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Abstract
Background—Overexpression of mitotic kinases has been associated with prognosis, histologic
grade and clinical stage in ovarian cancer, but the relationship between inherited variation in these
genes and ovarian cancer risk has not been well defined.

Methods—We measured associations between 397 single nucleotide polymorphisms (SNPs)
from 67 mitotic kinases and invasive epithelial ovarian cancer risk in two case-control studies
(n=671 cases; n=939 controls). Thirty-six candidate SNPs (p< 0.05) were assessed in a replication
analysis consisting of three additional studies (n=1094 cases; n=829 controls).

Results—In initial analysis, thirty-six SNPs were suggestive of association with risk of serous
ovarian cancer, all subtypes of ovarian cancer, or both (p<0.05). Replication analyses suggested an
association between rs2125846 in the Nemo-like kinase gene (NLK) and ovarian cancer (serous
odds ratio (OR)=1.36, 95% confidence interval (CI) 1.11 – 1.67, p=1.77 × 10−3; all subtypes
OR=1.30, 95% CI 1.08 – 1.56, p=2.97 × 10−3). Furthermore, rs2125846 was associated with risk
in the combined discovery and replication sets (serous OR=1.33, 95% CI 1.15 – 1.54; all subtypes
OR=1.27, 95% CI 1.12 – 1.45).

*Correspondence: Ellen L. Goode, Department of Health Sciences Research, Mayo Clinic, 200 First St. SW, Rochester, MN 55905,
USA; Tel: +001 507-266-7997; Fax: +001 507-266-2478; egoode@mayo.edu.

NIH Public Access
Author Manuscript
Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2013 March 01.

Published in final edited form as:
Cancer Epidemiol Biomarkers Prev. 2012 March ; 21(3): 523–528. doi:10.1158/1055-9965.EPI-11-0797.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Conclusions—Variation in NLK may be associated with risk of invasive epithelial ovarian
cancer. Further studies are needed to confirm and understand the biological relationship between
this mitotic kinase and ovarian cancer risk.

Impact—An association between SNPs in NLK and ovarian cancer may provide biological
insight into the development of this disease.
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Introduction
Ovarian cancer has the highest mortality of gynecologic malignancies. Factors associated
with ovarian cancer risk include age, family history, fertility drug use, postmenopausal
hormone therapy (1), and inherited factors (2-4). While inherited mutations in BRCA1 and
BRCA2 account for 50% of ovarian cancer cases in families with two or more confirmed
cases (5), the remaining unexplained familial and sporadic ovarian cancer risk is likely in
part attributable to common, low-penetrance alleles (6). Efforts to identify low-penetrance
alleles by genome-wide association studies have identified variants in the chromosome 9p22
BNC2 locus (3), a 19p13 locus containing the MERIT40 gene (7), and in 2q31 and 8q24 loci
(4).

Mitotic kinases are essential components in the regulation of mitosis and cytokinesis, acting
upon various structures involved in mitotic entry, progression, and exit. These kinases
phosphorylate proteins involved in centrosome duplication and separation, chromosome
condensation, spindle assembly and fidelity, chromosome segregation, and cytokinesis, and
have the ability to behave as oncogenes, providing a compelling link between errors in
mitosis and oncogenesis (8). Indeed, errors in the choreography of the processes controlled
by mitotic kinases disrupt successful division of mammalian cells and can lead to
aneuploidy, genetic instability and cancer. More specifically, alterations in these genes and
disregulation of protein products have been implicated in cancer development in mouse
models (9) and in multiple human tumor types (8).

Mitotic kinases include members of the Aurora, Polo-like, and Nek families as well as
individual kinases involved in mitotic checkpoints, mitotic exit and cytokinesis. Within the
Aurora kinase family, the overexpression of both AURKA and AURKB has been associated
with poor prognosis in epithelial ovarian cancers (10-13). Similarly, overexpression of polo-
like kinases such as PLK1 and PLK2 have also been shown to correlate with prognosis,
histologic grade and clinical stage in ovarian cancer (14-16). While disregulation of these
mitotic kinases has been associated with ovarian cancer prognosis, and one study of
polymorphisms found evidence of association with risk and polymorphisms in CDK1, a key
mitotic kinase required for entry into mitosis (17), the relationship between alterations in
these genes and ovarian cancer risk has not been well-studied.

Here we tested the hypothesis that inherited variation in genes encoding mitotic kinases
increases the risk of invasive epithelial ovarian cancer. Single nucleotide polymorphisms
(SNPs) from 67 mitotic kinase genes were genotyped in two ovarian cancer case-control
studies followed by replication in three additional studies.
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Materials and Methods
Study populations

The current hypothesis was tested in a collaborative effort that combined studies of invasive
epithelial ovarian cancer from Mayo Clinic (MAY) and the North Carolina Ovarian Cancer
Study (NCO). Details of the study protocols have been published previously (18, 19) (Table
S1). Questionnaire data obtained from all subjects included established risk factors such as
demographics, reproductive history, family history of cancer, medical and surgical history,
and lifestyle habits. Candidate SNPs (p< 0.05) identified in this discovery population were
assessed in a replication study comprised of three additional ovarian cancer studies: a case-
control study from Brigham and Women’s Hospital (BWH), the Tampa Bay Ovarian Cancer
Study (TBO), and the Familial Ovarian Tumour Study (TOR) (Table S2). Details of these
studies have also been previously described (4). We restricted all analyses to subjects who
were self-reported whites.

SNP selection, genotyping and quality control
Mitotic kinase genes were identified using data from a published study in which the authors
performed an RNA-interference-based functional screen in Drosophila(20), from the Gene
Ontology database and from the current literature for genes encoding proteins with mitotic
kinase function. Discovery tagSNPs (n=397) were selected based on position within and 5kb
of 67 genes (Table S3), minor allele frequency (MAF) ≥ 0.05 and pairwise linkage
disequilibrium (LD) of r2 ≥ 0.8 in unrelated white samples within HapMap Consortium
release 22 (Hapmap, 2003), and the predicted likelihood of successful genotyping using
Illumina Golden Gate Assay™. These were genotyped as part of a larger investigation of
1,152 SNPs in a variety of pathways using the Illumina GoldenGate™ assay. Genotyping
was attempted on 897 genomic DNA samples from MAY participants, 1,279 whole-genome
amplified samples from NCO participants, and 129 duplicate samples for a total of 2,047
unique study participants. We excluded 44 samples with call rates <90% and 22 samples due
to study ineligibility, leaving 1,981 samples. The sample call rate was 99.74% and the
concordance for the 129 duplicate samples was 100%. Eleven SNPs with significant
deviations from Hardy-Weinberg equilibrium (HWE) in controls (p<0.001), assessed using
Pearson good of fit or Fisher exact tests, were excluded from analyses.

The replication analyses utilized genotype data from a published genome-wide association
study of ovarian cancer (4, 21). TBO and TOR samples were genotyped using the Illumina
610K platform, and BWH samples were genotyped using the Illumina 317K platform.
Imputation of approximately 2.5 million SNPs using HapMap data as the reference was
performed for each replication site using MACH, and imputed genotypes were used where
observed genotype data were missing.

Statistical Analysis
SNP-specific analyses were performed to evaluate the association of genotypes at each SNP
and serous ovarian cancer risk and risk of all histologic types of ovarian cancer combined.
Associations were estimated as odds ratios (OR) with associated 95% confidence intervals
(95% CI) using unconditional logistic regression under log-additive genetic models. We also
performed haplotype analyses using Haplostat, for SNPs with p< 0.05 when multiple SNPs
had p < 0.05 within a gene, estimating haplotype frequencies for each gene using all SNPs
within the gene, and then testing the global significance (P<0.05) for haplotype association
with risk using a likelihood ratio test. Individual haplotype associations were evaluated
using a log-additive model. All discovery single SNP and haplotype models were adjusted
for age, geographic location, BMI, oral contraceptive use, hormone replacement therapy,
and parity and age at first birth. Single-SNP p<0.05 was used to select SNPs for replication.
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All replication analyses were adjusted for age and study center (additional covariate data
were not available). Assessment of the most promising SNPs in combined analysis by
histologic subtype was performed using polytomous logistic regression using control status
as the reference outcome. Heterogeneity of SNP associations by histologic subtype was
measured by applying polytomous logistic regression to cases only.

As a conservative approach to the large number of statistical tests, we used the following
method. First, we sought replication of any SNP with single-SNP p-value <0.05 in
discoveray analysis. Second, we used a modified correlation-adjusted Bonferroni adjustment
in replication analysis, accounting for multiple testing. Recognizing that some correlation
due to linkage disequilibrium exists between the replication SNPs, we first determined the
effective number of independent tests using a principal components-based method (22),
which indicated that our analysis of the 36 replication SNPs was equal to approximately
35.5 independent tests of hypothesis. Recognizing that any SNP found to be statistically
significant in the replication data set but in the opposite direction of the discovery set result
would not be considered a replication, our replication analyses are based on one-sided tests
of hypothesis. Any SNP in the discovery set with two-sided unadjusted p < 0.05, and
statistically significant in the replication set with one-sided adjusted p < 1.41 × 10−3 and
with an estimate in the same direction as in the discovery phase, was considered a
replication. Finally, for SNPs statistically significant in the replication set using adjusted p-
values (1.41 × 10−3), we cautiously interpret the pooled analysis results using odds ratios
and confidence intervals but not calculating p-values due to the interpretive complexities of
combining such data.

Results
The goal of this analysis was to assess whether common genetic variation in mitotic kinases
is associated with risk of invasive epithelial ovarian cancer. To achieve this, we genotyped
397 tagSNPs in 67 genes (Table S3) encoding mitotic kinases in two case-control studies
(Table S1). We first restricted our analysis to serous invasive ovarian cancer cases and
controls (n=407 cases, n=939 controls): this selection was based on recent findings from the
Ovarian Cancer Association Consortium (OCAC) showing that genome wide association
study (GWAS) associations with serous ovarian cancer were generally stronger than for all
histologic subtypes combined, possibly because of refinement of the phenotype under study
(4). Twenty SNPs tested were suggestive of association with risk of serous ovarian cancer in
a log-additive model (p<0.05) (Table 1, Table S4). These 20 SNPs were located in 13
different genes: CDC7, CDK6, CSNK2A, SIK3, MAST2, NEK2, NEK4, NEK8, NLK,
PRKG2, STK4, TEX14, and TRIB3.

Since four of the 13 genes identified in the single SNP serous analysis contained multiple
candidate SNPs, we performed haplotype analyses to better understand the patterns of risk in
these genes. CDK6 haplotypes of the four SNPs (rs2282990, rs3731348, rs17690388, and
rs2282983) were suggestive of association with risk of serous invasive ovarian cancer
(global haplotype association p=0.0034) (Table S5a). The first CDK6 risk haplotype was
perfectly tagged by the minor allele (A) of rs17690388, and was associated with a decrease
in risk of serous ovarian cancer (OR=0.63, 95% CI 0.40-0.99; p=0.044). The second CDK6
risk haplotype captured the minor alleles of rs2282990 (T) and rs2282983 (C) and the major
allele at rs3731348 (G), and was associated with an increase in serous ovarian cancer risk
(OR=2.42, 95% CI 1.30 – 4.50; p=0.0054). SIK3 and TEX14 each contained haplotypes
associated with risk of serous ovarian cancer that were captured by variation at single SNPs
(Tables S5b,c). Thus, associations between variation in SIK3 and TEX14 and serous ovarian
cancer were best described by the single SNPs rs7928320 and rs12944693. NLK haplotypes
were not associated with risk of serous ovarian cancer (Table S5d).
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Having observed possible associations with serous ovarian cancer, we evaluated whether
variation in mitotic kinases were also associated with risk of all histologic subtypes of
invasive ovarian cancer. Specifically, we tested all 397 SNPs using a larger group of cases
(n=671), comprised of 407 serous (60.8%), 28 mucinous (4.2%), 115 endometroid (17.2%),
50 clear cell (7.5%), and 69 other (10.3%) epithelial ovarian cancers. Twenty-three SNPs
were suggestive of association with invasive ovarian cancer in 15 different genes (Table 1,
Table S4). Only SNPs in six of these genes were also possible candidates in the serous-only
analysis: CDK6, SIK3, NEK4, NLK, STK4, and TEX14.

We next evaluated the thirty-six SNPs identified as candidates in the discovery phase
(unadjusted p<0.05 in serous or all subtypes) in a replication study of 1,094 invasive ovarian
cancer cases and 829 controls (Table S3) utilizing data from a published ovarian cancer
GWAS. After adjustment for multiple testing none of these 36 SNPs were statistically
significantly associated (p<1.41 × 10−3) with risk of serous or overall ovarian cancer in the
replication study (Table 2, Table S6-S7); however, rs2125846 (NLK) showed similar
associations with risk of both serous and all subtypes of ovarian cancer and was thus
explored further. The G allele of rs2125846 was associated with a 1.36-fold increased risk of
serous ovarian cancer (95% CI 1.11 – 1.67, p=1.77 × 10−3) and with a 1.30-fold increased
risk of all subtypes (95% CI 1.08 – 1.56, p=2.97 × 10−3). Combining discovery and
replication studies, rs2125846 was again associated with risk of serous and all subtypes of
ovarian cancer (serous OR=1.33, 95% CI 1.15 – 1.54; all subtype OR=1.27, 95% CI 1.12 –
1.45), with consistent associations across analyses (Figure 1). Risk estimates were also
similar across histologic subtypes (p-heterogeneity=0.75) (Figure S1). However, our power
to detect associations with subtypes of ovarian cancer was limited due to small sample sizes
and this result should be interpreted with caution.

Discussion
In an analysis of genes encoding kinases required for normal cell division, we have
identified a SNP, rs2125846, in the NLK locus that is associated with risk of ovarian cancer.
This SNP showed a very similar influence on risk of ovarian cancer in the discovery and
replication studies (OR=1.35) and was also associated with risk of the serous subtype
(combined OR=1.33) and all subtypes (combined OR=1.27) of ovarian cancer risk. It is
important to interpret this association with caution, since the rs2125846 association did not
retain significance after adjustment for multiple testing in the replication phase. However,
we have identified a biologically interesting candidate ovarian cancer SNP that warrants
replication in larger studies of ovarian cancer.

Nemo-like kinase (NLK) is a MAPK-like kinase belonging to the serine/threonine kinase
superfamily. Studies in C. elegans have shown that NLK is involved in the cancer-related
Wnt/beta-catenin signalling pathway (23, 24). Further, NLK has been shown to inhibit
several transcription factors such as NF-κB, Smads, AP1, and p53 (24, 25). Several
functional studies have found a relationship between NLK expression and various cancer
types. A prostate cancer study demonstrated in cell lines that NLK expression is decreased
in metastases compared to normal prostate epithelium and that over-expression of NLK
induces apoptosis particularly among androgen-receptor expressing cells (24). Similarly,
over-expression of NLK was shown to induce apoptosis in colon cancer cell lines (26).
Finally, NLK is upregulated in hepatocellular carcinomas, and disruption of NLK inhibits
hepatocellular carcinoma cell growth (27). However, there are currently no functional data
for the intronic NLK SNPs identified in this study. In addition, no associations for NLK
variants have been identified in candidate gene studies or GWAS of cancer.
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Overall, we report on the evaluation of the contribution of inherited variation in mitotic
kinases to ovarian cancer risk. These results warrant further investigation in independent
studies of ovarian cancer to understand the biological relationship between NLK and ovarian
cancer risk.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Forest plot of rs2125846 (NLK) association with ovarian cancer
Forest plots for rs2125846 and risk of (a) serous ovarian cancer and (b) all ovarian cancer
subtypes are shown by study. Study-specific odds ratios (95% CIs) are denoted by black
boxes (black lines). Combined discovery, replication, and summary OR estimates are
represented by black diamonds, where diamond width corresponds to 95% CI bounds. Box
and diamond heights are inversely proportional to precision of the OR estimate. P-values for
heterogeneity (P het) of odds ratios by study are shown. MAY, Mayo Clinic case-control
study of epithelial ovarian cancer; NCO, North Carolina Ovarian Cancer Study; BWH,
Brigham and Women’s Hospital case-control study; TBO, Tampa Bay Ovarian Cancer
Study; TOR, Familial Ovarian Tumour Study.
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