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SUMMARY

To estimate an overall treatment difference with data from a randomized comparative clinical study,
baseline covariates are often utilized to increase the estimation precision. Using the standard analysis
of covariance technique for making inferences about such an average treatment difference may not be
appropriate, especially when the fitted model is nonlinear. On the other hand, the novel augmentation pro-
cedure recently studied, for example, by Zhangand others(2008. Improving efficiency of inferences in
randomized clinical trials using auxiliary covariates.Biometrics64, 707–715) is quite flexible. However,
in general, it is not clear how to select covariates for augmentation effectively. An overly adjusted estima-
tor may inflate the variance and in some cases be biased. Furthermore, the results from the standard infer-
ence procedure by ignoring the sampling variation from the variable selection process may not be valid.
In this paper, we first propose an estimation procedure, which augments the simple treatment contrast
estimator directly with covariates. The new proposal is asymptotically equivalent to the aforementioned
augmentation method. To select covariates, we utilize the standard lasso procedure. Furthermore, to make
valid inference from the resulting lasso-type estimator, a cross validation method is used. The validity of
the new proposal is justified theoretically and empirically. We illustrate the procedure extensively with a
well-known primary biliary cirrhosis clinical trial data set.
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1. INTRODUCTION

For a typical randomized clinical trial to compare two treatments, generally a summary measureθ0 for
quantifying the treatment effectiveness difference can be estimated unbiasedly or consistently using its
simple two-sample empirical counterpart, sayθ̂ . With the subject’s baseline covariates, one may obtain
a more efficient estimator forθ0 via a standard analysis of covariance (ANCOVA) technique or a novel
augmentation procedure, which is well documented inZhangand others(2008) and a series of papers
(Leonand others, 2003; Tsiatis, 2006; Tsiatisand others, 2008; Lu and Tsiatis, 2008; Gilbertand others,
2009; Zhang and Gilbert, 2010). The ANCOVA approach can be problematic, especially when the regres-
sion model is nonlinear, for example, the logistic or Cox model. For this case, the ANCOVA estimator
generally does not converge toθ0, but to a quantity which may be difficult to interpret as a treatment con-
trast measure. Moreover, in the presence of censored event time observations, this quantity may depend
on the censoring distribution. On the other hand, the above augmentation procedure, referred as ZTD,
in the literature always produces a consistent estimator forθ0, provided that the simple estimatorθ̂ is
consistent.

In theory, the ZTD estimator, denoted byθ̂ZTD hereafter, is asymptotically more efficient thanθ̂ no
matter how many covariates being augmented. In practice, however, an “overly augmented” or
“mis-augmented” estimator may have a larger variance than that ofθ̂ and in special case may even have
undesirable finite sample bias. Recently,Zhangand others(2008) showed empirically that the ZTD via
the standard stepwise regression for variable selection performs satisfactorily when the number of covari-
ates is not large. In general, however, it is not clear that the standard inference procedures forθ0 based on
estimators augmented by covariates selected via a rather complex variable selection process is appropriate
especially when the number of covariates involved is not small relative to the sample size. Therefore, it is
highly desirable to develop an estimation procedure to properly and systematically augmentθ̂ and make
valid inference for the treatment difference using the data with practical sample sizes.

Now, let Y be the response variable,T be the binary treatment indicator, andZ be a p-dimensional
vector of baseline covariates including 1 as its first element and possibly transformations of original vari-
ables. The data,{(Yi , Ti , Z i ), i = 1, . . . , n}, consist ofn independent copies of(Y, T, Z), whereT andZ
are independent of each other. LetP(T = 1) = π ∈ (0, 1). First, suppose that we are interested in the
mean difference:θ0 = E(Y|T = 1) − E(Y|T = 0). A simple unadjusted estimator is

θ̂ =
1

n

n∑

i =1

(Ti − π)Yi

π(1 − π)
,

which consistently estimatesθ0. To improve efficiency in estimatingθ0, one may employ the standard
ANCOVA procedure by fitting the following linear regression “working” model:

E(Y|T, Z) = θT + γ ′Z,

whereθ andγ are unknown parameters. SinceT ⊥ Z and{(Ti , Z i ), i = 1, . . . , n} are independent copies
of (T, Z), the resulting ANCOVA estimator is asymptotically equivalent to

θ̂ − γ̂ ′

{
1

n

n∑

i =1

(Ti − π)Z i

π(1 − π)

}

, (1.1)

whereγ̂ is the ordinary least square estimator forγ of the modelE(Y|Z) = γ ′Z. Asn → ∞, γ̂ converges
to

γ0 = argminγ E(Y − γ ′Z)2.
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It follows that the ANCOVA estimator is asymptotically equivalent to

θ̂ − γ ′
0

{
1

n

n∑

i =1

(Ti − π)Z i

π(1 − π)

}

. (1.2)

In theory, sinceθ̂ is consistent toθ0, the ANCOVA estimator is also consistent toθ0 and more efficient
than θ̂ regardless of whether the above working model is correctly specified. Furthermore, as noted by
Tsiatisand others(2008), the nonparametric ANCOVA estimator proposed byKoch and others(1998)
andθ̂ZTD are also asymptotically equivalent to (1.2) whenπ = 0.5. We give details of this equivalence in
Appendix A.

The novel ZTD procedure is derived by specifying optimal estimating functions under a very general
semi-parametric setting. The efficiency gain from̂θZTD has been elegantly justified using the semi-
parametric inference theory (Tsiatis, 2006). The ZTD is much more flexible than the ANCOVA method
in that it can handle cases when the summary measureθ0 is beyond the simple difference of two group
means. On the other hand, the ANCOVA method may only work under above simple linear regression
model.

In this paper, we study the estimator (1.1), which augmentŝθ directly with the covariates. The key
question is how to choosêγ in (1.1) especially whenp is not small with respect ton. Here, we utilize
the lasso procedure with a cross validation process to construct a systematic procedure for selecting
covariates to increase the estimation precision. The validity of the new proposal is justified theoretically
and empirically via an extensive simulation study. The proposal is also illustrated with the data from a
clinical trial to evaluate a treatment for a specific liver disease.

2. ESTIMATING THE TREATMENT DIFFERENCE VIA PROPER AUGMENTATION FROM COVARIATES

For a general treatment contrast measureθ0 and its simple two-sample estimatorθ̂ , assume that

θ̂ − θ0 = n−1
n∑

i =1

τi (η) + op

(
1

√
n

)
,

whereτi (η) is the influence function from thei th observation,η is a vector of unknown parameters, and
i = 1, . . . , n. Note that the influence function generally only involves a rather small number of unknown
parameters, which is not dependent onZ. Let η̂ denote the consistent estimator forη. Generally, the above
asymptotic expansion is also valid withτi being replaced byτi (η̂). Now, (1.2) can be rewritten as

θ̂ − γ ′
0

(

n−1
n∑

i =1

ξi

)

,

whereξi = (Ti − π)Z i /{π(1 − π)}, i = 1, . . . , n. Thenγ̂ in (1.1) is the minimizer of

n∑

i =1

{τi (η̂) − γ ′ξi }
2. (2.1)

When the dimension ofZ is not small, to obtain a stable minimizer, one may consider the following
regularized minimand:

Lλ(γ ) =
n∑

i =1

{τi (η̂) − γ ′ξi }
2 + λ|γ |,
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whereλ is the lasso tuning parameter (Tibshirani, 1996) and| ∙ | denote theL1 norm for a vector. For any
fixed λ, let the resulting minimizer be denoted byγ̂ (λ). The corresponding augmented estimator and its
variance estimator are

θ̂lasso(λ) = θ̂ − γ̂ (λ)′

(

n−1
n∑

i =1

ξi

)

and

V̂lasso(λ) = n−2
n∑

i =1

{τi (η̂) − γ̂ (λ)′ξi }
2, (2.2)

respectively. Asymptotically, one may ignore the variability ofγ̂ (λ) and treat it as a constant when we
make inferences aboutθ0. However, in some cases, we have found empirically that similar toθ̂ZTD,
θ̂lasso(λ) is biased partly due to the fact thatγ̂ (λ) and {ξi , i = 1, . . . , n} are correlated. In the simula-
tion study, we show via a simple example this undesirable finite-sample phenomenon. In practice, such
bias may not have real impact on the conclusions about the treatment difference,θ0, when the study sample
size is relatively large with respect to the dimension ofZ.

One possible solution to reduce the correlation betweenγ̂ (λ) andξi is to use a cross validation proce-
dure. Specifically, we randomly split the data intoK nonoverlapping sets{D1, . . . ,DK } and construct an
estimator forθ0 :

θ̂cv(λ) = θ̂ −
1

n

n∑

i =1

γ̂(−i )(λ)′ξi ,

wherei ∈ Dki , γ̂(−i )(λ) is the minimizer of

∑

j /∈Dki

{τ j (η̂(−i )) − γ ′ξ j }
2 + λ|γ |,

and η̂(−i ) is a consistent estimator forη with all data but not fromDki . Note thatγ̂(−i )(λ) and ξi are
independent and no extra bias would be added fromθ̂cv(λ) to θ̂ . Whenn � p, the variance of̂θcv(λ) can
be estimated bŷVlasso(λ) given in (2.2). HoweverV̂lasso(λ) tends to underestimate its true variance when
p is not small.

Here, we utilize the above cross validation procedure to construct a natural variance estimator:

V̂cv(λ) = n−2
n∑

i =1

{τi (η̂(−i )) − γ̂ ′
(−i )(λ)ξi }

2.

In Appendix B, we justify that this estimator is better thanV̂lasso(λ). Moreover, whenλ is close to zero
and p is large, that is, one almost uses the standard least square procedure to obtainγ̂(−i )(λ), the above
variance estimate can be modified slightly for improving its estimation accuracy (see Appendix B for
details). A natural “optimal” estimator using the above lasso procedure isθ̂opt = θ̂cv(λ̂), whereλ̂ is the
penalty parameter value, which minimizesV̂cv(λ) over a range ofλ values of interest. As a referee kindly
pointed out, whenθ0 is the mean difference, one may replace (2.1) by the simple least squared objective
function

n∑

i =1

{
Ti − π

π(1 − π)

}2

(Yi − γ ′Z i )
2

without the need of estimating the influence function.



260 L. TIAN AND OTHERS

3. APPLICATIONS

In this section, we show how to apply the new estimation procedure to various cases. To this end, we
only need to determine the initial estimateθ̂ for the contrast measure of interest and its corresponding
first-order expansion in each application. First, we consider the case that the response is continuous or
binary and the group mean difference is the parameter of interest. Here,

θ̂ =
1

n

n∑

i =1

{
Ti Yi

π
−

(1 − Ti )Yi

1 − π

}
.

In this case, it is straightforward to show that

θ̂ − θ0 =
1

n

n∑

i =1

{
Ti (Yi − μ̂1)

π
−

(1 − Ti )(Yi − μ̂0)

1 − π

}
+ op

(
1

√
n

)
,

whereη = (μ1, μ0)
′, μ̂1 =

∑n
i =1 Ti Yi /πn, andμ̂0 =

∑n
i =1(1 − Ti )Yi /(1 − π)n.

Now, when the response is binary with success ratepj for the treatment groupj, j = 0, 1, but
θ0 = log{p1(1 − p0)/p0/(1 − p1)}, then

θ̂ = log( p̂1) − log(1 − p̂1) − log( p̂0) + log(1 − p̂0),

where p̂1 =
∑n

i =1 Ti Yi /πn, and p̂0 =
∑n

i =1(1 − Ti )Yi /(1 − π)n. For this case,

θ̂ − θ0 =
1

n

n∑

i =1

{
(Yi − p̂1)Ti

π p̂1(1 − p̂1)
−

(Yi − p̂0)(1 − Ti )

(1 − π) p̂0(1 − p̂0)

}
+ op

(
1

√
n

)
.

Last, we consider the case whenY is the time to a specific event but may be censored by an indepen-
dent censoring variable. To be specific, we observe(Ỹ,1) whereỸ = Y ∧ C, 1 = I (Y < C), C is the
censoring time, andI (∙) is the indicator function. A most commonly used summary measure for quan-
tifying the treatment difference in survival analysis is the ratio of two hazard functions. The two sample
Cox estimator is often used to estimate such a ratio. However, when the proportional hazards assumption
between two groups is not valid, this estimator converges to a parameter which may be difficult to interpret
as a measure of the treatment difference. Moreover, this parameter depends on the censoring distribution.
Therefore, it is desirable to use a model-free summary measure for the treatment contrast. One may simply
use the survival probability at a given timet0 as a model-free summary for survivorship. For this case,
θ0 = P(Y > t0|T = 1) − P(Y > t0|T = 0) andθ̂ = Ŝ1(t0) − Ŝ0(t0), whereŜj (∙) is the Kaplan–Meier
estimator of the survival function ofY in group j, j = 0, 1. For this case,

θ̂ − θ0 = −n−1
n∑

i =1

[
Ti

π

∫ t0

0

Ŝ1(t0)dM̂i 1(s)
∑N

j =1 I (Ỹj > s)Tj
−

1 − Ti

1 − π

∫ t0

0

Ŝ0(t0)dM̂i 0(s)
∑N

j =1 I (Ỹj > s)(1 − Tj )

]

+ op

(
1

√
n

)
,

where

M̂i j (s) = I (Ti = j )

[
I (Ỹi 6 s)1i −

∫ s

0
I (Ỹi > u)d3̂ j (u)

]
,

and3̂ j (∙) is the Nelson–Alan estimator for the cumulative hazard function ofY in group j (Flemming
and Harrington, 1991).

To summarize a global survivorship beyond usingt-year survival rates, one may use the mean survival
time. Unfortunately, in the presence of censoring, such a measure cannot be estimated well. An alternative
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is to use the so-called restricted mean survival time, that is, the area under the survival function up to time
point t0. The corresponding consistent estimator is the area under the Kaplan–Meier curve. For this case,
θ0 = E(Y ∧ t0|T = 1) − E(Y ∧ t0|T = 0) and

θ̂ =
∫ t0

0
Ŝ1(s)ds −

∫ t0

0
Ŝ0(s)ds,

For this case,

θ̂ − θ0 = n−1
n∑

i =1

[

−
Ti

π

∫ t0

0

{ ∫ t0
s Ŝ1(t)dt

∑N
j =1 I (Ỹj > s)Tj

}

dM̂i 1(s)

+
1 − Ti

1 − π

∫ t0

0

{ ∫ t0
s Ŝ0(t)dt

∑N
j =1 I (Ỹj > s)(1 − Tj )

}

dM̂i 0(s)

]

+ op(
1

√
n
).

4. A SIMULATION STUDY

We conducted an extensive simulation study to examine the finite sample performance of the new esti-
matesθ̂cv(λ) and θ̂opt for θ0. First, we investigate whether̂Vcv(λ) estimates the true variance ofθ̂cv(λ)
well under various practical settings. We also examine the finite sample properties for the interval estima-
tion procedure based on the optimalθ̂opt. To this end, we consider the following models for generating the
underlying data:

1. the linear regression model with continuous response

Y = mT (Z) + N(0, 1);

2. the logistic regression model with binary response

P(Y = 1|T, Z) = [1 + exp{−mT (Z)}]−1;

3. the Cox regression model with survival response

Y = ε0 exp{mT (Z)} ,

whereε0 and censoring time are generated from the unit exponential distribution andU (0, 3),
respectively, and we are interested in survival curves over the time interval [0, t0] = [0, 2.5].

Throughout we letn = 200 and generate(Z[1], . . . , Z[100])
′ from multivariate normal distribution with

mean 0, variance 1, and a compound symmetry covariance℘ chosen to be either 0 or 0.5. For each
generated data set, the 20-fold cross validation is used to calculateθ̂cv(λ) andV̂cv(λ) over a sequence of
tuning parameters{λ1, λ2, . . . , λ100}, whereλ1 is chosen such that̂γ (λ1) = 0 for all simulated data sets,
λk = 10−3/98λk−1 for k = 2, . . . , 99 andλ100 = 0. In the first set of simulation, we set

m0(Z) =
20∑

j =1

j

20
Z[ j ], m1(Z) = 1 +

20∑

j =1

j

20
Z[ j ] .



262 L. TIAN AND OTHERS

Fig. 1. Comparing various estimates forθ̂cv(λ) at {λ1, . . . , λ100}: the empirical variance of̂θcv(λ) (black curve);

V̂cv(λ) (dashed curve);̂Vlasso(λ) (grey curve); (a–c) for independent coviariate; (d–f) for dependent covariate.

All the results are summarized based on 5000 replications. In Figure1, we present the average ofV̂cv(λ),
the average of̂Vlasso(λ), and the empirical variance ofθ̂cv(λ) when℘ = 0 for continuous, binary, and sur-
vival responses, respectively. The results suggest thatV̂cv(λ) approximates the true variance ofθ̂cv(λ) very
well; while V̂lasso(λ) obtained without cross validation tends to severely underestimate the true variance.
When the covariates are correlated with℘ = 0.5, the corresponding results are presented in Figure1. The
results are consistent with the case with℘ = 0.

Next, we examine the performance of the optimal estimatorθ̂opt = θ̂cv(λ̂), whereλ̂ is chosen to be
the minimizer ofV̂cv(λ), λ ∈ {λ1, . . . , λ100}. For each simulated data set, we construct a 95% confidence
intervals (CI) based on̂θopt andV̂opt = V̂cv(λ̂). We summarized results from the 5000 replications based on
the empirical bias, standard error, and coverage level and length of the constructed CIs. For comparisons,
we also obtain those values based on the simple estimatorθ̂ , θ̂ZTD, andθ̂cv(λ0) along with their variance
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Table 1. The empirical bias, standard error, and coverage levels and lengths for the 0.95 CI based onθ̂ ,
θ̂opt, θ̂cv(λ0), andθ̂ZTD

Response Estimator Independent covariates Correlated covariates

mT (Z) =
∑20

j =1 j Z[ j ]/20+ T

BIAS ESE EAL(10−3) ECL (%) BIAS ESE EAL(10−3) ECL (%)

Continuous θ̂ 0.007 0.403 1.580 (1.1†) 94.9 −0.005 1.100 4.264 (3.0) 94.4
θ̂opt 0.002 0.169 0.648 (0.6) 94.2 0.001 0.166 0.743 (1.9) 97.0
θ̂cv(λ0) 0.002 0.167 0.652 (0.6) 94.7 0.001 0.163 0.749 (1.9) 97.3
θ̂ZTD 0.003 0.204 0.622 (0.6) 87.2 −0.001 0.359 0.749 (1.8) 72.6

Binary θ̂ 0.009 0.291 1.136 (0.2) 95.1 0.004 0.271 1.047 (0.3) 94.6
θ̂opt 0.003 0.245 0.946 (0.7) 94.6 0.004 0.191 0.745 (0.5) 95.2
θ̂cv(λ0) 0.003 0.243 0.953 (0.7) 94.9 0.003 0.189 0.747 (0.5) 95.5
θ̂ZTD −0.011 0.259 0.822 (0.7) 88.9 −0.005 0.201 0.508 (0.7) 78.9

Survival θ̂ 0.003 0.164 0.626 (0.2) 94.1 0.005 0.173 0.665 (0.1) 94.5
θ̂opt 0.001 0.127 0.476 (0.4) 93.7 0.005 0.112 0.426 (0.3) 93.9
θ̂cv(λ0) 0.001 0.127 0.479 (0.4) 94.0 0.005 0.111 0.427 (0.3) 94.2
θ̂ZTD 0.004 0.141 0.457 (0.4) 89.5 0.005 0.122 0.401 (0.3) 89.8

mT (Z) = (T + 1)
∑20

j =1{(−1)T (Z2
[ j ] − 1)/2 + j Z[ j ]/20} + 2T

Continuous θ̂ 0.019 0.876 3.476 (2.6) 94.9 0.009 1.502 5.499 (4.4) 93.0
θ̂opt 0.002 0.533 2.084 (2.0) 94.4 −0.038 1.188 4.618 (8.4) 93.9
θ̂cv(λ0) 0.016 0.530 2.097 (2.0) 94.8 0.069 1.191 4.685 (8.7) 94.5
θ̂ZTD −0.159 0.583 2.068 (2.2) 91.1 0.390 1.305 4.193 (7.1) 88.9

Binary θ̂ 0.023 0.288 1.130 (0.2) 94.3 −0.001 0.290 1.140 (0.3) 95.4
θ̂opt 0.017 0.242 0.935 (0.7) 94.7 −0.003 0.188 0.753 (0.6) 95.4
θ̂cv(λ0) 0.021 0.240 0.941 (0.7) 95.0% 0.002 0.187 0.757 (0.6) 95.7
θ̂ZTD −0.023 0.265 0.855 (0.8) 88.8 −0.006 0.201 0.546 (0.7) 82.8

Survival θ̂ −0.003 0.173 0.659 (0.1) 93.7 0.010 0.173 0.663 (0.1) 94.6
θ̂opt −0.005 0.141 0.531 (0.4) 93.6 0.005 0.114 0.431 (0.3) 94.4
θ̂cv(λ0) −0.002 0.140 0.534 (0.4) 93.8 0.007 0.114 0.433 (0.3) 94.6
θ̂ZTD −0.023 0.157 0.515 (0.4) 89.4 0.014 0.120 0.411 (0.3) 91.4

BIAS, empirical bias; ESE, empirical standard error of the estimator; EAL, empirical average length; and ECL: empirical coverage
level.
†The Monte Carlo standard error in estimating the average length.

estimators, whereλ0 is the minimizer of the empirical variance ofθ̂cv(λ0). In all the numerical studies,
the forward subset selection procedure coupled with BIC is used to select variables for the efficiency
augmentation in the ZTD procedure. The results are summarized in Table1. The coverage levels for̂θopt
are close to the nominal counterparts and the interval lengths are almost identical to those based on the
estimate with the true optimalλ0. On the other hand, the simple estimateθ̂ tends to have substantially
wider interval estimates than̂θopt, θ̂cv(λ0), and θ̂ZTD. The empirical standard error of̂θZTD is slightly
greater than that of̂θopt or θ̂cv(λ0), which implies the advantages of lasso procedure. More importantly,
the naive variance estimator ofθ̂ZTD may severely underestimate the true variance and thus results in
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much more liberal confidence interval estimation procedure, which potentially can be corrected via cross
validation. In summary, for all cases studied, the augmented estimators can substantially improve the
efficiency of θ̂ in terms of narrowing the average length of the confidence interval ofθ0 and θ̂opt-based
inference is more reliable than that based onθ̂ZTD. Furthermore, in the variance estimation forθ̂opt =
θ̂cv(λ̂), the variability inλ̂ may cause slightly downward bias, which is almost negligible in our empirical
studies. Last, all estimators considered here are almost unbiased in the first set of simulation.

For the second set of simulation, we repeat the above numerical study with

m0(Z) =
20∑

j =1

{
(Z2

[ j ] − 1) +
j

10
Z[ j ]

}

and

m1(Z) =
20∑

j =1

{
−(Z2

[ j ] − 1) +
j

10
Z[ j ]

}
+ 2.

We augment the simple estimator byZ = (Z[1], . . . , Z[40], Z2
[1], . . . , Z2

[40])
′. The corresponding results

are reported in Figure2(a–f) and Table1. The results are similar to those from the first set of simulation
study except that for the continuous outcome, the empirical bias ofθ̂ZTD is not trivial relative to the cor-
responding standard error. On the other hand, the estimateθ̂opt is almost unbiased for all cases as ensured
by the cross validation procedure. Note that without knowing the practical meanings of the response, the
absolute magnitude of the bias alone is difficult to interpret and a seemingly substantial bias relative to
the standard error may still be irrelevant in practice. However, the presence of such a bias still poses a
risk in making statistical inference on marginal treatment effect. In further simulations (not reported), we
have found that the bias cannot be completely eliminated by increasing sample size or including quadratic
transformation inZ. Last, we would like to pointed out the presence of bias is a uncommon finite sample
phenomenon and does not undermine the asymptotical validity of ZTD and similar procedures. For exam-
ple, under the aforementioned setup if we reduce the dimension ofZ to 10 and increase the sample size to
500, then the bias becomes essentially 0.

For the third set of simulation, we examine the potential efficiency loss due to not including important
nonlinear transformations of baseline covariates in the efficiency augmentation. To this end, we simulate
continuous, binary and survival outcomes as in the previous stimulation study with

m0(Z) =
20∑

j =1

{
Z2

[ j ] − 1

2
+

j

20
Z[ j ]

}

and

m1(Z) =
20∑

j =1

{
−(Z2

[ j ] − 1) +
j

10
Z[ j ]

}
+ 2.

We augment the efficiency of the initial estimator first byZ1 = (Z[1], . . . , Z[100])
′ and second byZ2 =

(Z[1], . . . , Z[100], Z2
[1], . . . , Z2

[20])
′. In Table2, we present the empirical bias and standard error ofθ̂opt

based on 5000 replications. As expected, the empirical performance of the estimator augmented byZ2 is
superior to that of its counterpart usingZ1. The gains in efficiency for binary and survival outcomes are
less significant than that for continuous outcome, which is likely due to the fact that the influence function
of θ̂ is neither a linear nor a quadratic function ofZ[ j ], j = 1, . . . , 100 in the binary or survival setting.

In the fourth set of simulation, we examine the “null model” setting in which none of the covariates
are related to the response. To this end, we generate continuous responsesY from the normal distribution
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Fig. 2. Comparing various estimates forθ̂cv(λ) at {λ1, . . . , λ100}: the empirical variance of̂θcv(λ) (black curve);

V̂cv(λ) (dashed curve);̂Vlasso(λ) (grey curve) ; (a–c) for independent coviariate; (d–f) for dependent covariate.

Table 2. The empirical bias and standard error ofθ̂opt augmented byZ1 andZ2

Response Augmentation vector Independent covariates Correlated covariates

BIAS ESE BIAS ESE

Continuous Z1 −0.024 0.770 −0.085 1.831
Z2 −0.020 0.745 −0.035 1.492

Binary Z1 −0.001 0.261 −0.004 0.239
Z2 0.001 0.258 −0.002 0.226

Survival Z1 0.037 0.156 0.004 0.133
Z2 0.037 0.154 0.003 0.124

BIAS, empirical bias; ESE, empirical standard error.
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Fig. 3. Empirical variance of̂θopt (wiggly solid curve) and its variance estimator (dashed curve) in the presence of
high-dimensional noise covariates. The horizontal solid curve presents the optimal variance level.

N(0, 1) for T = 0 and N(1, 1) for T = 1. The covariateZ is from a standard multivariate normal
distribution generated independent ofY. For each generated data set, we obtain the optimal estimatorθ̂opt
and its variance estimator as in the previous simulation study. Based on 3000 replications, we estimate the
empirical variance of̂θopt and the average of the variance estimator for given combination ofn and p. To
examine the effect of “overadjustment”, we letp = 0, 20, 40, . . . , 780 and 800 while fixing the sample
sizen at 200. In Figure3, we present the empirical average forV̂cv(λ̂) (dashed curve) and the empirical
variance ofθ̂opt (solid curve). The optimal estimator is the naive estimatorθ̂ without any covariate-based
augmentation in this case. The figure demonstrates that the variance ofθ̂opt increases very slowly with
the dimensionp and is still near the optimal level even with 800 noise covariates. The variance estimator
slightly underestimates the true variance and the downward bias increases with the dimensionp, which
could be attributable to the fact that we useV̂cv(λ̂) = minλ{V̂cv(λ)} as the variance estimator without any
adjustments. On the other hand, the bias remains rather low (<6% of the empirical variance) such that the
valid inference onθ0 can still be made over the entire range ofp. In Figure3, we represent the similar
results with noise covariates generated from dependent multivariate normal distribution as in the previous
simulation studies.

5. AN EXAMPLE

We illustrate the new proposal with the data from a clinical trial to compareD-penicillmain and placebo
for patients with primary biliary cirrhosis (PBC) of liver (Therneau and Grambsch, 2000). The primary
endpoint is the time to death. The trial was conducted between 1974 and 1984. For illustration, we use
the difference of two restricted mean survival time up tot0 = 3650 (days) as the primary parameterθ0
of interest. Moreover, we consider 18 baseline covariates for augmentation: gender, stages (1, 2, 3, and
4), presence of ascites, edema, hepatomegaly or enlarged liver, blood vessel malformations in the skin,
log-transformed age, serum albumin, alkaline phosphotase, aspartate aminotransferase, serum bilirubin,
serum cholesterol, urine copper, platelet count, standardized blood clotting time, and triglycerides. There



On the covariate-adjusted estimation for the treatment difference 267

Fig. 4. Analysis results for PBC data.

are 276 patients with complete covariate information (136 and 140 in control andD-penicillmain arms,
respectively). The data used in our analysis are given in the Appendix D.1 ofFlemming and Harrington
(1991). Figure4 provides the Kaplan–Meier curves for the two treatment groups. The simple two sample
estimateθ̂ is 115.2 (days) with an estimated standard errorV̂ of 156.6 (days). The corresponding 95%
confidence interval for the difference is (−191.8, 422.1) (days). The optimal estimateθ̂opt augmented
additively with the above 18 coavariates is 106.3 with an estimated standard errorV̂opt of 121.4. These
estimates were obtained via a 23-fold cross validation (note that 276= 23× 12) described in Section2.
The corresponding 95% CI is (−131.8, 344.4). To examine the effect ofK on the result, we repeated
the analysis with 92-fold cross validation (n = 276 = 92× 3) and the optimal estimator barely changes
(108.3 with a 95% CI of (−128.5, 345.1)). In our limited experience, the estimation result is not sensitive
to K > max(20, n1/2).

To examine how robust the new proposal is with respect to different augmentations. We consider a
case which includes the above 18 covariates but also their quadratic terms as well as all their two-way
interactions. The dimension ofZ is 178 for this case. The resulting optimalθ̂opt is 110.1 with an estimated
standard error of 122.6. Note the resulting estimates are amazingly close to those based on the augmented
procedure with 18 covariates only.

To examine the advantage of using the cross validation for the standard error estimation, in Figure4,
we plot V̂cv(λ) and V̂lasso(λ) over the order of 100λ’s, which were generated using the same approach
as in Section4. Note thatV̂lasso(λ) is substantially smaller than̂Vcv(λ), especially whenλ approaches to
0, that is, there is no penalty for theL2 loss function. For̂θopt, V̂lassois about 20% smaller than its cross
validated counterpart.

It has been shown via numerical studies that the ZTD performs well via the standard stepwise re-
gression by ignoring the sampling variation of the estimated weights when the dimension ofZ is not
large with respect ton. However, it is not clear how the ZTD augmentation performs with a relatively
high-dimensional covariate vectorZ. It would be interesting to compare the ZTD and the new proposal
with the PBC data. To this end, we implement ZTD augmentation procedure using (1) baseline covari-
ates(p = 18); (2) baseline covariates and their quadratic transformations as well as all their two-way
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Table 3. Comparisons between the new and ZTD estimate with the data from the Mayo Clinic PBC clinical
trial (SE: estimated standard error)

p The new optimal procedure ZTD

Estimate SE Estimate SE

5 92.0 121.5 96.3 119.4
18 106.3 121.4 126.4 111.7
178 110.1 122.6 65.3 114.6

BIAS, empirical bias; ESE, empirical standard error.

interactions(p = 178); and (3) only five baseline covariates: edema and log-transformed age, serum
albumin, serum bilirubin, and standardized blood clotting time, which were selected in building a mul-
tivariate Cox regression model to predict the patient’s survival byTherneau and Grambsch(2000). Note
that the ZTD procedure augments the following estimating equations forθ0:

n∑

i =1

(1 − Ti )1̃i

K̂0(Ỹi ∧ t0)
[Ỹi ∧ t0 − at0] = 0,

n∑

i =1

Ti 1̃i

K̂1(Ỹi ∧ t0)
[Ỹi ∧ t0 − at0 − θ ] = 0,

whereat0 is the restricted mean for the comparator andθ is the treatment difference,1̃i = I (Yi ∧t0 < Ci ),
andK̂ j (∙) is the Kaplan–Meier estimate for the survival function of censoring timeC in groupT = j, j =
0, 1. In Table3, we present the resulting ZDT point estimates and their corresponding standard error
estimates for the above three cases. Here, we used the standard forward stepwise regression procedure to
select the augmentation covariates with the entry Type I error rate of 0.10 (Zhangand others, 2008; Zhang
and Gilbert, 2010). It appears that using the entire data set for selecting covariates and making inferences
aboutθ0 may introduce nontrivial bias and an overly optimistic standard error estimate whenp is large.
On the other hand, the new procedure does not lose efficiency and yields similar result as ZTD procedure
when p is small.

6. REMARKS

The new proposal performs well even when the dimension of the covariates involved for augmentation is
not large. The new estimation procedure may be implemented for improving estimation precision regard-
less of the marginal distributions of the covariate vectors between two treatment groups being balanced.
On the other hand, to avoid post ad hoc analysis, we strongly recommend that the investigators prespecify
the set of all potential covariates for adjustment in the protocol or the statistical analysis plan before the
data from the clinical study are unblinded.

The stratified estimation procedure for the treatment difference is also commonly used for improving
the estimation precision using baseline covariate information. Specifically, we divide the population into
K strata based on baseline variables, denoted by{Z ∈ B1}, . . . , {Z ∈ BK }, the stratified estimator is

θ̂str =

∑K
k=1 θ̂kwk
∑K

k=1 wk
,
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where θ̂k andwk are corresponding simple two sample estimator for the treatment difference and the
weight for thekth stratum,k = 1, . . . , K . In general, the underlying treatment effect may vary across
strata and consequently the stratified estimator may not converge toθ0. If θ0 is the mean difference
between two groups andwk is the size of thekth stratum,θ̂str is a consistent estimator forθ0. Like the
ANCOVA, the stratified estimation procedure may be problematic. On the other hand, one may use the in-
dicators{I (Z ∈ B1), . . . , I (Z ∈ BK )}′ to augment̂θ to increase the precision for estimating the treatment
differenceθ0.

In this paper, we follow the novel approach taken, for example, byZhangand others(2008) for
augmenting the simple two sample estimator but present a systematic practical procedure for choosing
covariates for making valid inferences about the overall treatment difference. Whenp is large, there are
several advantages over other approaches for augmentingθ̂ with covariates. First, it avoids the complex
variable selection step in two arms separately as proposed inZhangand others(2008). Second, compared
with other variable selection methods such as the stepwise regression, the lasso method directly controls
the variability of γ̂ , which improves the empirical performance of the augmented estimator. Third, the
cross validation step enables more accurate estimation of the variance of the augmented estimator. When
λ increases from 0 to+∞, the resulting estimator varies from the fully augmented estimator using all
the components ofZ i to θ̂ . The lasso procedure also possesses superior computational efficiency with
high-dimensional covariates to alternatives. Last, sinceθ̂ZTD can also be viewed as a generalized method
of moment estimator with

(
θ − θ̂0

n−1∑n
i =1 ξi

)
≈ 0

as moment conditions (Hall, 2005), the cross validation method introduced here may be extended to a
much broader context than the current setting.

It is important to note that if a permuted block treatment allocation rule is used for assigning patients
to the two treatment groups, the augmentation method proposed in the paper can be easily modified. For
instance, for theK -fold cross validation process, one may choose the sets{Dk, k = 1, . . . , K } so that
each permuted block would not be in different sets.

For assigning patients to the treatment groups, a stratified random treatment allocation rule is also
often utilized to ensure a certain level of balance between the two groups in each stratum. For this case,
a weighted averageθ0 of the treatment differencesθk0 with weight wk, k = 1, . . . , K , acrossK strata
may be the parameter of interest for quantifying an overall treatment contrast. Letθ̂k be the simple two
sample estimator forθk0 andŵk be the corresponding empirical weight forwk. Then the weight average
θ̂ =

∑
k ŵkθ̂k/

∑
k ŵk is the simple estimator forθ0. For thekth stratum, one may use the same approach

as discussed in this paper to augmentθ̂k, let the resulting optimal estimator be denoted byθ̂opt,k. Then
we can use the weighted average

∑
k ŵkθ̂opt,k/

∑
k ŵk to estimateθ0. On the other hand, for the case

with the dynamic treatment allocation rules (see, e.g.,Pocock and Simon, 1975), it is not clear how to
obtain a valid variance estimate even for the simple two sample estimatorθ̂ (Shaoand others, 2010). How
to extend the augmentation procedure to cases with more complicated treatment allocation rule warrants
further research.

APPENDIX A

Asymptotical equivalence between ZTD and ANCOVA

When the group mean is the parameter of interest, the naive estimator forθ0 can viewed as the root of the
estimating equation
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n∑

i =1

(
Ti

1 − Ti

)
S0(θ, a, Yi , Ti ) =

n∑

i =1

(
Ti

1 − Ti

)
(Yi − a − Ti θ) = 0,

wherea = E(Y|T = 0) is a nuisance parameter. In the ZTD augmentation procedure, one may augment
this simple estimating equation via following steps:

• Obtain the initial estimator
(

θ̂
â

)
=

1

n

n∑

i =1

( (Ti −π)Yi
π(1−π)

(1−Ti )Yi
1−π

)

from the original estimating equation

• Obtainβ̂1 andβ̂ ′
0 by minimizing the objective function

n∑

i =1

Ti {S0(θ̂ , â, Yi , Ti ) − β ′
1Z i }

2

and
n∑

i =1

(1 − Ti ){S0(θ̂ , â, Yi , Ti ) − β ′
0Z i }

2,

respectively. In other words, usinĝβ ′
j Z to approximateE{S0(θ0, a0; Y, T)|Z, T = j }.

• Solve the augmented estimating equations

n∑

i =1

(
Ti

1 − Ti

)
S0(θ, a, Yi , Ti ) −

n∑

i =1

(Ti − π)

(
β̂ ′

1Zi

−β̂ ′
0Zi

)
= 0

to obtainθ̂ZTD.

The resultingθ̂ZTD is always asymptotically more efficient than the naive counterpart and a simple sand-
wich variance estimator can be used to consistently estimate the variance of the new estimator. It has been
shown thatθ̂ZTD is asymptotically the most efficient one from the class of the estimators

A =

{

θ̂γ = θ̂ − γ ′

{

n−1
n∑

i =1

(Ti − π)Z i

π(1 − π)

} ∣
∣
∣
∣ γ ∈ Rp

}

,

whose members are all consistent forθ0 and asymptotically normal. Whenπ = 0.5

θ̂ − θ0 =
1

n

n∑

i =1

{2(2Ti − 1)Yi − θ0} ,

the optimal weight minimizing the variance of

θ̂ − γ ′ 1

n

n∑

i =1

2(2Ti − 1)Z i

is simply

[E{2(2Ti − 1)Zi }
⊗2]−1E[2(2Ti − 1)Z i {2(2Ti − 1)Yi − θ0}] = [E(Z⊗2

i )]−1E(Z i Yi ) = γ0.

Therefore,̂θZTD is asymptotically equivalent to the commonly used ANCOVA estimator. This equivalence
is noted inTsiatisand others(2008).
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APPENDIX B

Justification of the cross validation based variance estimator forθ̂cv(λ)

To justify the cross validation based variance estimator, first consider the expansion

θ̂cv(λ) =

{

θ̂ − γ ′
0

(

n−1
n∑

i =1

ξi

)}

− n−1
n∑

i =1

{γ̂(−i )(λ) − γ0}
′ξi .

The variance of̂θcv(λ) can be expressed asV11 + V22 − 2V12, where

V11 = E

{

θ̂ − γ ′
0

(

n−1
n∑

i =1

ξi

)}2

,

V22 =
1

n2
E

[
n∑

i =1

{γ̂(−i )(λ) − γ0}
′ξi

]2

,

and

V12 =
1

n
E

[{

θ̂ − γ ′
0

(

n−1
n∑

i =1

ξi

)}
n∑

i =1

{γ̂(−i )(λ) − γ0}
′ξi

]

.

First,

V12 =
1

n2
E

[
n∑

i =1

(τi (η̂) − γ ′
0ξi )

n∑

i =1

{γ̂(−i )(λ) − γ0}
′ξi

]

≈
1

n2

∑

i 6= j

E[(τi (η̂) − γ ′
0ξi ){γ̂(− j )(λ) − γ0}

′]Eξ j +
1

n2

n∑

i =1

E[(τi (η̂) − γ ′
0ξi ){γ̂(−i )(λ) − γ0}

′ξi ]

≈
1

n2

n∑

i =1

E{γ̂(−i )(λ) − γ0}
′E[(τi (η̂) − γ ′

0ξi )ξi ] ≈ 0.

Therefore, the variance of the augmented estimatorθ̂cv(λ) is approximately

V11 + V22

=
1

n
[E{(τi (η̂) − γ ′

0ξi )
2} + E{(γ̂(−i )(λ) − γ0)

′ξi }
2] +

(n − 1)

n
E[ξ ′

1{γ̂(−1)(λ) − γ0}ξ
′
2{γ̂(−2)(λ) − γ0}]

≈V̂cv(λ) +
(n − 1)

n
E[ξ ′

1γ̂(−1)(λ)ξ ′
2γ̂(−2)(λ)].

In our experience,d(λ) = E[ξ ′
1γ̂(−1)(λ)ξ ′

2γ̂(−2)(λ)] = O(n−2) is very small compared witĥVcv(λ) =
O(n−1) and is negligible, whenλ is not close 0. Therefore, in general,V̂cv(λ) serves as a satisfactory
estimator for the variance of̂θcv(λ). For smallλ, to explicitly estimated(λ), the covariance between
ξ ′

1γ̂(−1)(λ) andξ ′
2γ̂(−2)(λ), one may use

d̂(λ) =
2(K 2 − 1)

n(n − 1)K

∑

16i < j6n

ξ ′
i

{
K − 1

K
γ̂(− j )(λ) − γ̂ (λ)

}
ξ ′

j

{
K − 1

K
γ̂(−i )(λ) − γ̂ (λ)

}
(6.1)

as an ad hoc jackknife-type estimator, whereγ̂ (λ) is the lasso solution based on the entire data set. To
justify the approximation, first note that whenλ is close to 0,
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γ̂ (λ) − γ0 ≈
n∑

i =1

ϒi and γ̂(−i )(λ) − γ0 ≈
K

K − 1

∑

i /∈Dki

ϒi ,

whereϒi is the mean zero influence function from thei th observation for̂γ (λ). Therefore,

d(λ) = E[ξ ′
1γ̂(−1)(λ)ξ ′

2γ̂(−2)(λ)] ≈
(

1 −
1

K 2

)
E[ξ ′

1ϒ2ξ
′
2ϒ1],

which can be approximated bŷd(λ) and one may usêVcv(λ) + (n − 1)d̂(λ)/n as the variance estimator
for the augmented estimator. Note that the difference betweenV̂cv and its modified version appears to be
negligible in all the numerical studies presented in the paper.
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