemann et al., 2001; Herbig et al., 2006).

Sensitive and accurate methods for measuring single telomere lengths in individual cells, as
well as average telomere lengths in populations of cells have been developed, and have
produced a wealth of data indicating an inverse correlation between telomere length and age
in a number of tissues (Cawthon et al., 2003; Baerlocher et al., 2006; Canela et al., 2007;
Kimura et al., 2007). A significant number of important age associated pathologies, such as
cardiovascular disease, diabetes and Alzheimer's disease have been correlated with telomere
shortening, as have obesity, psychological stress and socio-economic status (Panossian et al.,
2003; Epel et al., 2004; Ogami et al., 2004; Valdes et al., 2005; von Zglinicki and Martin-
Ruiz, 2005; Cherkas et al., 2006; Adams et al., 2007; Minamino and Komuro, 2008). This
literature has grown quite large and engendered some lively debates (Ellison, 2006;
Hornsby, 2006; Kuh, 2006; Lansdorp, 2006). The epidemiology of telomere length
associations is compromised by wide inter-individual differences in telomere length at birth,
as well as variations in telomere attrition rates after birth (Aviv et al., 2006). Although the
importance of telomere attrition is well supported by cross-sectional data associating shorter
telomeres with age associated pathologies, longitudinal studies will be needed to evaluate
the links between telomere attrition and rates of aging (De Meyer et al., 2008).

Dysfunctional telomeres trigger a DNA damage response similar to that elicited by the
presence of double strand breaks (DSB), which can be visualized in individual cells by the
presence of nuclear foci containing the phosphorylated form of the histone variant H2AX
(d'Adda di Fagagna et al., 2004; von Zglinicki and Martin-Ruiz, 2005; Herbig and Sedivy,
2006). Such foci also contain many proteins involved in the recognition, signaling and repair
of DNA damage, and when physically localized at telomeres are referred to as telomere
dysfunction induced foci (TIF) (d'Adda di Fagagna et al., 2003; Takai et al., 2003; Herbig et
al., 2004). The occurrence of DNA damage foci increases with replicative age of cultures as
well as organismal aging in both mice and primates. Not all DNA damage foci are telomeric,
and the species- and tissue-specific distribution of TIF and non-telomeric foci are only
beginning to be investigated (Sedelnikova et al., 2004; Garcia-Cao et al., 2006; Ksiazek et
al., 2007; Sedelnikova et al., 2007). An in vivo age associated increase in TIF has been
demonstrated in primate dermal fibroblasts (Herbig et al., 2006; Jeyapalan et al., 2007).

Tissues with high cell turnover would be expected to be especially sensitive to telomere
shortening, and effects on the regenerative potential of stem cells have been of high interest
(Wright and Shay, 2002; Campisi, 2005; Blasco, 2007). Although telomerase is known to be
expressed in some stem cells compartments, several important examples of age-associated
exhaustion of stem cell pools have also been found (Allsopp et al., 2003a; Allsopp et al.,
2003b; Flores et al., 2005; Effros, 2006; Sarin and Artandi, 2007). One example is muscle
satellite cells which are vital for the maintenance and repair of skeletal muscle, and satellite
cell telomere shortening, replicative senescence, and rescue by telomerase have been
reported (Decary et al., 1997; Cudre-Mauroux et al., 2003; Zhu et al., 2007).
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A number of human disease states have been linked with excessive or accelerated telomere
shortening. Although the phenotypes can be quite varied, all include some forms of age-
associated pathology, premature aging and early death. Three syndromes are now known to
be caused by mutations in genes that encode the telomerase holoenzyme: dyskeratosis
congenita (Vulliamy et al., 2004; Vulliamy and Dokal, 2006), aplastic anemia (Yamaguchi
et al., 2005; Drummond et al., 2007), and some cases of idiopathic pulmonary fibrosis
(Armanios et al., 2007; Tsakiri et al., 2007). Patients with dyskeratosis congenita have short
stature, suffer from hypogonadism and infertility, defects in the skin and hematopoietic
system, and typically die of bone marrow failure. Many of the same pathologies also
develop in telomerase knockout mice. The most recently discovered syndrome, idiopathic
pulmonary fibrosis, is an adult-onset lethal disease of progressive lung scarring followed by
respiratory failure.

Human segmental progeroid syndromes have also provided important connections to
cellular senescence, and cells from such patients typically display greatly reduced in vitro
life spans (Brown, 1990; Kudlow et al., 2007). The most thoroughly studied is Werner's
syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS). WS is an autosomal
recessive disorder caused by loss of function mutations in the WRN gene encoding a
member of the RecQ helicase family involved in DNA repair and transcription (Yu et al.,
1996). HGPS is an autosomal dominant disorder caused by a gain of function mutation in
the LMNA gene encoding lamin A/C, resulting in the expression of a splice variant
designated progerin (Eriksson et al., 2003). WS patients display aging phenotypes that
include hair graying, pattern baldness, bilateral cataracts, type 2 diabetes, hypogonadism,
osteoporosis and atherosclerosis; death occurs at an average age of 47 usually as a result of
cancer or coronary disease (Salk, 1982). HGPS patients display aging phenotypes that
include extreme short stature, aged facial features, loss of hair, lipodystrophy, scleroderma,
osteolysis and atherosclerosis; death occurs at an average age of 12 years as a result of
myocardial infarction or stroke (Hennekam, 2006). Although the genetic defects in WS and
HGPS are quite different, evidence has been presented for both that the accelerated cellular
senescence is associated with increased rates of telomere shortening (Lebel and Leder, 1998;
Chang et al., 2004; Multani and Chang, 2007; Crabbe et al., 2007; Huang et al., 2008). The
underlying mechanistic causes affecting telomere maintenance are likely to be indirect and
are not well understood (Cox and Faragher, 2007).

3. Accumulation of Senescent Cells In Vivo
To the extent that senescent cells are considered to confer deleterious effects, including the
promotion of organismal aging, it is crucial to distinguish them from the majority of healthy
but quiescent cells found in normal tissues. The original definition of irreversible arrest is
clearly not feasible in this context, a situation that has led to a concerted search for
biomarkers to assess the increasingly numerous molecular phenotypes of senescent cells.
Unfortunately, to date no biomarker has been found that is either common to all types of
senescent cells, or exclusive of all non-senescent cells. Nevertheless, if used in combination
such markers can provide useful evidence for the presence of senescent cells, as well as
clues concerning the mechanisms that generated them.

The first and still most widely used marker is the senescence associated β-galactosidase (SA
β-Gal) (Dimri et al., 1995; Itahana et al., 2007). One of its limitation is the staining, under
some conditions, of non-senescent cells (Yegorov et al., 1998; Severino et al., 2000;
Cristofalo, 2005; Yang and Hu, 2005). Other concerns include the possibility of false
negative results due to improper processing of samples, and the obscure molecular
mechanisms that lead to its upregulation (Lee et al., 2006). More recent markers fall into
several broad categories: components of signal transduction pathways known to be involved
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in the establishment and maintenance of senescent states (such as the upregulation of cyclin
dependent kinase inhibitors p16 or p21), markers of genotoxic stress (such as DNA damage
foci and their colocalization with telomeres), appearance of a distinctive type of facultative
heterochromatin designated senescence associated heterochromatin foci (SAHF), and the
secretion of certain inflammatory cytokines and tissue remodeling factors (Campisi, 2005;
Adams, 2007). The visualization of TIF has proven to be an especially robust marker,
applicable to multiple species, cell culture as well as tissue sections, but is limited to
reporting senescence initiated by telomere dysfunction.

Using such biomarkers senescent cells have been detected in vivo in a variety of tissues in a
number of different organisms including mouse, primates and humans (Dimri et al., 1995;
Krtolica and Campisi, 2002; Satyanarayana et al., 2003; Braig et al., 2005; Chen et al., 2005;
Collado et al., 2005; Lazzerini Denchi et al., 2005; Lechel et al., 2005; Michaloglou et al.,
2005; Herbig et al., 2006; Janzen et al., 2006; Krishnamurthy et al., 2006; Molofsky et al.,
2006; Jeyapalan et al., 2007). Substantial evidence has accumulated that oncogene-induced
senescence occurs in vivo in response to mutations in RAS, RAF and PTEN genes in mouse
as well as human tumors (Braig et al., 2005; Chen et al., 2005; Collado et al., 2005;
Michaloglou et al., 2005; Courtois-Cox et al., 2006). These populations of senescent cells
were detected in benign, premalignant tumors, corroborating the importance of senescence
as a tumor suppressor mechanism. Senescent cells can also be found in normal and tumor
tissues following DNA-damaging chemotherapy (Schmitt et al., 2002; te Poele et al., 2002;
Roninson, 2003; Roberson et al., 2005). Melanocytic naevi can reside in an organism for
many years in a benign state, thus the detection of senescent cells in such naevi suggests that
senescent cells could persist in vivo for a substantial periods of time (Michaloglou et al.,
2005). In other cases, the apparent recognition and clearance of senescent cells by the
immune system has been reported (Xue et al., 2007).

In culture, senescent cells accumulate with increasing population doublings until the
majority of the culture has reached replicative senescence. In vivo studies have also found an
age-associated increase in the occurrence of senescent cells in normal tissues (Dimri et al.,
1995; Herbig and Sedivy, 2006; Ressler et al., 2006; Jeyapalan et al., 2007). Over 15% of
dermal fibroblasts in very old baboons showed senescent phenotypes as determined by the
presence of damaged telomeres, activation of ATM kinase and increased expression of p16.
(Herbig et al., 2006; Jeyapalan et al., 2007). In contrast, no increase was found in skeletal
muscle. Interestingly, the increase in heterochromatinization visualized using the chromatin
remodeling protein HIRA as a marker was much more extensive and affected up to 80% of
dermal fibroblasts in very old animals (Jeyapalan et al., 2007). The reasons for this
discrepancy are not understood. The visualization and quantification of senescent cells in
diverse species and tissues remains an area of considerable interest.

4. Senescent cells at sites of age related pathology
The presence of senescence-associated markers at sites of age related pathologies have
provided further links between cellular senescence and aging. Telomere length as a function
of donor age was found to decrease more rapidly in arterial than in venous endothelial cells,
and telomere loss was greater in intimal than in medial cells (Chang and Harley, 1995).
Other studies found that age-dependent telomere attrition is faster in the distal than in the
proximal segment of the abdominal aorta, providing additional correlation between telomere
attrition and hemodynamic stress (Okuda et al., 2000). Evidence for the presence of
senescent endothelial cells overlying atherosclerotic plaques and other arterial lesions that
could promote atherogenesis were found by several groups (Fenton et al., 2001; Minamino
et al., 2002; Matthews et al., 2006). The gene expression changes seen in senescent cells
could also be a factor in atherogenesis (Saito and Papaconstantinou, 2001; Vasile et al.,
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2001). A recent study correlated telomere-based senescence in vascular smooth muscle cells
with human atherosclerosis (Matthews et al., 2006). It has been speculated that the depletion
of vascular smooth muscle cells is an important contributing factor to the atherosclerosis
seen in HGPS patients (Stehbens et al., 1999).

Links between cellular senescence and another age related disorder, osteoarthritis, have also
been reported. Senescent cells were detected in chrondrocyte clusters with mitotic activity in
proximity to osteoarthritic lesions in (Price et al., 2002). In normal cartilage chrondocyte
turnover is low but is thought to increase during disease progression, which in turn would be
expected to promote telomere attrition.

A common disorder in the aging male population is benign prostatic hyperplasia, the
continuing growth of the transition zone of the prostate due to both epithelial and stromal
cell proliferation. Interestingly, this continued proliferation is thought to be due to the
presence of senescent epithelial cells found at these sites (Choi et al., 2000; Castro et al.,
2003). These cells secrete the cytokines IL-1α and IL-8 that stimulate stromal growth factor
secretion, which in turn correlates with proliferation of the non senescent epithelial cells
(Giri and Ittmann, 2000; Castro et al., 2003; Castro et al., 2004). Other cases where
senescent cells have been implicated in altering the tissue microenvironment include the
skin, where the secretion of growth factors, degradative enzymes and inflammatory
cytokines by the aging dermal fibroblasts has been suggested to contribute to the
characteristic aged skin morphology (Jenkins, 2002; Hornebeck, 2003; Boukamp, 2005).
Moreover, factors secreted by senescent cells have been shown to stimulate the growth and
angiogenic activity of premalignant cells (Krtolica et al., 2001; Dilley et al., 2003; Martens
et al., 2003; Bavik et al., 2006; Coppe et al., 2006). Thus, the presence of senescent cells
may promote the progression of nearby premalignant cells and consequently carcinogenesis
in aging tissues (Campisi, 2005).

5. CDKN2A (p16) and aging
The cyclin dependent kinase inhibitor p16 has emerged as an important player in aging and
age related disease. Biochemically, p16 inactivates CDK4 and CDK6, which maintains pRB
in its active, hypophosphorylated form and consequently blocks cell cycle progression in G1
(Sherr and Roberts, 1999). Genetically, p16 is an important and potent tumor suppressor and
is frequently inactivated in several human cancers, such as melanoma. Because p16
expression can be upregulated by a wide variety of stresses (Gil and Peters, 2006; Kim and
Sharpless, 2006), it may be involved in many (all?) forms of senescence, and has thus
received much recent attention as a promising biomarker (Michaloglou et al., 2005; Ressler
et al., 2006).

p16 expression is very low or absent in young organisms but increases with advancing age
(Zindy et al., 1997). This increase occurs primarily at the transcriptional level, has been
detected in a wide variety of tissues, and can be delayed by caloric restriction which potently
slows aging (Nielsen et al., 1999; Krishnamurthy et al., 2004). For example, p16
upregulation was found in aging human skin (Ressler et al., 2006). Senescence characterized
by p16 upregulation as well as telomere shortening has been observed in human and mouse
cardiomyocytes and may contribute to myocardial aging (Kajstura et al., 2000; Chimenti et
al., 2003; Torella et al., 2004). A very similar situation has been found in human kidneys
(Melk et al., 2000; Chkhotua et al., 2003). Induction of p16 was detected in rejected renal
grafts that developed chronic allograft nephropathy, and it was suggested that accelerated
senescence may be a contributing factor in graft rejection (Halloran et al., 1999; Chkhotua et
al., 2003; Joosten et al., 2003).
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The regulation of p16 is complex and only incompletely understood, especially in vivo (Gil
and Peters, 2006). Three transcriptional regulators, namely the positive effectors ETS1 and
JUNB, and the member of the polycomb family of repressors BMI1, have received
particular attention (Passegué and Wagner, 2000; Ohtani et al., 2001; Krishnamurthy et al.,
2004; Ressler et al., 2006; Yogev et al., 2006; Bracken et al., 2007). The regulation of p16
seems to be of particular importance in the age related decline of stem and progenitor cells.
Early studies found that the induction of p16 correlated with the in vivo senescence of
hematopoietic stem cells (Lewis et al., 2001; Meng et al., 2003; Park et al., 2003). Mice
lacking Bmi1 displayed a striking loss of hematopoietic cells as well as cerebellar neurons,
which were correlated with increases in p16 expression and replicative failure of stem cells
(Lessard and Sauvageau, 2003; Molofsky et al., 2003; Park et al., 2003). Conversely, an
increase in regenerative capacity was found in the bone marrow, pancreatic islets and
forebrain of p16 deficient mice (Janzen et al., 2006; Krishnamurthy et al., 2006; Molofsky et
al., 2006). These findings reinforce the notion that the age associated upregulation of p16
restricts self renewal and unbalances tissue homeostasis. An interesting new link between
cellular senescence and aging was provided by studies of mice deficient in the p53 related
gene p63 (Keyes et al., 2005). Affected animals displayed enhanced p16 expression, stem
cell defects, widespread senescence, and accelerated aging (Keyes and Mills, 2006).

6. Physiological relevance of senescent cells in vivo
Senescent cells are generated in response to a number of stimuli. Telomere attrition and
oncogene activation are the best understood triggers, but a variety of stresses, disease or
pathological conditions, and environmental and nutritional factors are also likely to play
important roles. Although it is now possible to detect and even quantify senescent cells in
vivo with some confidence, the physiological consequences of the existence of such cells are
only beginning to be unravelled. Broadly speaking, we can envision cell autonomous and
well as cell non-autonomous effects. Cell autonomous defects would be those arising from
the depletion of functional cells from tissues. These would be expected to primarily affect
proliferative tissues with high cell turnover, as has indeed been observed in, for example,
telomerase deficient mice or telomerase compromised human syndromes. The depletion of
stem cell pools would be expected to be especially debilitating because the effects would be
amplified in the affected tissue. Cell non-autonomous effects would be mediated by the
secretion of a variety of factors by senescent cells leading to effects on neighbouring cells.
Such changes in the tissue microenvironment would be expected to affect tissue homeostasis
and function, and could lead to tissue degeneration or other pathologies (Parrinello et al.,
2005). One potentially very serious consequence could be the stimulation of preneoplastic
cells leading to cancer progression (Krtolica et al., 2001; Dilley et al., 2003; Martens et al.,
2003; Bavik et al., 2006). Factors secreted by senescent cells (or factors secreted by other
cells after stimulation by senescent cells) could also have more systemic effects, for example
due to the migration of the stimulated cells or endocrine effects of the secreted factors. To
what extent the proinflammatory factors secreted by senescent cells contribute to the tissue
or systemic inflammatory states often seen in the elderly is not known.

One of the cardinal phenotypes of senescent cells is their long term survival, and even
resistance to apoptosis (Marcotte et al., 2004; Hampel et al., 2005). It has to be noted that
this notion stems from cell culture studies, and that the identification of senescent cells in
vivo has only recently become possible. Hence, the persistence of senescent cells in tissues,
an issue of critical importance, is just beginning to be addressed. The secretion of
inflammatory cytokines and other proteins by senescent cells would be expected, at least in
some cases, to have the potential of identifying such cells to the immune system.
Accordingly, the restoration of p53 activity in genetically engineered tumor cells in a mouse
transgenic model resulted in the induction of senescence (Ventura et al., 2007; Xue et al.,
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2007). Evidence was presented in these studies for the upregulation of inflammatory
cytokines, engagement of the innate immune system, infiltration by phagocytic cells, and
tumor regression. Interestingly, senescence was induced in liver carcinomas and sarcomas
whereas apoptosis was induced in lymphomas, suggesting a balance between senescent and
apoptotic responses that is strongly influenced by cell type. The fate of cells that succumb to
senescence during natural aging due to influences such as telomere shortening or oxidative
stress has not been reported to date.

7. Perspectives
The role of cellular senescence in a variety of age associated pathologies is becoming
increasingly accepted. As discussed above, compelling experimental evidence has now
linked increased rates of cellular senescence with accelerated aging. The extent to which, if
any, cellular senescence contributes to the natural life span of any one species however
remains to be established. As a case in point, although quantitative estimates of in vivo
cellular senescence are just beginning to emerge, the evidence at hand would not support the
contention that differential rates of cellular senescence account for the some 50-fold
difference in mouse and human life spans. Perhaps cellular senescence will turn out to be
one of several (many?) factors that influence or even promote aging. A common (albeit far
from experimentally established) contention is that replicative senescence is likely to play
major roles in long lived species with considerable renewable tissues. Establishing a causal
link between cellular senescence and aging would ideally require an interventive
deceleration of in vivo cellular senescence rates and a concomitant demonstration of
increased maximum life span. Some have voiced the concern that the mouse, with its short
lifespan, may be the wrong species for testing the relevance of replicative senescence.
However, given that interventive deceleration of in vivo cellular senescence will almost
certainly require extensive genetic engineering, the mouse is likely to remain the premier
model system for some time. Clearly, the road ahead will not be easy, but it will certainly
bring some very exciting science.
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