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Abstract
Background—Genome-wide association studies (GWAS) for epithelial ovarian cancer (EOC),
the most lethal gynecologic malignancy, have identified novel susceptibility loci. GWAS for
survival after EOC have had more limited success. The association of each single nucleotide
polymorphism (SNP) individually may not be well-suited to detect small effects of multiple SNPs,
such as those operating within the same biological pathway. Gene set analysis (GSA) overcomes
this limitation by assessing overall evidence for association of a phenotype with all measured
variation in a set of genes.

Methods—To determine gene sets associated with EOC overall survival, we conducted GSA
using data from two large GWASes (N cases = 2,813, N deaths = 1,116), with a novel Principal
Component – Gamma GSA method. Analysis was completed for all cases and then separately for
high grade serous (HGS) histological subtype.
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Results—Analysis of the HGS subjects resulted in 43 gene sets with p<0.005 (1.7%); of these,
21 gene sets had p < 0.10 in both GWASes, including intracellular signaling pathway (p = 7.3 ×
10−5) and macrolide binding (p = 6.2 ×10−4) gene sets. The top gene sets in analysis of all cases
were meiotic mismatch repair (p=6.3 ×10−4) and macrolide binding (p=1.0×10−3). Of 18 gene sets
with p<0.005 (0.7%), eight had p < 0.10 in both GWASes.

Conclusion—This research detected novel gene sets associated with EOC survival.

Impact—Novel gene sets associated with EOC survival might lead to new insights and avenues
for development of novel therapies for EOC and pharmacogenomic studies.
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Introduction
Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer mortality among women
in the United States, accounting for five percent of cancer deaths (1). Most patients are
diagnosed with advanced disease, and for, the three-quarters of women diagnosed with stage
III or IV disease, the likelihood of long-term disease-free survival is less than 20 percent (2–
4). Stage, grade, and other clinical features of disease, such as degree of debulking and
presence of ascites, are key to predicting prognosis; however, much variation in outcome is
unexplained. As women may inherently vary in their ability to eradicate disease or tolerate
treatment, genetic association studies have sought to identify inherited variants related to
outcome. Candidate gene studies of angiogenesis, inflammation, or chemoresistance
pathways show promising results, although not always consistently across populations (5–
7). Similarly, genome-wide association studies (GWAS) of ovarian cancer have not yet
found outcome-associated loci despite large sample sizes and comprehensive coverage of
common genomic variation (8).

One explanation for the lack of findings from GWAS is that the analysis strategy commonly
used, testing for association of the phenotype with each SNP individually, is not well-suited
for detecting multiple variants with small effects (9–12). The application of novel methods
which incorporate biological knowledge into analyses of GWAS data has proven useful to
many studies (13, 14). One approach is gene set analysis (GSA) which assesses the overall
evidence of association of a phenotype with all measured variation in a pre-defined set of
genes, such as a biological pathway (15–17). A gene set is simply any user-defined group of
genes; for example, with GWAS data, GSA allows for the use of standardized biological
classifications, such as those from the Kyoto Encyclopedia of Genes and Genomes (KEGG).
Because numerous genes can be combined into a limited number of gene sets for analysis,
the multiple-testing burden is greatly reduced. We have recently shown that the PC-GM
approach to modeling SNPs within genes using principal component (PC) analysis (18) and
then combining gene-level p-values using the Gamma method (GM) (19) is a powerful GSA
method (20). Therefore, in order to identify novel avenues for investigation of this lethal
condition, we conducted a GSA of EOC overall survival using the PC-GM approach and
data from two large ovarian cancer GWASes.

Methods and Materials
Study Participants

GSAs were conducted using data from two independent multi-site ovarian cancer GWASes.
The North American GWAS data was derived from three case-control studies of EOC, as
described previously (21), including: the Mayo Clinic Ovarian Cancer Study (MAY)

Fridley et al. Page 2

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2012 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Rochester, MN), the North Carolina Ovarian Cancer Study (NCO) (Durham, NC), and the
Tampa Bay Ovarian Cancer Study (TBO) (Tampa, FL). NCO and TBO used population-
based ascertainment with linkage to state cancer registries and the National Death Index;
MAY was clinic-based and linked to medical records and the National Death Index.

The UK GWAS has also been described in detail (8, 22) and included invasive epithelial
ovarian cancer cases from four studies: SEARCH Ovarian Cancer Study (SEA) (Cambridge,
UK), United Kingdom Ovarian Cancer Population Study (UKO) (London, UK), Cancer
Research UK Familial Ovarian Cancer Register (UKR) (London, UK), and Royal Marsden
Hospital (RMH) (London, UK). These studies recruited cases via regional and nationwide
registries with follow-up via linkages to national vital statistics. Study protocols were
approved by an institutional review board or ethics committee at each center, and all study
participants provided written informed consent.

Genotyping, Quality Control, Definition of Gene Sets
Although both GWASes used the Illumina Infinium 610K array, genotyping and quality
control was performed separately. Samples were removed with call rate <95%, ambiguous
gender, unresolved identical genotypes, self reported as non-Caucasian, or predicted by
STRUCTURE (23) analysis to have less than 80% European ancestry. SNPs were excluded
from each GWAS with call rate < 95%, Hardy-Weinberg Equilibrium (HWE) p-value <
10−4, or no variation. Genotypes were coded as 0, 1 or 2 in terms of the number of minor
alleles present.

SNPs were mapped to genes based on physical location; in particular, if they resided within
20 kb of the 5′ or 3′ end of a gene based on RefSeq Build 29 (NCBI genome build 36.3).
This allowed for a SNP to be mapped to multiple genes and did not consider LD blocks or
gene lengths. Genes were then mapped to gene sets using the following standarized sources:
the Gene Ontology (GO) project (24) which categorizes genes by function using biological,
cellular, and molecular schemes (“GO:BIO, “GO:CELL”, “GO:MOLE”), the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (25), and PharmGKB (26) which group
genes into biological pathways. GO uses a hierarchical ontology that classifies genes and
therefore a level of the hierarchy (or specificity) must be specified for defining gene sets.
We relied on Level 4 to determine GO gene sets, as a compromise between specificity and
sensitivity. Across these sources, we identified a total of 2,566 gene sets containing
approximately 16,500 unique genes. Supplementary Table 1 summarizes the numbers of
SNPs, genes, and gene sets by source for the GSA.

Gene Set Analysis using PC-GM method
To assess association between predefined gene sets with overall survival from EOC, we
performed GSA of each GWAS and combined results using Fisher’s method, a meta-
analytic technique. We used a self-contained method which tests the null hypothesis Ho:
SNPs/genes in the gene set of interest are NOT associated with the phenotype versus the
alternative hypothesis Ha: SNPs/genes in the gene set are associated with the phenotype.
GSA was completed in two steps, first using a principal component analysis (PCA) (18) in
combination with a model of the phenotype, then a summarization step using the Gamma
method (19), a generalization of Fisher’s method (27), which we refer to as the PC-GM
method. Due to computational issues, redundant markers within genes (r2 = 1.0) were
removed prior to PCA (28). For the first step in a two-step GSA (assessing gene-level
associations), the PCs that explained 80% of the genetic variation within each gene were
used to assess the significance of the gene with overall survival. For the gene-level analysis,
the average number of PCs included in the analysis was 3.91 for North American analysis
(4.75 for North American HGS cases) and 3.74 for UK analysis (3.82 for UK HGS cases).
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Gene-level association testing was completed using Cox proportional hazards regression
(29) considering time from date of diagnosis to death with censoring at last follow-up. We
accounted for the existence of left truncated data due to delayed enrollment of some cases
(average 94.4 days between diagnosis and enrollment) using the Cox regression start-stop
follow-up approach (30). Covariates included age at diagnosis, study site, and the first
eigenvector adjusting for possible population stratification analysis from a PCA of the
genome-wide SNPs using EigenSTRAT (31). Exploratory analysis of gene set adjusting for
stage and grade were also completed. More extensive clinical data, such as treatment detail
and degree of debulking, was missing on a large proportion of cases and thus not included in
any model.

Following determination of the gene-level association p-values for genes within each gene
set, p-values were summarized to the gene set using a meta-analytical method which can be
applied to p-values. We chose to use the Gamma method with soft truncation threshold
value (STT) of 0.15, a generalization of Fisher’s method. The Gamma method is based on
summing transformed p-values, using an inverse Gamma(ω, 1) transformation. For a

particular shape parameter ω, the test statistic is defined as , where G−1 is the
inverse of a Gamma(ω, 1) cumulative distribution function (19). For the Gamma method the
shape parameter, ω, controls the STT. When ω is 1, the transformed p-values follow a Chi-
Square distribution, and therefore the Gamma method becomes equivalent to Fisher’s
Method with a STT value of 1/e. Simulation studies have shown this approach with STT =
0.15 to be powerful for testing a self-contained gene set hypothesis under a variety of
genetic models (20).

To account for the correlation between genes within a gene set and the size of the gene sets,
empirical gene set association p-values were determine from ten-thousand permutations.
First, the response variable was randomly permuted 10,000 times keeping the genotypic data
fixed (and thus keeping the correlation structure between SNPs and genes fixed). The
association test for each gene within the gene set was then computed based on the data set
with the permuted phenotypes and the non-permuted phenotype, followed by computation of
the gene set analysis statistics. The gene set statistics based on the permuted phenotypes then
represent the empirical distribution of the gene-set test statistic. The proportion of
permutations in which the empirical GSA test-statistic was greater than the observed GS
statistic provided the empirical estimate of the p-value for the GS test for association. It
should be noted that this GSA approach does not allow for estimation of the size or direction
of gene set effect.

Following GSA of each GWAS, a meta-analysis was completed using Fisher’s method to
combine the gene set p-values between the North American and UK GSA. Finally, to assist
in the interpretation of results, as multiple SNPs may map to multiple gene sets, we
completed hierarchical clustering of the gene sets with p < 0.005. The clustering was based
on a distance measure of 1 − μ (μ = average proportion of SNPs shared between gene sets).

Results
Characteristics of invasive EOC cases and those with HGS subtype are described in Table 1.
To elucidate gene sets related to overall survival, we completed a combined analysis in
which the gene set p-values from each survival GWAS were combined using Fisher’s
method for meta-analysis. The combined HGS analysis resulted in 43 (1.7%) gene sets with
p < 0.005 (Table 2), with many of the top GSs from GO. However, this apparent
“enrichment” of significant GO GSs is largely due to the fact that the set of GO GSs is much
larger than the set of GSs in KEGG or PharmGKB. Assuming independence in GSs, we
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would have expected only 12.83 GSs to have p < 0.005 out of the 2,566 GSs tested by
chance alone. The top gene sets were the intracellular signaling pathway (p = 7.3 × 10−5),
regulation of cell-substrate junction assembly (p = 4.0 × 10−4), anatomical structure
formation involved in morphogenesis (p = 5.3 × 10−4), and organelle outer membrane (p =
5.8 × 10−4). Of the 43 gene sets with p < 0.005, 21 had p < 0.10 in both the North American
and the UK analyses, including the top gene sets of intracellular signaling pathway (North
American p = 1.7 × 10−3, UK p = 3.3 × 10−3, combined p = 7.3 × 10−5) and macrolide
binding (North American p = 9.0 × 10−4, UK p = 6.4 × 10−2, combined p = 6.2 × 10−4).
Using a conservative Bonferroni adjustment for multiple testing (α = 2.0 × 10−5), the
intracellular signaling pathway was very close to being statistically significant. The top
results were similar when adjusting for stage and grade (Supplemental Table 2).

The top gene sets in combined analysis of all cases, regardless of histological subtype, were
(Table 3) meiotic mismatch repair (p = 6.3 × 10−4), macrolide binding (p = 1.0 × 10−3),
antigen processing and presentation of peptide antigen (p = 1.1 × 10−3); mismatch repair
complex (p = 1.3 × 10−3); and regulation of cell migration (p = 1.7 × 10−3). Of the 18 gene
sets with combined p < 0.005 (0.7%), eight had p < 0.10 in both the North American and the
UK analyses. Similar results were observed in the analysis adjusting for stage and grade
(Supplemental Table 2). After adjusting for multiple testing, none of the gene sets were
statistically significant in the combined analysis. To aid in the interpretation of the gene set
results, Figure 1 presents the results from hierarchical clustering of gene sets with p < 0.005
(based on proportion of SNPs in common) for both the analysis of all cases and HGS cases.

Next, for the top gene sets (p < 0.01), we examined which particular gene(s) in these gene
set may be most associated with overall survival. Table 4 presents the genes with p < 0.0005
in top gene sets. For the combined analysis the top most significant genes were: HLA-C (p =
1.3 × 10−4), MYH3 (p = 1.7 × 10−4), WNT5A (p = 3.7 × 10−4) and ZSCAN23 (p = 3.8 ×
10−4).

To better interpret the combined GSA results, we also examined the GSA results for the
individual GWASes. In the North American GWAS, five gene sets with p-values of
association with survival < 0.005 were identified among cases with HGS histological
subtype, with the top gene set for analysis of HGS being inflammation related (p = 0.0007),
cell migration (p =0.0009) and macrolide binding (p = 0.0009). Similarly, four gene sets
were found to be associated with survival (gene set p-value < 0.001; Supplemental Table 3)
in the overall group. Genetic variation in meiotic mismatch repair, as defined in the
biological class of GO, and in mismatch repair complex, as defined in the cellular class of
GO, were the most significantly associated gene sets (p-values = 2.0 × 10−4). Of note, the
meiotic mismatch repair gene set included only MSH6 and was contained within the
mismatch repair complex gene set. Other gene sets with p < 0.001 were positive regulation
of cell death (p = 0.0004) and multicellular organismal aging (p = 0.0009). There was no
overlap of the top gene sets (p < 0.001) from the analyses of all versus HGS cases. It should
be noted that none of these results are statistically significant at the Bonferroni significance
level of 2×10−5.

GSA of the UK GWAS revealed 11 gene sets with p < 0.001 from the analysis of the HGS
cases and three gene sets with p < 0.001 from the analysis of all cases (Supplemental Table
3). Similar to the North American GSA, there was limited overlap between the top gene sets
between the analyses of all individuals and the HGS subgroup. For the analysis of the HGS,
the top gene sets were photoreceptor inner segment (p = 0.0002), organelle outer membrane
(p = 0.0002), and somatic stem cell maintenance (p = 0.0004). The top gene set in the
overall analysis involved regulation of the calcium ion (p = 0.001). However, none of these
gene sets were significant at a Bonferroni level of 2 ×10−5. As Supplemental Table 3
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illustrates, there was little agreement in top gene sets between the North American and UK
analyses.

Discussion
In this manuscript, we present results from the first application of GSA to ovarian cancer. As
ovarian cancer has high mortality, we assessed gene set associations with overall survival,
hypothesizing that use of standardized groupings of genes based on known biology may
identify novel inherited determinants of outcome and identify avenues for mechanistic
study. GSA is an increasingly applied approach for secondary analysis of GWAS data, as
this analysis approach reduces the number of tests and thus the impact of multiple testing on
inferences; in addition, it incorporates prior biological knowledge into the analysis (15). To
complete the GSA, we used a novel approach that combines the use of principal components
analysis and the Gamma Method, referred to as the PC-GM approach. Simulation studies
have found this approach to out perform other self-contained gene set approaches, such as
Fisher’s method (32, 33), for a variety of genetic models and scenarios. Although these
methods are not designed to identify specific genes or genetic variants that are associated
with the trait of interest, results from a GSA can be used to plan further, in-depth,
investigation focused on specific gene sets of interest and may uncover additional genetic
causes of complex traits.

When attention was confined to cases with the HGS subtype, the top gene set associated
with overall survival was the intracellular signaling pathway (p = 7.3 ×10−5) achieving
borderline Bonferroni-corrected statistical significance. This is a large gene set containing
22,715 SNPs mapped to 857 genes. The definition of this gene set from GO’s biological
classification states that it contains genes involved in “the process in which a signal is
passed to downstream components within the cell, which become activated themselves to
further propagate the signal and finally trigger a change in the function or state of the cell”
(34). A “child” in the hierarchical structure of GO is the “signal transduction by p53 class
mediator” gene set containing genes involved in the signaling process induced by the cell
cycle regulator phosphoprotein p53. In addition to genes WWOX and APC which have been
implicated in response to therapy (35), additional genes with modest gene-level p-values
within the intracellular signaling pathway gene set included SMAD4 (p = 0.009), IL6 (p =
0.0145), ERBB4 (p = 0.018), and JAK2 (p = 0.023). Thus, as the most statistically
significant gene set in our report, even based on a smaller sample size of HGS cases alone,
this particular collection of genes merits additional follow-up.

One of the most significant gene sets in analysis of all cases was macrolide binding (all
cases p =1.0 × 10−3; HGS cases p =6.2 ×10−4) which contained 126 SNPs mapped to eight
genes (including FKBP1B [p=0.018], FKBP3 [p = 0.086], NFATC1 [p = 0.021] and FKBP6
[p = 0.088]). This gene set originated from the GO molecular classification which indicates
that the gene set is a “child” of the drug binding gene set and a “parent” to the FK506
binding gene set which contains genes that interact “selectively and non-covalently with the
immunosuppressant FK506”(36). Henriksen et al (37) found that the FK506 binding protein
65 (FKBP65) was highly expressed in ovarian epithelium and in benign ovarian tumor cells,
while the expression levels were lower in invasive tumor cells. FKBP65 was also found to
be inversely associated with expression of p53 (37).

While this GSA of GWAS data provides novel insight and findings into the association of
genome-wide germline variation with overall survival, this type of analysis has limitations.
One limitation is that our definitions of gene sets and pathways are limited to our knowledge
about the genome, and pathways are continually evolving. Another limitation is the fact that
GSA assumes that SNPs can be assigned to relevant genes, particularly in light of the fact
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that many phenotype-associated SNPs identified to date do not lie in genes. Lastly, this GSA
does not allow one to determine the direction of the gene set effect on the outcome.
However, as this study illustrates, novel and biologically plausible association can be
detected using GSA and thus contributes to our understanding of the relationship between
genetic variation and mortality from EOC. Moreover, these results have led to possible gene
sets and novel genes that can be followed up in future studies, in particular: replication
studies, pharmacogenomic studies, and studies investigating the development of novel EOC
therapies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Hierarchical clustering dendrogram of gene sets with p < 0.005 (distance measure based on
proportion of SNPs in common between gene sets) for the analysis of (A) all cases and (B)
HGS cases.
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Table 1

Clinical characteristics of epithelial ovarian cancer cases.

Variables All Cases HGS Cases

N Subjects 2,813 899

N Deaths (%) 1,116 (40%) 473 (53%)

Stage (FIGO)

 I 800 (34%) 73 (9%)

 II 234 (10%) 60 (7%)

 III 1,147 (49%) 611 (73%)

 IV 170 (7%) 96 (11%)

 missing 462 59

Grade (3/4 combined)

 1 330 (14%) 0

 2 637 (27%) 0

 3 1,351 (58%) 899 (100%)

 Missing/unknown 18 0

Histology

 Serous 1,491 (53%) 899 (100%)

 Mucinous 241 (9%) 0

 Endometriod 497 (18%) 0

 Clear cell 265 (9%) 0

 Other 319 (11%) 0

Age at diagnosis

 Mean (SE) 57.8 (10.8) 60.6 (9.8)

Days from diagnosis to enrollment

 Mean (SE) 663.1 (807.3) 376.1 (519.4)

 Median (range) 443 (0–7,598) 92 (0–3,885)

Years from diagnosis to last follow-up

 Mean (SE) 5.7 (4.1) 4.0 (2.7)

 Median (range) 4.6 (<0.1–30.6) 3.3 (<0.1–16.8)

North American GWAS study sites

 MAY 352 (13%) 204 (23%)

 NCO 492 (18%) 162 (18%)

 TBO 213 (8%) 118 (13%)

UK GWAS study sites

 RMH 143 (5%) 20 (2%)

 SEA 1,087 (39%) 251 (28%)

 UKR 32 (1%) 0 (0%)

 UKO 494 (18%) 144 (16%)

Values reported as number (percent) unless otherwise indicated. HGS = high grade serous.
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Table 2

Association between gene sets and ovarian cancer survival in cases with high-grade serous (HGS) histological
subtype (p < 0.005).

Source Gene Set No. SNPs No. Genes GS P-value

GO:BIO intracellular signaling pathway 22,715 857 7.3 ×10−5

GO:BIO regulation of cell-substrate junction assembly 195 8 4.0 ×10−4

GO:BIO anatomical structure formation involved in morphogenesis 9,701 375 5.3 ×10−4

GO:CELL organelle outer membrane 2,023 109 5.8 ×10−4

GO:BIO negative regulation of focal adhesion assembly 114 5 5.8 ×10−4

GO:MOLE macrolide binding 126 8 6.2 ×10−4

GO:MOLE cis-trans isomerase activity 318 34 7.5 ×10−4

GO:BIO negative regulation of odontogenesis 41 2 8.2 ×10−4

GO:BIO osteoblast differentiation 1,976 70 8.4 ×10−4

GO:BIO axis specification 420 29 1.0 ×10−3

GO:CELL photoreceptor inner segment 211 9 1.1 ×10−3

GO:CELL outer membrane 2,131 113 1.1 ×10−3

GO:BIO negative regulation of molecular function 5,927 331 1.6 ×10−3

GO:BIO regulation of response to cytokine stimulus 24 3 1.7 ×10−3

GO:MOLE SH3/SH2 adaptor activity 1,283 51 1.7 ×10−3

GO:BIO homeostatic process 17,434 769 1.8 ×10−3

GO:BIO embryo implantation 507 26 1.9 ×10−3

GO:BIO tissue homeostasis 1,818 70 1.9 ×10−3

GO:BIO chromatin disassembly 30 5 1.9 ×10−3

GO:BIO ossification 3,808 161 2.0 ×10−3

GO:MOLE protein dimerization activity 13,527 540 2.1 ×10−3

GO:BIO bone development 3,913 169 2.2 ×10−3

GO:BIO regulation of odontogenesis 194 8 2.3 ×10−3

GO:BIO regulation of cell adhesion 3,760 123 2.5 ×10−3

GO:BIO anatomical structure morphogenesis 33,110 1244 2.5 ×10−3

GO:BIO signal transmission 78,767 3523 2.5 ×10−3

GO:BIO somatic stem cell maintenance 244 12 2.7 ×10−3

GO:BIO multicellular organismal homeostasis 2,259 92 2.8 ×10−3

GO:MOLE protein binding, bridging 2,037 96 2.9 ×10−3

GO:BIO organ morphogenesis 12,461 554 2.9 ×10−3

GO:BIO peptide transport 2,067 87 3.0 ×10−3

PharmGKB Glucocorticoid & Inflammatory genes (PD) 146 9 3.1 ×10−3

GO:MOLE protein transmembrane transporter activity 97 14 3.2 ×10−3

GO:BIO cell migration 11,535 386 3.4 ×10−3

GO:BIO negative regulation of biological process 38,075 1805 3.4 ×10−3

GO:BIO intracellular transport 12,735 700 3.5 ×10−3
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Source Gene Set No. SNPs No. Genes GS P-value

GO:BIO multicellular organismal macromolecule metabolic process 954 41 3.5 ×10−3

GO:BIO signal transduction 66,542 3130 3.7 ×10−3

GO:BIO muscle homeostasis 989 13 3.8 ×10−3

GO:CELL beta-catenin destruction complex 87 6 4.0 ×10−3

GO:BIO negative regulation of response to cytokine stimulus 8 1 4.7 ×10−3

KEGG TGF-beta signaling pathway 1,359 86 4.7 ×10−3

GO:BIO stem cell maintenance 414 25 4.7 ×10−3

Adjusted for age, study site, and population structure.

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2012 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fridley et al. Page 14

Table 3

Association between gene sets and ovarian cancer survival (p < 0.005).

Source Gene Set No. SNPs No. Genes GS P-value

GO:BIO meiotic mismatch repair 13 1 6.3 ×10−4

GO:MOLE macrolide binding 126 8 1.0 ×10−3

GO:BIO antigen processing and presentation of peptide antigen 610 25 1.1 ×10−3

GO:CELL mismatch repair complex 135 7 1.3 ×10−3

GO:BIO regulation of cell migration 5,266 171 1.7 ×10−3

GO:BIO negative regulation of cardiac muscle cell proliferation 78 4 1.7 ×10−3

GO:BIO positive regulation of cell death 10,363 432 2.2 ×10−3

GO:BIO release of sequestered calcium ion into cytosol 680 24 2.4 ×10−3

GO:BIO regulation of sequestering of calcium ion 680 24 2.4 ×10−3

GO:BIO negative regulation of sequestering of calcium ion 680 24 2.4 ×10−3

GO:BIO sequestering of metal ion 781 31 2.5 ×10−3

GO:BIO regulation of locomotion 5,869 192 4.0 ×10−3

GO:BIO regulation of cellular component movement 5,986 193 4.1 ×10−3

GO:BIO response to radiation 3,676 190 4.2 ×10−3

GO:BIO somatic diversification of immune receptors via germline recombination within a
single locus

480 35 4.2 ×10−3

GO:BIO negative regulation of cell migration 1,365 57 4.2 ×10−3

GO:BIO actin cytoskeleton organization 7,554 265 4.8 ×10−3

GO:BIO positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid transport 56 2 5.0 ×10−3

Adjusted for age, study site, and population structure.

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2012 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fridley et al. Page 15

Table 4

Genes with p < 0.0005 in gene sets with p < 0.01 from the combined GSA.

Analysis Gene Combined P US P UK P

All HLA-C 1.3 ×10−4 1.9 ×10−4 5.3 ×10−2

MYH3 1.7 ×10−4 1.5 ×10−5 9.6 ×10−1

WNT5A 3.7 ×10−4 5.5 ×10−2 6.0 ×10−4

ZSCAN23 3.8 ×10−4 4.6 ×10−4 7.2 ×10−2

HGS COL28A1 3.2 ×10−5 6.2 ×10−2 3.7 ×10−5

ZNF331 1.1 ×10−4 2.0 ×10−2 4.6 ×10−4

GNAT3 1.3 ×10−4 1.6 ×10−4 6.2 ×10−2

NMNAT3 2.5 ×10−4 1.8 ×10−3 1.2 ×10−2

ARMS2 3.6 ×10−4 1.5 ×10−1 2.1 ×10−4

PPIH 3.8 ×10−4 8.1 ×10−3 4.2 ×10−3

WWOX 4.4 ×10−4 6.2 ×10−4 6.4 ×10−2

Adjusted for age, study site, and population structure. HGS = high grade serous.
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