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SUMMARY
To estimate an overall treatment difference with data from a randomized comparative clinical study,
baseline covariates are often utilized to increase the estimation precision. Using the standard analysis
of covariance technique for making inferences about such an average treatment difference may not be
appropriate, especially when the fitted model is nonlinear. On the other hand, the novel augmentation pro-
cedure recently studied, for example, by Zhamgl otherg(2008. Improving efficiency of inferences in
randomized clinical trials using auxiliary covariat&ometrics64, 707—-715) is quite flexible. However,
in general, it is not clear how to select covariates for augmentation effectively. An overly adjusted estima-
tor may inflate the variance and in some cases be biased. Furthermore, the results from the standard infer-
ence procedure by ignoring the sampling variation from the variable selection process may not be valid.
In this paper, we first propose an estimation procedure, which augments the simple treatment contrast
estimator directly with covariates. The new proposal is asymptotically equivalent to the aforementioned
augmentation method. To select covariates, we utilize the standard lasso procedure. Furthermore, to make
valid inference from the resulting lasso-type estimator, a cross validation method is used. The validity of
the new proposal is justified theoretically and empirically. We illustrate the procedure extensively with a
well-known primary biliary cirrhosis clinical trial data set.
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1. INTRODUCTION

For a typical randomized clinical trial to compare two treatments, generally a summary m@agure
quantifying the treatment effectiveness difference can be estimated unbiasedly or consistently using its
simple two-sample empirical counterpart, gaywith the subject’s baseline covariates, one may obtain
a more efficient estimator fdi via a standard analysis of covariance (ANCOVA) technique or a novel
augmentation procedure, which is well documentedliangand others(2008 and a series of papers
(Leonand others2003 Tsiatis 2006 Tsiatisand others2008 Lu and Tsiatis2008 Gilbertand others
2009 Zhang and Gilbert2010. The ANCOVA approach can be problematic, especially when the regres-
sion model is nonlinear, for example, the logistic or Cox model. For this case, the ANCOVA estimator
generally does not convergedg, but to a quantity which may be difficult to interpret as a treatment con-
trast measure. Moreover, in the presence of censored event time observations, this quantity may depend
on the censoring distribution. On the other hand, the above augmentation procedure, referred as ZTD,
in the literature always produces a consistent estimatofdoprovided that the simple estimatéris
consistent.

In theory, the ZTD estimator, denoted Byrp hereafter, is asymptotically more efficient thdmo
matter how many covariates being augmented. In practice, however, an “overly augmented” or
“mis-augmented” estimator may have a larger variance than théaaofi in special case may even have
undesirable finite sample bias. Recenlifangand otherg2008 showed empirically that the ZTD via
the standard stepwise regression for variable selection performs satisfactorily when the number of covari-
ates is not large. In general, however, it is not clear that the standard inference procediyesased on
estimators augmented by covariates selected via a rather complex variable selection process is appropriate
especially when the number of covariates involved is not small relative to the sample size. Therefore, it is
highly desirable to develop an estimation procedure to properly and systematically adgamehinake
valid inference for the treatment difference using the data with practical sample sizes.

Now, letY be the response variabl€, be the binary treatment indicator, addbe a p-dimensional
vector of baseline covariates including 1 as its first element and possibly transformations of original vari-
ables. The datd(Y;, T, Z;),i =1, ..., n}, consist ofn independent copies @¥, T, Z), whereT andZ
are independent of each other. IR{T = 1) = = < (0, 1). First, suppose that we are interested in the
mean differenceflp = E(Y|T = 1) — E(Y|T = 0). A simple unadjusted estimator is

which consistently estimate®. To improve efficiency in estimatingy, one may employ the standard
ANCOVA procedure by fitting the following linear regression “working” model:

ENI|T,Z) =0T +y'Z,

wheref andy are unknown parameters. Sintel Z and{(T;, Z;),i = 1, ..., n} are independent copies
of (T, 2), the resulting ANCOVA estimator is asymptotically equivalent to
5 1 (T - 1)Z
g—79"1= 0, 1.1
’ [ n ; t(1—7) (2.1)

wherey is the ordinary least square estimatorfoof the modelE(Y|Z) = y’Z. Asn — oo, y converges
to

yo = argmin, E(Y — '2)?.
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It follows that the ANCOVA estimator is asymptotically equivalent to

s i -1z

i=1

In theory, sincd is consistent tdl, the ANCOVA estimator is also consistentég and more efficient

thand regardless of whether the above working model is correctly specified. Furthermore, as noted by
Tsiatisand others(20098, the nonparametric ANCOVA estimator proposedKnch and others(1998
andéz7p are also asymptotically equivalent tb.?) whenz = 0.5. We give details of this equivalence in
Appendix A.

The novel ZTD procedure is derived by specifying optimal estimating functions under a very general
semi-parametric setting. The efficiency gain frélyp has been elegantly justified using the semi-
parametric inference theory giatis 20069. The ZTD is much more flexible than the ANCOVA method
in that it can handle cases when the summary meaguigebeyond the simple difference of two group
means. On the other hand, the ANCOVA method may only work under above simple linear regression
model.

In this paper, we study the estimatdr.1), which augment$ directly with the covariates. The key
question is how to choosg in (1.1) especially wherp is not small with respect ta. Here, we utilize
the lasso procedure with a cross validation process to construct a systematic procedure for selecting
covariates to increase the estimation precision. The validity of the new proposal is justified theoretically
and empirically via an extensive simulation study. The proposal is also illustrated with the data from a
clinical trial to evaluate a treatment for a specific liver disease.

2. ESTIMATING THE TREATMENT DIFFERENCE VIA PROPER AUGMENTATION FROM COVARIATES

For a general treatment contrast meagidrand its simple two-sample estimatbrassume that

. n 1
0—60=n"2>"7()+o0 (—)
2o 7

wherer; () is the influence function from thigh observationy is a vector of unknown parameters, and

i =1,...,n. Note that the influence function generally only involves a rather small number of unknown
parameters, which is not dependentzon_et 7 denote the consistent estimator foiGenerally, the above
asymptotic expansion is also valid withbeing replaced by; (7). Now, (1.2) can be rewritten as

n
0 - yé(”_lzﬁi),
i=1
where§ = (Ty — n)Zi /{z(1—=)},i =1,...,n. Theny in (1.1) is the minimizer of
D fri() —y'a). (2.1)
i=1

When the dimension of is not small, to obtain a stable minimizer, one may consider the following
regularized minimand:

Li(y) =D n@ —y'&¥P + 2y,

i=1
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where4 is the lasso tuning parametéritfshiranj 1996 and| - | denote thd_; norm for a vector. For any
fixed 1, let the resulting minimizer be denoted ByA). The corresponding augmented estimator and its

variance estimator are
n
élassc(/l) =0 - 7 () (n_l Z fl)
i=1

and

n
Viassd4) = 72 > {ai (@) = 7 ()G, (2.2)

respectively. Asymptotically, one may ignore the variabilityydfl) and treat it as a constant when we
make inferences abouy. However, in some cases, we have found empirically that simild@rte,
@|asso(/1) is biased partly due to the fact thati) and{&,i = 1,..., n} are correlated. In the simula-
tion study, we show via a simple example this undesirable finite-sample phenomenon. In practice, such
bias may not have real impact on the conclusions about the treatment difféigwvadeen the study sample
size is relatively large with respect to the dimensioiz of

One possible solution to reduce the correlation betwe@n and¢; is to use a cross validation proce-
dure. Specifically, we randomly split the data if€ononoverlapping setD1, ..., Dk } and construct an
estimator fody:

R O QL
bov(2) =0 - — Zl Fh (WG,
wherei € Dy, 7(—i)(4) is the minimizer of

> riGiciy) = /&Y + Ay
j¢Dy

and i) is a consistent estimator far with all data but not fronDy, . Note thaty_iy(1) and¢ are
independent and no extra bias would be added figri) to . Whenn >> p, the variance ofy(1) can
be estimated b%ass((i) givenin @Q.2). However\hasso(/l) tends to underestimate its true variance when
p is not small.

Here, we utilize the above cross validation procedure to construct a natural variance estimator:

Veu(A) = 02> (5 Gi-iy) — (i) (DG

i=1

In Appendix B, we justify that this estimator is better thdgssqA). Moreover, wher is close to zero

and p is large, that is, one almost uses the standard least square procedure tg abjéin, the above
variance estimate can be modified slightly for improving its estimation accuracy (see Appendix B for
details). A natural “optimal” estimator using the above lasso proceduigyis= Acy(1), where? is the
penalty parameter value, which minimi2és (1) over a range of values of interest. As a referee kindly
pointed out, whetd is the mean difference, one may repla2el) by the simple least squared objective

function
n

Ti—= Z(Y_ /Z,Z
Z[n(l—n)] I =ra)

i=1

without the need of estimating the influence function.
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3. APPLICATIONS

In this section, we show how to apply the new estimation procedure to various cases. To this end, we
only need to determine the initial estimdtdor the contrast measure of interest and its corresponding
first-order expansion in each application. First, we consider the case that the response is continuous or
binary and the group mean difference is the parameter of interest. Here,

. I [T, A-T)Y,

QZ—Z[II—( l)ll-

n - T 1-=n
i=1

In this case, it is straightforward to show that

n

é_90212<n(w —ﬁl)_(l—Ti)(\(i—/?o)]+op(i),

n & ™ 1-= J/n
wheren = (u1, o), i1 =Yy TiYi/zn, andfo = 31 (1 - T)Yi /(1 — 7)n.
Now, when the response is binary with success gtdor the treatment group, j = 0,1, but

6o = log{p1(1 — po)/Po/(1 — p1)}, then
0 = log(p1) — log(1 — 1) — log(Po) + log(L — o),
wherepr = > TiYi/zn, andpo = >/, (1 — T))Yi /(1 — =)n. For this case,

N O N SO (Yi—f)oxl—m] (1)
6—00== - —).
° nglnma—m @-mpo@—po ) " P\UA

Last, we consider the case wh¥ris the time to a specific event but may be censored by an indepen-
dent censoring variable. To be specific, we obséXeA) whereY =Y AC, A = I (Y < C), Cis the
censoring time, andl () is the indicator function. A most commonly used summary measure for quan-
tifying the treatment difference in survival analysis is the ratio of two hazard functions. The two sample
Cox estimator is often used to estimate such a ratio. However, when the proportional hazards assumption
between two groups is not valid, this estimator converges to a parameter which may be difficult to interpret
as a measure of the treatment difference. Moreover, this parameter depends on the censoring distribution.
Therefore, itis desirable to use a model-free summary measure for the treatment contrast. One may simply
use the survival probability at a given timigas a model-free summary for survivorship. For this case,

0o = P(Y > to|T = 1) — P(Y > to|T = 0) andd = Si(to) — S(to), whereS; () is the Kaplan-Meier
estimator of the survival function of in groupj, j = 0, 1. For this case,

X | T S(to)dMis(s) 1-T; [l S(to)dMio(s) (1)
0—6p=-n"1D"|= e - ~ - )
T EL o LI >9T 1-7Jo zj“zll(vas)(l—ﬂ)}o" Vi

where

Mij (s) = I (Ti = i)[l(Vi < 9)A; —/OSI(Vi > U)dAj(U)],

andf\j (+) is the Nelson—Alan estimator for the cumulative hazard functioi @f group j (Flemming
and Harrington1991).

To summarize a global survivorship beyond udingear survival rates, one may use the mean survival
time. Unfortunately, in the presence of censoring, such a measure cannot be estimated well. An alternative
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is to use the so-called restricted mean survival time, that is, the area under the survival function up to time
pointtg. The corresponding consistent estimator is the area under the Kaplan—Meier curve. For this case,
0o=E(Y Atg]T =1) — E(Y Atp]T =0) and

to to
= / Si(s)ds — / S(9)ds,
0 0

For this case,

n . to to &
b~ bo =n‘12[—£/ [ a0d ]dmil(s)

S (Y] > 9T

1-T (b 0 &(t)dt . 1
4+ dM; + 0p(—=).
-7 / [zj 1|(YJ S)(1— T,)] O(S)} A

4. A SIMULATION STUDY

We conducted an extensive simulation study to examine the finite sample performance of the new esti-
matesdey(4) anddopt for fo. First, we investigate whethaf,, (1) estimates the true variance @ (1)

well under various practical settings. We also examine the finite sample properties for the interval estima-
tion procedure based on the optirﬁq&t. To this end, we consider the following models for generating the
underlying data:

1. the linear regression model with continuous response

Y = mr(Z) + N(O, 1);

2. the logistic regression model with binary response

P(YY = 1T, Z) =[1 + expl—m7 (Z2)}] ™%

3. the Cox regression model with survival response
Y = coexp{mr(2)},

whereeg and censoring time are generated from the unit exponential distributiotJ&9B),
respectively, and we are interested in survival curves over the time intertgl {9 [0, 2.5].

Throughout we leh = 200 and generat€Z|y, . .., Z[100))’ from multivariate normal distribution with
mean 0, variance 1, and a compound symmetry covarignciosen to be either O or 0.5. For each
generated data set, the 20-fold cross validation is used to caléléte andV., (1) over a sequence of

tuning parameter§is, A2, ..., 100}, wherels is chosen such that(1;) = 0 for all simulated data sets,
Ak =10"3/98), _,fork =2, ...,99 andi100 = O. In the first set of simulation, we set
20 . 20

mo(Z):ZZJOZ[,], ml(Z)—1+Z 251
j=1 j= 1
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Fig. 1. Comparing various estimates /(1) at {11, ..., A100}: the empirical variance dicy(4) (black curve);

Vev(2) (dashed curveliassd4) (grey curve); (a—c) for independent coviariate; (d—f) for dependent covariate.

All the results are summarized based on 5000 replications. In Figuve present the average &, (1),
the average ofiassd /), and the empirical variance @‘fv(i) wheng = 0 for continuous, binary, and sur-
vival responses, respectively. The results suggest/ma.t) approximates the true variancefaf (1) very
well; while V|asso(/1) obtained without cross validation tends to severely underestimate the true variance.
When the covariates are correlated with= 0.5, the corresponding results are presented in FigguFae
results are consistent with the case with= 0.

Next, we examine the performance of the optimal estimé;gr: éc\,(i), where is chosen to be
the minimizer of\/cv(/l) 4 €{4y,..., 4100} FoOr each simulated data set, we construct a 95% confidence
intervals (Cl) based oa?bpt andVopt ch(fl). We summarized results from the 5000 replications based on
the empirical bias, standard error, and coverage level and length of the constructed Cls. For comparisons,
we also obtain those values based on the simple estiatdip, andécv(/lo) along with their variance
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Table 1. The empirical bias, standard error, and coverage levels and lengths for the 0.95 Cl baéed on
opt, Ocv(40), andbzTp

Response  Estimator Independent covariates Correlatediates
mr(2) = 352, 121j1/20+ T
BIAS ESE EAL(1073) ECL (%) BIAS ESE EAL(1073) ECL (%)
Continuous 0 0.007 0.403 1.580(17)  94.9 —0.005 1.100 4.264 (3.0) 94.4
Oopt 0.002 0.169 0.648(0.6) 94.2 0.001 0.166 0.743(1.9) 97.0
Ocv(10) 0.002 0.167 0.652(0.6) 94.7 0.001 0.163 0.749(1.9) 97.3
071D 0.003 0.204 0.622(0.6) 87.2 —0.001 0.359 0.749(1.8) 72.6
Binary 0 0.009 0.291 1.136(0.2) 95.1 0.004 0.271 1.047(0.3) 946
Bopt 0.003 0.245 0.946 (0.7) 94.6 0.004 0.191 0.745(0.5) 95.2
Ocv(10) 0.003 0.243 0.953(0.7) 94.9 0.003 0.189 0.747 (0.5) 95.5
071D —0.011 0.259 0.822(0.7) 88.9 —0.005 0.201 0.508 (0.7) 78.9
Survival 0 0.003 0.164 0.626(0.2) 94.1 0.005 0.173 0.665 (0.1) 94.5
Oopt 0.001 0.127 0.476 (0.4) 93.7 0.005 0.112 0.426(0.3) 93.9
Ocv(10) 0.001 0.127 0.479(0.4) 94.0 0.005 0.111 0.427(0.3) 94.2
671D 0.004 0.141 0.457 (0.4) 89.5 0.005 0.122 0.401(0.3)89.8
mr(2) = (T+1) X727 (2, - D/2+ jZ[j)/20 + 2T
Continuous @ 0.019 0.876 3.476 (2.6) 94.9 0.009 1.502 5.499 (4.4) 93.0
éopt 0.002 0.533 2.084 (2.0) 94.4 —0.038 1.188 4.618(8.4) 93.9
Oev(A0) 0.016 0.530 2.097(2.0) 94.8 0.069 1.191 4.685(8.7) 945
071D —0.159 0.583 2.068(2.2) 91.1 0.390 1.305 4.193(7.1) 88.9
Binary 6 0.023 0.288 1.130(0.2) 943 -0.001 0.290 1.140 (0.3) 95.4
z%pt 0.017 0.242 0.935(0.7) 94.7 —0.003 0.188 0.753(0.6) 95.4
Oev(A0) 0.021 0.240 0.941(0.7)  95.0% 0.002 0.187 0.757(0.6) 957
071D —0.023 0.265 0.855(0.8) 88.8 —0.006 0.201 0.546(0.7) 82.8
Survival 0 —0.003 0.173 0.659(0.1) 93.7 0.010 0.173 0.663(0.1) 94.6
c%pt —0.005 0.141 0.531(0.4) 93.6 0.005 0.114 0.431(0.3) 94.4
Oev(A0) —0.002 0.140 0.534(0.4) 938 0.007 0.114 0.433(0.3) 946
071D —0.023 0.157 0.515(0.4) 89.4 0.014 0.120 0.411(0.3)91.4

BIAS, empirical bias; ESE, empirical standard error of the estimator; EAL, empirical average length; and ECL: empirical coverage

level.

TThe Monte Carlo standard error in estimating the average length.

estimators, whereg is the minimizer of the empirical variance écfv(/lo). In all the numerical studies,

the forward subset selection procedure coupled with BIC is used to select variables for the efficiency
augmentation in the ZTD procedure. The results are summarized in Tablee coverage levels fa%pt

are close to the nominal counterparts and the interval lengths are almost identical to those based on the
estimate with the true optimaly. On the other hand, the simple estimdtéends to have substantially

wider interval estimates thafpt, dev(40), anddz1p. The empirical standard error é§1p is slightly

greater than that (ﬁopt or Bey(40), which implies the advantages of lasso procedure. More importantly,

the naive variance estimator é§1p may severely underestimate the true variance and thus results in
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much more liberal confidence interval estimation procedure, which potentially can be corrected via cross
validation. In summary, for all cases studied, the augmented estimators can substantially improve the
efficiency ofd in terms of narrowing the average length of the confidence intervé ahdéoprbased
inference is more reliable than that basedderp. Furthermore, in the variance estimation ﬁabt =
Bev(1), the variability in4 may cause slightly downward bias, which is almost negligible in our empirical
studies. Last, all estimators considered here are almost unbiased in the first set of simulation.

For the second set of simulation, we repeat the above numerical study with

20

mo<2>=2[(z[,] D+ - Zm]

i=1

and
20
my(Z) =Zi—(z[1] D+ — Z[l]]
j=1
We augment the simple estimator By= (Z[1], ..., Zjao], Z[21 y s Z[240])’. The corresponding results
are reported in Figurg(a—f) and Tablel. The results are simlllar to those from the first set of simulation

study except that for the continuous outcome, the empirical bidsref is not trivial relative to the cor-
responding standard error. On the other hand, the esti@a,alis almost unbiased for all cases as ensured
by the cross validation procedure. Note that without knowing the practical meanings of the response, the
absolute magnitude of the bias alone is difficult to interpret and a seemingly substantial bias relative to
the standard error may still be irrelevant in practice. However, the presence of such a bias still poses a
risk in making statistical inference on marginal treatment effect. In further simulations (not reported), we
have found that the bias cannot be completely eliminated by increasing sample size or including quadratic
transformation irZ. Last, we would like to pointed out the presence of bias is a uncommon finite sample
phenomenon and does not undermine the asymptotical validity of ZTD and similar procedures. For exam-
ple, under the aforementioned setup if we reduce the dimensidrial 0 and increase the sample size to
500, then the bias becomes essentially 0.

For the third set of simulation, we examine the potential efficiency loss due to not including important
nonlinear transformations of baseline covariates in the efficiency augmentation. To this end, we simulate
continuous, binary and survival outcomes as in the previous stimulation study with

o [28-1 |
_ J .
Mo(Z) = Z[T + Z)Z[”]

=1

and
20
m2) = > i—(Z[,] D+ - Zm]
j=1
We augment the efficiency of the initial estimator firstdy = (Z[y, ..., Z[100)" and second biz =
(Zpy, - - -5 Z[100) Z[l] 2220 ). In Table2, we present the empmcal bias and standard errcﬁo@f

based on 5000 rephcatlons As expected, the empirical performance of the estimator augmentéd by
superior to that of its counterpart usiZg. The gains in efficiency for binary and survival outcomes are
less significant than that for continuous outcome, which is likely due to the fact that the influence function
of § is neither a linear nor a quadratic functiongfi), j =1, ..., 100 in the binary or survival setting.

In the fourth set of simulation, we examine the “null model” setting in which none of the covariates
are related to the response. To this end, we generate continuous respdrmsashe normal distribution
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(¢) Survival outcome
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Vev(2) (dashed curveMassc(/l) (grey curve) ; (a—c) for independent coviariate; (d—f) for dependent covariate.

Table 2. The empirical bias and standard error é{pt augmented b¥ 1 andZ,

Response Augmentation vector Independent covariates Correlatedates
BIAS ESE BIAS ESE
Continuous Zq —0.024 0.770 —0.085 1.831
Zy —0.020 0.745 —0.035 1.492
Binary Zq —0.001 0.261 —0.004 0.239
Zy 0.001 0.258 —0.002 0.226
Survival Zq 0.037 0.156 0.004 0.133
Zy 0.037 0.154 0.003 0.124

BIAS, empirical bias; ESE, empirical standard error.
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(a) Independent Covariates (b) Dependent Covariates
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Fig. 3. Empirical variance o@opt (wiggly solid curve) and its variance estimator (dashed curve) in the presence of
high-dimensional noise covariates. The horizontal solid curve presents the optimal variance level.

N(,1) for T = 0 andN(1,1) for T = 1. The covariat&Z is from a standard multivariate normal
distribution generated independentafFor each generated data set, we obtain the optimal estiﬁa@{or

and its variance estimator as in the previous simulation study. Based on 3000 replications, we estimate the
empirical variance o@opt and the average of the variance estimator for given combinatioraofi p. To
examine the effect of “overadjustment”, we fet= 0, 20, 40, ..., 780 and 800 while fixing the sample
sizen at 200. In Figure3, we present the empirical average KQ{,(A) (dashed curve) and the empirical
variance oi%pt (solid curve). The optimal estimator is the naive estimAtaithout any covariate-based
augmentation in this case. The figure demonstrates that the varlaﬂgﬁ wfcreases very slowly with

the dimensiorp and is still near the optimal level even with 800 noise covariates. The variance estimator
slightly underestimates the true variance and the downward bias increases with the dinpengidch

could be attributable to the fact that we uit;,g(i) = mim{\A/CV(/I)} as the variance estimator without any
adjustments. On the other hand, the bias remains ratherd6do(of the empirical variance) such that the

valid inference orp can still be made over the entire rangepfin Figure3, we represent the similar
results with noise covariates generated from dependent multivariate normal distribution as in the previous
simulation studies.

5. AN EXAMPLE

We illustrate the new proposal with the data from a clinical trial to compapenicillmain and placebo

for patients with primary biliary cirrhosis (PBC) of liveTerneau and Grambsck000. The primary
endpoint is the time to death. The trial was conducted between 1974 and 1984. For illustration, we use
the difference of two restricted mean survival time ugge= 3650 (days) as the primary parametigr

of interest. Moreover, we consider 18 baseline covariates for augmentation: gender, stages (1, 2, 3, and
4), presence of ascites, edema, hepatomegaly or enlarged liver, blood vessel malformations in the skin,
log-transformed age, serum albumin, alkaline phosphotase, aspartate aminotransferase, serum bilirubin,
serum cholesterol, urine copper, platelet count, standardized blood clotting time, and triglycerides. There
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(a) Estimated survival functions of D-penicillmain (gray) (b) V;, ) (black) vs. V;mw( ) (gray)
and placebo arms (black)
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Fig. 4. Analysis results for PBC data.

are 276 patients with complete covariate information (136 and 140 in contrab-gueshicillmain arms,
respectively). The data used in our analysis are given in the Appendix :lewiming and Harrington
(199)). Figure4 provides the Kaplan—Meier curves for the two treatment groups. The simple two sample
estimate) is 115.2 (days) with an estimated standard ekfoof 156.6 (days). The corresponding 95%
confidence interval for the difference is-191.8, 422.1) (days). The optimal estimé&@t augmented
additively with the above 18 coavariates is 106.3 with an estimated standard?@gmlf 121.4. These
estimates were obtained via a 23-fold cross validation (note that2Z8 x 12) described in Sectiok

The corresponding 95% CI is-(131.8, 344.4). To examine the effect Iéf on the result, we repeated
the analysis with 92-fold cross validation & 276 = 92 x 3) and the optimal estimator barely changes
(108.3 with a 95% CI of£128.5, 345.1)). In our limited experience, the estimation result is not sensitive
to K > max(20, n'/2).

To examine how robust the new proposal is with respect to different augmentations. We consider a
case which includes the above 18 covariates but also their quadratic terms as well as all their two-way
interactions. The dimension &fis 178 for this case. The resulting optin@a!;t is 110.1 with an estimated
standard error of 122.6. Note the resulting estimates are amazingly close to those based on the augmented
procedure with 18 covariates only.

To examine the advantage of using the cross validation for the standard error estimation, irtFigure
we plot ch(i) and \Aass((/l) over the order of 10Q’s, which were generated using the same approach
as in Sectiont. Note thatViassd4) is substantially smaller tha‘vkv(/l) especially whent approaches to
0, that is, there is no penalty for the loss function. Foﬁopt, ViassoiS about 20% smaller than its cross
validated counterpart.

It has been shown via numerical studies that the ZTD performs well via the standard stepwise re-
gression by ignoring the sampling variation of the estimated weights when the dimensfois ofot
large with respect tm. However, it is not clear how the ZTD augmentation performs with a relatively
high-dimensional covariate vectdr. It would be interesting to compare the ZTD and the new proposal
with the PBC data. To this end, we implement ZTD augmentation procedure using (1) baseline covari-
ates(p = 18); (2) baseline covariates and their quadratic transformations as well as all their two-way
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Table 3. Comparisons between the new and ZTD estimate with the data from the Mayo Clinic PBC clinical
trial (SE: estimated standard er)

p The new optimal procedure ZTD

Estimate SE Estimate SE
5 92.0 1215 96.3 119.4
18 106.3 121.4 126.4 111.7
178 110.1 122.6 65.3 114.6

BIAS, empirical bias; ESE, empirical standard error.

interactions(p = 178); and (3) only five baseline covariates: edema and log-transformed age, serum
albumin, serum bilirubin, and standardized blood clotting time, which were selected in building a mul-
tivariate Cox regression model to predict the patient’s survivarllbgrneau and Grambs¢R000. Note

that the ZTD procedure augments the following estimating equatiortfor

n ~

Zw[\ﬁ Atg—ay,] =0,
i=1 KO(YI A tO)

n -
ATL—AI[ﬁ Atg—ay, — 0] =0,

i—1 K1(YI /\tO)

whereay, is the restricted mean for the comparator érisithe treatment differencd; = | (Y; Aty < Ci),

andKj (+) is the Kaplan—Meier estimate for the survival function of censoring thiregroupT = |, j =

0, 1. In Table3, we present the resulting ZDT point estimates and their corresponding standard error

estimates for the above three cases. Here, we used the standard forward stepwise regression procedure to

select the augmentation covariates with the entry Type | error rate of Dhhgand others2008 Zhang

and Gilbert 2010. It appears that using the entire data set for selecting covariates and making inferences

aboutfdy may introduce nontrivial bias and an overly optimistic standard error estimate p/ielarge.

On the other hand, the new procedure does not lose efficiency and yields similar result as ZTD procedure

whenp is small.

6. REMARKS

The new proposal performs well even when the dimension of the covariates involved for augmentation is
not large. The new estimation procedure may be implemented for improving estimation precision regard-
less of the marginal distributions of the covariate vectors between two treatment groups being balanced.
On the other hand, to avoid post ad hoc analysis, we strongly recommend that the investigators prespecify
the set of all potential covariates for adjustment in the protocol or the statistical analysis plan before the
data from the clinical study are unblinded.

The stratified estimation procedure for the treatment difference is also commonly used for improving
the estimation precision using baseline covariate information. Specifically, we divide the population into

K strata based on baseline variables, denoteby B}, ..., {Z € Bk}, the stratified estimator is
N Zszl Ak
Osr = —5—>

k=1 Wk
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wheredy and wy are corresponding simple two sample estimator for the treatment difference and the
weight for thekth stratumk = 1,..., K. In general, the underlying treatment effect may vary across
strata and consequently the stratified estimator may not convergg tb 9y is the mean difference
between two groups andy is the size of thekth stratum sy iS a consistent estimator fég. Like the
ANCOVA, the stratified estimation procedure may be problematic. On the other hand, one may use the in-
dicators{l (Z € By), ..., | (Z € Bk)}’ to augmend to increase the precision for estimating the treatment
differenced.

In this paper, we follow the novel approach taken, for exampleZbgngand others(2008 for
augmenting the simple two sample estimator but present a systematic practical procedure for choosing
covariates for making valid inferences about the overall treatment difference. Wisdarge, there are
several advantages over other approaches for augmehtiritp covariates. First, it avoids the complex
variable selection step in two arms separately as proposéukingand otherg2008. Second, compared
with other variable selection methods such as the stepwise regression, the lasso method directly controls
the variability ofy, which improves the empirical performance of the augmented estimator. Third, the
cross validation step enables more accurate estimation of the variance of the augmented estimator. When
A increases from 0 te-oo, the resulting estimator varies from the fully augmented estimator using all
the components oZ; to 4. The lasso procedure also possesses superior computational efficiency with
high-dimensional covariates to alternatives. Last, sthee can also be viewed as a generalized method

of moment estimator with
60— éo )
~0
( niyhg

as moment conditiondHall, 2005, the cross validation method introduced here may be extended to a
much broader context than the current setting.

It is important to note that if a permuted block treatment allocation rule is used for assigning patients
to the two treatment groups, the augmentation method proposed in the paper can be easily modified. For
instance, for theK -fold cross validation process, one may choose the{dgisk = 1,..., K} so that
each permuted block would not be in different sets.

For assigning patients to the treatment groups, a stratified random treatment allocation rule is also
often utilized to ensure a certain level of balance between the two groups in each stratum. For this case,
a weighted averag#, of the treatment difference#o with weightwy, k = 1, ..., K, acrosskK strata
may be the parameter of interest for quantifying an overall treatment contragk hetthe simple two
sample estimator fafkg andwk be the corresponding empirical weight fog. Then the weight average
0 = >k Db/ >k Wk is the simple estimator fak. For thekth stratum, one may use the same approach
as discussed in this paper to augm@atlet the resulting optimal estimator be denoted@@ygk. Then
we can use the weighted averadg zbkéoptk/ >k Wk to estimatedp. On the other hand, for the case
with the dynamic treatment allocation rules (see, d2gcock and Simqrl975), it is not clear how to
obtain a valid variance estimate even for the simple two sample estithéBtraoand others2010. How
to extend the augmentation procedure to cases with more complicated treatment allocation rule warrants
further research.

APPENDIX A
Asymptotical equivalence between ZTD and ANCOVA

When the group mean is the parameter of interest, the naive estimafigrdan viewed as the root of the
estimating equation
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n n

Z( 1IiTi )So(@,a,Yi,Ti)=Z( 1jTi )(Yi —a-T#) =0

i=1 i=1

wherea = E(Y|T = 0) is a huisance parameter. In the ZTD augmentation procedure, one may augment
this simple estimating equation via following steps:

~ (Ti—=m)Yi
0\ _ 1 Zn: 71(17—T7r)
a ) n&\ oy

1 1-7

e Obtain the initial estimator

from the original estimating equation
e Obtain: and ) by minimizing the objective function
n
D TS0, 4 Y, T) - fiZiY
i=1
and
n
D A=T)H{S0.4, Y, T) — BZi),
i=1
respectively. In other words, usilﬁjz to approximateE{Sy (6o, ap; Y, T)|Z, T = j}.

e Solve the augmented estimating equations

n

T T _ ST Pz ) -
5(2t e -n-a )

i=1 i=1
to obtaindzp.

The resultingdz1p is always asymptotically more efficient than the naive counterpart and a simple sand-
wich variance estimator can be used to consistently estimate the variance of the new estimator. It has been
shown that)ztp is asymptotically the most efficient one from the class of the estimators

" A _ (i — m)Z;
=10, =0 — ! RP
A { y [ Z z(1—7) V€ )
whose members are all consistentéigiand asymptotically normal. When= 0.5

- Z{2<2T. — Y 6o},
i=1

the optimal weight minimizing the variance of
1 n
0 — y/ﬁ ZZ(ZTi —1)Zi
i=1
is simply

[E{22Ti — 1)Zi)}®471E[2(2Ti — 1)Zi{2(2Ti — 1)Y; — bo)] = [EEZPH)]EZi Vi) = yo.

Thereforef-tp is asymptotically equivalent to the commonly used ANCOVA estimator. This equivalence
is noted inTsiatisand otherg2008.
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APPENDIX B
Justification of the cross validation based variance estimatoéd‘g(ri)
To justify the cross validation based variance estimator, first consider the expansion
n
Ocu() = i -7 (n-lzs )] —n7 > G () — yol'&.
i=1

The variance of)cv(,l) can be expressed &1 + Vo2 — 2V12, Where

n 2
V11=E[é—y6(n_125i)} 5
i=1

2
1
Voo = E [Z{y( |)(/1)—Vo}f|}

i=1
and

i=1

Vi2 = }E H =70 (n‘lZg)] D i) - Vo}/fi} :

First,

Vi = [Zm ) — 766 Z{w (1) = 70) é‘.}

i=1

Z EL(i () = 766 17— (2) — 7o 1B + Z E[(ri () — 76&){F i) (A) — y0)'é]
i %] i=1

1 . .
~ 5 D Bl () — ol El(m (1) = 766)&] ~ 0.
i=1
Therefore, the variance of the augmented estinfat@r) is approximately

Vi1 + Vo2

=—[E{(r. (n)—yoé‘l) b+ E{G () — 70y &) 2]+(

E[fl P=1)(A) — y0}&a{P(—2)(4) — yo}l

o) + O D Bl 5 DS o (]

In our experienced(1) = E[&]7(—1)(1)&57(—2)(A)] = 0(n~2) is very small compared witNey(1) =
O(n~1) and is negligible, wrlerﬁ. is not close 0. Therefore, in general;v(,l) serves as a satisfactory
estimator for the variance aky(1). For small i, to explicitly estimated(4), the covariance between

&17(-1)(A) and&y7(—2)(4), one may use

. 2(K2 -1 K-1 K-1
doy =20 éi’{Tf(—J>(l)—f(i)]é§{—V%—i)(i)—ﬁ(i) (6.1)

nn—-1)K 4 K
1<i<jgn

as an ad hoc jackknife-type estimator, whei@) is the lasso solution based on the entire data set. To
justify the approximation, first note that whernis close to 0,



272 L. TIAN AND OTHERS

n
A R K
V(i)—yowiZ;Ti and V(—i)(/l)—VONK—_li;D: i,
- ¥

whereY; is the mean zero influence function from flie observation fo (1). Therefore,
A A 1
d(2) = E[&17 (-1 (D)0 (—2(M)] = (1— @) E[&1 28],

which can be approximated fm(1) and one may us¥cy (1) +(n— 1)d(4)/n as the variance estimator
for the augmented estimator. Note that the difference betWggand its modified version appears to be
negligible in all the numerical studies presented in the paper.
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