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Abstract
More than two dozen clinical syndromes known as amyloid diseases are characterized by the
buildup of extended insoluble fibrillar deposits in tissues. These amorphous Congo red staining
deposits known as amyloids exhibit a characteristic green birefringence and cross-β structure.
Substantial evidence implicates oligomeric intermediates of amyloids as toxic species in the
pathogenesis of these chronic disease states. A growing body of data has suggested that these toxic
species form ion channels in cellular membranes causing disruption of calcium homeostasis,
membrane depolarization, energy drainage, and in some cases apoptosis. Amyloid peptide
channels exhibit a number of common biological properties including the universal U-shape β-
strand-turn-β-strand structure, irreversible and spontaneous insertion into membranes, production
of large heterogeneous single-channel conductances, relatively poor ion selectivity, inhibition by
Congo red, and channel blockade by zinc. Recent evidence has suggested that increased amounts
of amyloids are not only toxic to its host target cells but also possess antimicrobial activity.
Furthermore, at least one human antimicrobial peptide, protegrin-1, which kills microbes by a
channel-forming mechanism, has been shown to possess the ability to form extended amyloid
fibrils very similar to those of classic disease-forming amyloids. In this paper, we will review the
reported antimicrobial properties of amyloids and the implications of these discoveries for our
understanding of amyloid structure and function.
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INTRODUCTION
Amyloid fibrils were first missidentified as amorphous starch-like deposits that stained with
iodine by light microscopy. Rudolph Virchow named them “amyloid” thinking that
carbohydrate was their principal constituent.1 Subsequent research showed that in addition
to glycosaminoglycans, the amyloid deposits contained a single protein in a β-sheet
conformation.2 The application of Congo red and other dyes to these deposits produced a
classic microscopic pattern including green birefringence under polarized light.3,4 X-ray
difraction studies exhibited a cross-β structure, and electron microscopic studies uncovered
extended amyloid fibrils of variable width and often indeterminate length.5,6 Dozens of
pathological specimen from different clinical syndromes exhibit these identical staining
properties, despite the fact that the proteins involved vary widely in structure, function and
primary sequence.7,8 Thus, the amyloid β-sheet structure appears to be a final common
pathway of misfolding for pathologic proteins. A number of different factors can contribute
to the formation of amyloid β-sheet structures including proteolysis, amino acid mutation,
high concentration, acidic pH, binding to metals and interaction with lipid membranes. The
molecular mechanisms by which amyloid peptides cause disease remain elusive. However, a
substantial body of evidence has amassed to implicate channel formation as a common
mechanism of action amongst these diverse peptides.9-18 Although no enzymatic activity or
specific receptor has ever been convincingly demonstrated for amyloid peptides in disease
pathogenesis, over a dozen amyloid peptides have been shown capable of forming ion
channels in planar lipid bilayers and cellular membranes (Table 1). Furthermore, channel
formation has been correlated with calcium dysregulation and apoptosis and cytotoxicity of
host target cells for a number of different amyloids. In addition, inhibition of channel
formation through dyes such as Congo red or blockade of channels using zinc prevents
cytotoxicity. Thus, the channel hypothesis has become a leading theory to explain the
pathogenesis of Alzheimer's disease (AD) and other amyloidoses.

The killing of micro-organisms by channel-forming toxins was demonstrated more than 3
decades ago.19 Subsequent work has shown that pore-forming toxins that kill micro-
organisms are widespread in the prokaryotic and eukaryotic community.20 It has also been
shown that human host defense peptides such as defensins and protegrins kill invading
microbes through a channel-forming mechanism.21,22 A number of these peptides were also
shown to exhibit a β-sheet structure similar to that possessed by amyloid peptides. Work by
Thundimadathil and colleagues23,24 has further shown that generic β-sheet peptides of
appropriate length would spontaneously form channels in planar lipid bilayer membranes.
Taken together, these various studies suggested a parallel between channel-forming amyloid
peptides and channel-forming antimicrobial peptides (AMPs) based on a common β-sheet
structure (Figure 1A and B). These parallels were strengthened by theoretical studies,25

which showed that models of toxic β-sheet protegrin-1 (PG-1) channels have a subunit
organization motif that was very similar to that of the Alzheimer's β-amyloid (Aβ) channels
they had previously modeled (Figure 1C-J). These works suggested that the β-sheet played a
critical role in predisposing peptides to interact with membranes and form channels. Indeed,
structural studies had previously revealed that several important channel-forming toxins
including staphylococcal α-toxin,26 anthrax toxin,27 and Clostridium perfringolysin O form
large lumen β-sheet barrels in the membrane which caused a toxic leakage of cellular
constituents.28

Two recent studies have sharpened the focus on the parallels between amyloids and
antimicrobial peptides. In 2010, Soscia et al.29 demonstrated that the Aβ peptide from AD
possessed antimicrobial properties. They suggested that this might in fact be the in vivo
function of Aβ. They specifically compared the antimicrobial activity of Aβ and LL37, a
well-known human AMP. In 2011, Jang et al.30 reported that the human antimicrobial PG-1
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could form amyloid-like fibrils as demonstrated by atomic force microscopy and thioflavin
T staining. These fibrils were morphologically similar to those of Aβ, and the authors
suggested that this was further evidence that amyloid peptides in vivo could have an
antimicrobial function. In the remainder of this paper, we will briefly review the properties
of amyloid peptide channels and the antimicrobial effects of various amyloid peptides that
have been reported so far. We will conclude with the consideration of the relationship
between amyloid formation, β-sheet structure, channel formation, and antimicrobial and
cytotoxic activity. These considerations have important implications for theories of the
pathogenesis of amyloid disease and for development of novel antimicrobial agents.

AMYLOID PEPTIDE TOXICITY: THE OLIGOMERIC INTERMEDIATES
Amyloid is a pathologic diagnosis based on the binding of Congo red and other dyes to
peptides in β-sheet conformation. The β-sheets of these peptides are able to stack in an
extended manner resulting in the formation of elongated fibrils that become insoluble.
Although these fibrils have been subjected to extensive biophysical characterization, there is
now substantial evidence, which suggests that fibrils are not toxic to cells or tissues in
general. Recent studies have strongly implicated smaller aggregates known as oligomers in
cellular toxicity.31,32 The mechanics and kinetics of amyloid oligomer formation are
complex and beyond the scope of this review. However, it is important to note that the
presence of lipid membranes has been implicated as a catalyst for oligomer formation.33,34

The amyloid cascade hypothesis35 was stimulated by the findings that mutations in certain
amyloids, particularly the Alzheimer's amyloid precursor protein (APP), were linked with
clinical disease. It was also noted that these mutations tended to cluster around enzymatic
cleavage sites of APP and thus might affect the production of the Aβ peptide. The
demonstration of cytotoxicity of the Aβ peptide lent further strength to this theory.36 Early
on it was noted that monomers and fibrils showed little cellular toxicity but that
intermediate-size aggregates called oligomers seemed to play a critical role in
cytotoxicity.31,32 This was soon followed by demonstration of cytotoxicity for amyloid
oligomers from the prion protein and α-synuclein.37,38 Interestingly, many of these early
studies were plagued by the irreproducibility of amyloid peptide cytotoxicity. This was
subsequently explained by Pike et al.39 who demonstrated that the aggregation state of the
Aβ peptide affected its cytotoxicity with monomers and fibrils showing little cytotoxicity
but intermediate aggregation state presenting much higher cytotoxicity. The rapid,
irreversible and unpredictable aggregation of amyloid peptides led to numerous problems
with reproducibility of results even within labs. Further research demonstrated that the early
stages of amyloid peptide aggregation were quite slow, but after a critical mass was
achieved, the kinetics became much more rapid. It was also shown that addition of
preformed seeds or nuclei to solutions of monomers could dramatically speed up the process
of fibril aggregation. However, it was also observed that extended periods of aggregation
into fibrils could lead to a decrease in cytotoxicity, and it was suggested that fibril formation
might actually serve a protective function for the organism by sequestering the toxic smaller
peptides in insoluble form. The sequestration of some of these amyloid fibril aggregates in
membrane-bound inclusion bodies such as Lewy bodies supported the idea that fibril
formation was cell protective. This was convincingly demonstrated in the inclusion bodies
containing extended aggregated polyglutamine tracts in Huntington's disease.40

Transgenic mouse models of Alzheimer's and Huntington's disease were also consistent with
the idea that oligomers rather than fibrils were toxic.41 Behavioral learning and memory
deficits in these transgenic mouse models would occur far earlier than the appearance of
fibrils or inclusion bodies, thus indicating that the toxic effects of smaller aggregates on
cellular function were happening prior to the production of amyloid fibrils.
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THE β-SHEET CONFORMATION
The triggers for amyloid misfolding are diverse and well-established. The presence of metal
ions, changes in pH or concentration, enzymatic cleavage or amino acid mutations have all
been demonstrated to catalyze protein folding into β-sheet structure. More recently, it has
been demonstrated that the presence of lipid bilayer membranes can also catalyze β-sheet
formation.42 β-sheet-rich peptides exhibit unique affinity for lipid bilayer membranes and
are able to aggregate and orient themselves in the bilayer to optimize hydrophilic and
hydrophobic interactions. The unfolding of a native protein also unleashes new hydrogen
bonding possibilities.43 These new possibilities for hydrogen bonding can provide a driving
force for protein aggregation in addition to the hydrophobic effect. Together, these forces
can drive self-aggregation. This is further aided by the ability of β-sheets to form
intermolecular hydrogen bonds. These results suggest that the underlying physical chemistry
of β-sheets predisposes this conformation to interact with lipid bilayers in a way that can
lead to toxic ion channel formation (Figure 2). An alternative mechanism of membrane
poration was proposed to involve the Aβ in an α-helical conformation, similar to the fusion
domain of influenza hemagglutinin.44 Further, α-synuclein has been reported to form a
channel consisting of α-helices.45

AMYLOID PEPTIDE CHANNELS: ELECTROPHYSIOLOGY
Arispe et al.9-12 first reported that the Aβ peptide could form ion-permeable channels in
planar lipid bilayer membranes. This ground-breaking discovery was later extended to islet
amyloid polypeptide (IAPP),46 prion protein peptides,47 and other amyloid peptides.48,49 All
of the reported amyloid peptide channels exhibited voltage independence and cation
selectivity of a nonspecific type (Table 2). They all exhibited permeability to calcium thus
providing a ready explanation for the disruption of calcium homeostasis that had been
observed in numerous host target cells. The amyloid peptide channels exhibited multiple
single channel conductances, unlike the homogeneous single channel conductances observed
for the canonical channels of nerve and muscle cellular membranes. Their channel
conductances were also much larger, and the heterogeneity of single channel conductances
suggested that multiple molecular species might be forming channels in the membrane,
similar to channel forming PG-1 AMP (Figure 3). The alteration of the single channel
conductance distribution by treatments such as aging or acidic pH, which affected the
aggregation state of the amyloid peptides, supported this notion. Extremely large channel
conductances up to 5 nS, i.e. 1 to 3 orders of magnitude larger than conductances of
conventional ion channels were reported,9 and it was calculated that the leakage caused by
such channels would cause rapid membrane depolarization and severe disruption of cellular
energy stores. Channel formation by amyloid peptides was subsequently shown to occur not
only in vitro but also in the cellular membranes of neurons, oocytes and fibroblasts.50 The
Aβ peptide was further shown to be capable of inhibiting long-term potentiation (LTP) in
the hippocampus at nanomolar concentrations.51 It was also shown that channel-forming
variants of the Aβ peptide could inhibit LTP whereas nonchannel-forming variants could
not. Walsh et al.32 reported that naturally secreted Aβ oligomers were the sole species
responsible for inhibition of LTP, thus demonstrating that this process could occur in vivo.

Channel formation by Aβ was subsequently demonstrated in rat cortical neurons52,53 and in
hNT cells,54 and in small patches from gonadotropin-releasing, hormone-secreting
neurons.55 The properties of the channel in vivo and in vitro appeared to be
indistinguishable. Diaz et al.56 demonstrated that small molecule blockers of the Aβ channel
could potently protect cells from Aβ toxicity, even at a relatively late stage. This group then
went on to design highly specific blockers based on the hypothesized model of the pore
region of the Aβ peptide. A strong boost to the channel hypothesis of AD was reported by

Kagan et al. Page 4

Mol Pharm. Author manuscript; available in PMC 2013 April 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Liu et al.57 who demonstrated that the potassium ATP channel activator, diazoxide, could
improve memory and reduce Aβ and tau pathology in a transgenic AD mouse model.
Diazoxide, a potassium channel opener, should hyperpolarize membranes and counteract the
depolarizing effect of the Aβ peptide channel. This should reduce Aβ peptide toxicity and
improve memory. Confirmation of this hypothesis was provided by Anekonda et al.58 who
demonstrated that blockage of voltage-dependent calcium channels could protect cultured
neurons from Aβ toxicity. Structural modeling of the Aβ peptide has suggested that these
peptides form highly mobile subunits, which can aggregate into large wide-lumen channel
structures. Unlike classical ion channels, these structures are fluid and rearrange rapidly
within the membrane.59 These molecular dynamics (MD) models showed sizes and
structures consistent with the multiple conductance states seen in electrophysiologic
recording and the pore sizes in atomic force microscopy (AFM) and electron microscopy
(EM) which demonstrated amyloid channels of outer diameter 8-10 nm and inner diameter
of approximately 1-2 nm.14 The convergence of these various biophysical methods on a
common pore structure lent additional credence to the channel hypothesis.

ANTIMICROBIAL EFFECTS: β-AMYLOID PEPTIDE
Soscia et al.29 reported antimicrobial properties of the Aβ peptide. They compared the
antimicrobial activities of Aβ and LL37, which is a well-known human antimicrobial host
defense peptide. They demonstrated antimicrobial activity in assays involving eight
clinically relevant microorganisms. Aβ had a potency equivalent to or greater than LL37.
They further demonstrated antimicrobial activity present in whole brain homogenates from
patients with AD and that these activities were significantly higher than age matched
controls without AD. The level of antimicrobial activity was proportional to the level of Aβ
peptide in tissue. Aβ immunodepletion from the AD brain homogenates with Aβ antibodies
reduced the antimicrobial activity of the brain homogenates. Pathogens that could be
inhibited by Aβ peptide included S. pneumoniae, a leading cause of bacterial meningitis, and
Candida albicans. They also suggested that Aβ might be one of a family of AMPs
contributing to pro-inflammatory activities in AD. These authors pointed out that, at least
one other disease, corneal amyloidosis, involves the deposition of an AMP in amyloid form.
The antimicrobial protein, in this case, is lactoferrin, which accumulates in the
subepithelium.60,61 Furthermore, an amyloid pathology of the seminal vesicles of elderly
men is also derived from an amyloid peptide, semenogelin.62,63 The authors hypothesized
that stimulation of the innate immune system could lead to the generation of Aβ and
subsequent amyloid deposition. Alternatively, they considered that a CNS infection could
lead to a self-perpetuating innate immune response. Previously others have proposed
infectious etiologies for AD based on the presence of pathogen antibodies in higher numbers
in AD victims.64,65 These authors also note the strong parallels between AMPs and Aβ
peptides. Both peptides associate actively with bilayers and are believed to exert their
activity through channel formation.13,14,16,32-36,66 They also note that mitochondrial
depolarization in Alzheimer's, Parkinson's, and Huntington's is a common feature of amyloid
disease and that mitochondria are believed to have originated as bacterial endosymbionts.
The double membrane of mitochondria resembles the double membrane of bacteria
structurally and functionally in that both membranes are actively polarized and can be
depolarized by nonspecific channel formation.

OTHER EXAMPLES OF AMYLOIDS AND ANTIMICROBIAL PEPTIDES
Serum amyloid A

Hirakura et al.67 reported channel formation by the acute phase reactant protein serum
amyloid A (SAA). Serum amyloid is comprised of the family of related apolipoproteins
associated with high density lipoprotein. During states of infection or inflammation, levels
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of acute phase isoforms of SAA can rise up to 1000 fold in the serum, and N terminal
fragments of SAA can assemble into amyloid fibrils which localize to spleen, liver, and
kidney. The authors reported that an acute phase isoform variant of SAA could readily form
ion channels in planar lipid bilayers. These channels possess physiologic properties similar
to those of other amyloid peptide channels. The expression of this acute phase isoform
peptide expressed in bacteria was reported to induce lysis of bacterial cells in contrast to
expression of the constitutive isoform, which did not. Sequence examination of the N-
terminal portion of the acute phase isoform indicated strong hydrophobicity, which could
have been responsible for targeting the cell membrane. The authors postulated a role for
SAA in host defense as an AMP.

Microcin E492
Microcins are low molecular weight bacterial toxins produced by gram-negative bacteria.
Microcin E492 is a known pore-forming bacterial toxin produced by Klebsiella pneumoniae
RYC492.68 Its antimicrobial action is limited to related strains of Klebsiella. Although it
does not cause any known amyloid disease, it was demonstrated to form amyloid-like fibrils
reflecting a β-sheet structure.

Protegrin-1 (PG-1)
Jang et al.30 demonstrated that the AMP PG-1 could form amyloid-like fibrils. They used
AFM and thioflavin T staining to characterize fibrils and compare them to Aβ1-42 fibrils.
Their kinetics of fibril formation was rapid compared to Aβ1-42. They further noted that the
anionic lipid bilayers appeared to inhibit fibrillation of PG-1 and favor small oligomer
formation. MD simulations confirmed the presence of small oligomers on the membrane
bilayer. Protegrins belong to a class of basic host defense peptides rich in cysteine and
adopting a β-sheet structure. They are remarkably small at only 18 residues, about half the
size of the better known defensins. Protegrins possess toxic activity against bacteria, fungi,
and viruses that are enveloped by cell membrane. Safely sequestered in the Azurophilic
granules of neutrophils and macrophages, protegrins exist in an insoluble state, until their
host cell involves an invading pathogen. The granules then fuse with the pathogen vacuole,
and the protegrin activity is released. Channel formation has been demonstrated to be the
mechanism of action of protegrins.22,66 This mechanism appears to be common to a number
of host defense peptides, including defensins21 and cathelicidins.69

Temporins
Temporins are a family of amphipathic α-helical peptides with antimicrobial properties.
These remarkably short peptides, consisting of only 10-14 residues, appear to have selective
lipid-binding properties that enable them to discriminate between target and host cells.70

They were also demonstrated to cause permeabilization of the target cell membrane, a
process that involves acidic phospholipid-induced conformational changes, peptide
aggregation, and the formation of toxic oligomers in the membrane. This is a sequence
remarkably similar to that hypothesized for amyloid peptides. In vitro, the oligomers can be
converted to amyloid-like fibers. Conversion to the amyloid state detoxifies the peptides.
Sequence analysis of various temporins and other α-helical AMPs led to the identification of
“conformational switches.” These domains possess equal probabilities for adopting random
coil α-helical and β-sheet structures. Thus, they were able to switch easily from one
conformation to another.

Lysozyme
In addition to its known enzymatic activities, lysozyme has a well-defined antimicrobial
activity. The antimicrobial activity is clearly associated with the ability to permeabilize cell
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membranes, most likely through a channel formation mechanism. Lysozyme is also capable
of forming amyloid fibers and deposits.71

Antimicrobial properties for several amyloid peptides are summarized in Table 3.

ARE ALL AMYLOIDS ANTIMICROBIAL?
The provocative suggestion that Aβ plays a functional role as a host defense peptide remains
to be confirmed. Given the wide variety of amyloids with known functions in their native
state, it seems unlikely that all of these peptides could be intended to misfold into host
defense peptides. Nevertheless, it now seems likely that, for at least some of these amyloids,
an antimicrobial function is intended. There is good evidence for this for serum amyloid A
and microcin E492. There also seems to be evidence for this for the temporins, a family of
amphipathic α-helical AMPs.70 There are many other related AMPs whose ability to form
amyloid has not yet been tested. Further experiments could confirm this link between the
requirements for amyloid fibril formation and requirements for channel formation by host
defense AMPs. The β-sheet structure seems to be the underlying physical chemical
commonality relating these two functionalities. Intriguingly, there is also evidence that
amyloid formation can be protective in disease states. Specifically, in the case of
Huntington's disease, inclusion body formation is protective to Huntington's affected
neurons. There is also evidence that Lewy body formation in Parkinson's disease is
protective to dopaminergic neurons. More recently, Riek and colleagues72 have made the
remarkable discovery that peptide hormones in storage granules are arranged in an amyloid
fibril-like state. This arrangement renders them insoluble and efficiently stored within a
secretory granule and ready to be dispersed by granule exocytosis into the extracellular
space. This has provided the strongest evidence to date that the amyloid state can have a
positive physiologic role. Further evidence of a positive functional role for amyloid has
come from the study of bacterial curli.73E. coli and other gram-negative enteric bacteria,
produce extracellular amyloids, known as curli. These fibers appear to be critical for growth
in biofilms. The curli also play a key role in binding to host cells and enabling bacteria to
persist within their local environment. The amyloid-forming proteins from curli contain 5
glutamine asparagine-rich peptide repeats composed of roughly 20 amino acids. These
peptides are predicted to form β-strand-turn-β-strand motifs that can stack perpendicular to
the fibril axis. Further experimental evidence suggests that the growth of amyloid fibers is
tightly regulated by one protein which is secreted and anchored to the outer membrane,
where it forms a template. The second curli fiber protein then adds onto the first, in a
nucleation process similar to the seeding seen with eukaryotic amyloid proteins. After a
nucleus is formed, the growing fiber can become a template for additional monomers. The
separation of nucleation from seeding ensures that amyloid fibers occur only at the
appropriate location and at the appropriate developmental stage.

Another example of functional amyloid fibers are the chaplins.74 These extracellular
structures are produced by the gram-positive bacterium Streptomyces coelicolor. The
functional role of these fibers is to reduce surface tension at the air-water interface and
permit the growth of aerial hyphae. The chaplins are critical for this development and have
been shown to assemble into β-sheet-containing insoluble fibers that strongly bind thioflavin
T. The chaplin biogenesis process is regulated in both time and space and is localized to the
extracellular space, most likely to limit exposure to cytotoxic intermediates.

CONCLUSIONS
The discovery of links between amyloid fiber formation and antimicrobial β-sheet peptides
is important for our understanding of both amyloid pathology and antimicrobial activity. The
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β-sheet structures common to both processes also appear to be critical in allowing peptides
to insert into membranes and assemble into pore-forming structures. The molecular models
of these structures are highly reminiscent of the β-barrel structures, which have been
determined experimentally for several pore-forming toxins. This suggests that the β-sheet is
a structure optimized for nonspecific pore formation. While the small highly selective and
tightly regulated ion channels of nerve and muscle cells that mediate electrical excitability
are dominated by α-helical structures, it appears to be the case that toxic channel-forming
peptides rely more heavily on β-sheet structures. The toxic peptides do not require a high
degree of ion selectivity or tight regulation by voltage or neurotransmitters. The relative
nonselectivity and heterogenous structure of these ion channels is, in fact, what makes them
so toxic and unpredictable and remain a major challenge to develop any specific
pharmacologic inhibitors. The fact that toxic β-sheet ion channels are effective antimicrobial
agents also suggests that the locus of amyloid cytotoxicity in eukaryotic cells may well be
mitochondria. Mitochondrial membranes bear a strong resemblance to prokaryotic
membranes, both structurally and functionally. It is also clear that depolarization of
mitochondria and bacteria are functionally devastating. In several amyloid diseases, there is
strong evidence suggesting that mitochondrial depolarization often leads to apoptosis and
plays a key role in the pathogenesis of these diseases. Thus, a deeper understanding of the
mechanism of action of antimicrobial peptides may also strengthen our understanding of the
pathogenesis of amyloid diseases, such as Alzheimer's, Parkinson's, and Huntington's. The
remarkable convergence of these two fields is likely to deepen and enrich our understanding
of both. It also represents a difficult pharmacological challenge, since high specificity drugs
aimed at inhibiting amyloid channels are conceptually and experimentally harder to achive
for such a mobile and flexible structures than they are for well defined structures such as α
helix rich channels.
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Figure 1.
(A) Monomer conformations of Aβ1-42 peptides with different turn at Ser26-Ile31
(conformer 1) and at Asp23-Gly 29 (conformer 2), and the starting point of MD simulation
for conformer 2. (B) Monomer conformation of 18-residues PG-1 peptide and the starting
points of MD simulation. Aβ1-42 peptides have the U-shaped β-strand-turn-β-strand motif,
while PG-1 is a β-hairpin with two disulfide S-S bonds. In the cartoons, hydrophobic
residues are shown in white, polar residues and Gly are shown in green, positively charged
residues are shown in blue, and negatively charged residues are shown in red. In PG-1,
disulfide bonds are highlighted in yellow. Side-by-side comparison between the (C-F) Aβ
and (G-J) PG-1channels. The simulated Aβ barrel structures with highlighted subunits for
the (C) Aβ17-42 (p3) and (D) Aβ9-42 (N9) barrels (Taken from Jang et al.18). All barrels are
viewed from the top leaflet of the lipid bilayer and depicted in a cartoon representation with
a transparent surface. Each subunit in the channels is colored in a different color. AFM
imges of (E) p3 and (F) N9 channels show show four or five subunits, consistent with the
simulated barrels (Taken from Jang et al.17). Image sizes are 15×15 and 23×23 nm2,
respectively. The simulated PG-1 channel structures with highlighted subunits for the (G)
antiparallel and (H) parallel β-sheet channels of PG-1, and (I and J) AFM imges of PG-1 ion
channels with different subunit organization (Taken from Capone et al.66). Permission for
all reproduced figures will be obtained.
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Figure 2.
AFM images (A) Aβ1-42 (Taken from Lin et al.13), and (B) Aβ1-40 and other various
amyloid channels (Taken from Quist et al.14), including (C) α-synuclein, (D) ABri, (E)
ADan, (F) Amylin, and (G) SAA. Permission for all reproduced figures will be obtained.
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Figure 3.
Channel conductance measurements representing single channel currents induced by (A)
Aβ17-42 (p3) and (B) Aβ9-42 (N9) channels (Taken from Jang et al.17), and (C) PG-1
channels (Taken from Capone et al.66). Permission for all reproduced figures will be
obtained.
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Table 1

Amyloid Diseases and Proteins

Disease Protein Abbreviation

Alzheimer's disease (AD), Down's Syndrome (Trisomy 21), Heredity cerebral
angiopathy (Dutch)

Amyloid precursor protein (β-amyloid
1-42)

APP (Aβ1-42)

Kuru, Gerstmann-Straussler-Scheinker Syndrome (GSS), Creutzfeld-Jacob
disease, Scrapie (sheep), Bovine spongiform encephalopathy (“mad cow”)

Prion protein PrPc/PrPsc

Type II diabetes mellitus (adult onset) Islet amyloid polypeptide (amylin) IAPP

Dialysis-associated amyloidosis β-2-microglobulin β2M

Senile cardiac amyloidosis Atrial natriuretic factor ANF

Familial amyloid polyneuropathy Transthyretin TTR

Reactive amyloidosis familial mediterranean fever Serum amyloid A SAA

Familial amyloid polyneuropathy (Finnish) Gelsolin Agel

Macroglobulinemia Gamma-1 heavy chain AH

Primary systemic amyloidoses Ig-lambda, Ig-kappa AL

Familial polyneuropathy - Iowa (Irish) Apolipoprotein A1 ApoA1

Hereditary cerebral myopathy – Iceland Cystatin C Acys

Nonneuropathic hereditary amyloid with renal disease Fibrinogen α AFibA

Nonneuropathic hereditary amyloid with renal disease Lysozyme Alys

Familial British dementia FBDP A Bri

Familial Danish dementia FDDP A Dan

Diffuse lewy body disease, Parkinson's disease α-synuclein AS

Fronto-temporal dementia tau tau

Amyotrophic lateral sclerosis Superoxide dismutase-1 SOD-1

Triplet-Repeat Diseases:
(Huntington's, Spinocerebellar ataxias, etc.)
Spinal & bulbar muscular atrophy
Spinocerebellar ataxias
Spinocerebellar ataxia 17

Polyglutamine tracts in the following
proteins:
Huntingtin
Androgen receptor,
Ataxins
TATA box-binding protein

PG
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Table 3

Antimicrobial Properties of Amyloid Peptides

Peptide Antibacterial Antifungal Antiviral References

Aβ1-42 + + Soscia et al. (2010)29

Serum Amyloid A + Hirakura et al. (2002)67

Microcin E492 + Lorenzo (1984)68

Temporins + + Mahalka & Kinnunen (2009)70

Protegrin-1 (PG-1) + + + Jang et al. (2011)30,66
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