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SUMMARY

Accommodating general patterns of confounding in sample size/power calculations for observational stud-
ies is extremely challenging, both technically and scientifically. While employing previously implemented
sample size/power tools is appealing, they typically ignore important aspects of the design/data structure.
In this paper, we show that sample size/power calculations that ignore confounding can be much more
unreliable than is conventionally thought; using real data from the US state of North Carolina, naive
calculations yield sample size estimates that are half those obtained when confounding is appropriately
acknowledged. Unfortunately, eliciting realistic design parameters for confounding mechanisms is dif-
ficult. To overcome this, we propose a novel two-stage strategy for observational study design that can
accommodate arbitrary patterns of confounding. At the first stage, researchers establish bounds for power
that facilitate the decision of whether or not to initiate the study. At the second stage, internal pilot data
are used to estimate key scientific inputs that can be used to obtain realistic sample size/power. Our results
indicate that the strategy is effective at replicating gold standard calculations based on knowing the true
confounding mechanism. Finally, we show that consideration of the nature of confounding is a crucial as-
pect of the elicitation process; depending on whether the confounder is positively or negatively associated
with the exposure of interest and outcome, naive power calculations can either under or overestimate the
required sample size. Throughout, simulation is advocated as the only general means to obtain realistic
estimates of statistical power; we describe, and provide in an R package, a simple algorithm for estimating
power for a case–control study.
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1. INTRODUCTION

The design of observational studies is complex, typically requiring close collaboration between the bio-
statistician and other scientists to develop strategies to account for numerous potential challenges, including
accommodating missing and/or censored data, measurement error, and adjusting for correlation in re-
peated measures studies. One of the most important scientific challenges is the identification and control of
confounding. As such, when planning an observational study, researchers often spend a great deal of time
considering potential confounders, deciding which should be measured and planning analyses to ensure
appropriate adjustment. Together with substantive knowledge about the underlying mechanisms, causal
diagrams are a useful tool at this stage of the design process (Greenlandand others, 1999a; Pearl, 2000).

While there is a vast literature on the consequences of ignoring confounding when analyzing data
from observational studies, little research has been devoted to understanding the consequences of ignor-
ing, or not fully accommodating, confounding at the design stage. In this paper, we highlight and exam-
ine a number of important considerations for the design of an observational study. First, we show that
differences between estimates of power obtained by erroneously assuming some simplified model that
ignores confounding and those obtained assuming an appropriately adjusted model, referred to as “struc-
tural misspecification,” can be substantially greater than is conventionally thought. These differences can
have important implications for the potential success of the study and we argue that the use of formula-
based sample size/power calculations for observational studies may be unwise. Second, to overcome the
difficulty of eliciting realistic design parameters for the confounding mechanism, we propose a novel
two-stage strategy for observational study design that can accommodate arbitrary patterns of confound-
ing. The key feature of the strategy is that internal pilot data are used to estimate design parameters for the
confounding mechanism that are then used to obtain realistic estimates of sample size/power. Third, we
show that consideration of the nature of confounding is a crucial aspect of the elicitation process. Specif-
ically, depending on whether the confounder is positively or negatively associated with the exposure and
outcome, naive power calculations can either severely under- or overestimate the required sample size.

2. INFANT MORTALITY STUDY

The methods and ideas of this paper pertain to study design. To ground this work in a real-life example,
we use data compiled by the North Carolina State Center for Health Statistics (http://www.irss.unc.edu/)
and consider planning a hypothetical study of the impact of the race on infant mortality, adjusting for a
range of established potential confounders (e.g.Michielutteand others, 1994; Iyasu, 2002; Schempfand
others, 2007). For simplicity, we restrict attention to comparing births where the race of the baby was
indicated as either Caucasian or African-American.

2.1 Designing a case–control study

In the United States, infant mortality (defined as death within the first year of life) is rare, and we there-
fore consider the case–control design for our hypothetical study (Prentice and Pyke, 1979; Breslow and
Day, 1980). Let X be an indicator of race (0/1= Caucasian/African-American) andZ = {Z1, . . . , Zp} a
collection ofp potential confounders. Given data collected via the case–control design, valid and efficient
estimation of odds ratio parameters is achieved by fitting a logistic regression model of the form:

logit Pr(Y = 1| X, Z) = β0 + βx X +
p∑

j =1

βzj Z j . (2.1)

We refer to (2.1) as the “fully adjusted” model and emphasize that it is the model that is of scientific
interest. That is, it is assumed that all relevant confounders have been identifieda priori and model (2.1)
has been specified as the primary model of interest in the proposed study analysis plan.

http://www.irss.unc.edu/
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2.2 Sample size/power calculations

Once all relevant confounders have been identified and the analysis plan developed, the key statistical
task is to estimate sample size/power with respect to the parameter of interest:βx = log(θx), the log
odds ratio for the exposure. Ideally, this calculation explicitly accommodates all features of the proposed
design/analysis, although this can be extremely challenging for an observational study. From a technical
perspective, methods for sample size/power that simultaneously accommodate the various elements of the
analysis plan are typically unavailable and difficult to develop or implement. From a scientific perspective,
such methods require greater input from subject matter experts. For example, power calculations based
on model (2.1) require information on the joint exposure/confounder distribution, Pr(X, Z1, . . . , Zp), as
well as the confounder effects,{βz1, . . . , βzp}; Table SM-1 in the supplementary material (available at
Biostatisticsonline) document provides summary information on these design parameters forp = 6
confounders based on all 225 152 births and 1752 infant deaths in North Carolina in 2003–2004.

When designing an observational study, detailed prior information on Pr(X, Z1, . . . , Zp) and
{βz1, . . . , βzp} will typically not be readily available. Furthermore, elicitation of realistic values from
collaborators can be very difficult and employing some existing sample size/power tool is a convenient
alternative. For our hypothetical case–control study, one could base calculations on the following two-
sample formula:

n0 = n1 =
z1−α/2

√
2π(1 − π) + z1−γ

√
π1(1 − π1) + π0(1 − π0)

(π1 − π0)2
, (2.2)

wheren0 and n1 are the number of controls and cases, respectively,π0 = Pr(X = 1|Y = 0) is the
exposure prevalence in the noncase population,π1 = Pr(X = 1|Y = 1) = π0θx/{1 + π0[θx − 1]} is the
exposure prevalence in the case populationandπ = (π0 + π1)/2.

Use of expression (2.2) is appealing in that it is simple to implement and only requires specifica-
tion of two scientific quantities:π0 andθx. However, the analysis that underlies (2.2) ignores potential
confounding and, in particular, corresponds to following “unadjusted” logistic regression model:

logit Pr(Y = 1| X) = β0 + βx X. (2.3)

To calculate sample size corresponding to the adjusted analysis, one could apply a so-called variance
inflation factor.Hsiehand others(1998) showed that for linear and (prospective) logistic regression, one
can simply adjust the sample size by a function of the partial correlation coefficient forX given Z. As
a general technique, however, the approach is limited in that the specific form of the variance inflation
factor was derived under the assumption of multivariate normality for the joint distribution of [X, Z].
Furthermore, the factor does not accommodate the nature of the association between the confounders and
the outcome (i.e. the direction and magnitude of{βz1, . . . , βzp}) which, as we elaborate upon below, is
crucial for appropriate power calculation.

More generally, sample size/power formulae have been developed for a range of case–control settings
including matched designs, when there are 2 or 3 (categorical or normally distributed continuous) con-
founders and when effect modification is of interest (e.g.Foppa and Spiegelman, 1997; Edwardes, 2001;
Gauderman, 2002; Tostesonand others, 2003; Vaeth and Skovlund, 2004; Sinha and Mukerjee, 2006;
Demidenko, 2006, 2007; Novikov and others, 2009). However, to our knowledge, no formula-based sam-
ple size/power technique permits the complexity that is inherent in the fully adjusted analysis character-
ized by (2.1). This is particularly the case sinceZ is a mixture of discrete and continuous covariates,
with no prespecified distributional assumptions. As such, the adoption of any formula-based approach
will result in a discrepancy analogous to that between models (2.1) and (2.3). A key statistical concern
when performing sample size/power calculations, therefore, is the extent to which the discrepancy be-
tween the simplified (unadjusted) and proposed (fully adjusted) analyses impacts the sample size/power
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calculations and, consequently, the potential success of the study. In the next section, we examine this
discrepancy using the infant mortality data.

3. DISCREPANT POWER ESTIMATION

3.1 Structural misspecification

From the perspective of confounder adjustment, basing sample size/power calculations on (2.3) can be
viewed in terms of misspecification of the relationships that govern the extent, magnitude, and direction
of the impact of confounding. We refer to this phenomenon as structural misspecification.

Clearly, model (2.3) is the strongest form of structural misspecification for our case–control study;
all p = 6 confounders are completely ignored. To examine the impact of varying degrees of structural
misspecification, we also considered the following “partially adjusted” models:

logit Pr(Y = 1) = β0 + βx X + βz,5Z5, (3.4)

logit Pr(Y = 1) = β0 + βx X + βz,6Z6. (3.5)

Model (3.4) solely adjusts for the binary low birth weight covariate (LBW, defined as less than 2500 g)
and model (3.5) solely adjusts for the continuous gestational duration covariate.

3.2 Scientific inputs

In the supplementary material (available atBiostatisticsonline) document, we provide a simulation-based
algorithm for estimating power for a case–control study. As with all algorithms, a series of inputs are
required. Given a model specification (i.e. any of models (2.1), (2.3), (3.4), and (3.5)), these inputs in-
clude (i) the overall outcome prevalence,π̃y (ii) for any potential confounders included in the model,
the relationships governing confounding Pr(X, Z1, . . . , Zp) and{βz1, . . . , βzp}, and (iii) the anticipated
(clinically relevant) effect size,βx.

To retain focus on structural misspecification, with the exception ofβx, these inputs were set at the
“true” values observed in the complete data (see Table SM-1, supplementary material available atBio-
statisticsonline). For example, across all model/simulation settings, we tailor the value of the intercept
to a fixed outcome prevalence ofπ̃y = 1752/225 152≈ 0.0078. For the unadjusted model, we set the
exposure prevalence to be Pr(X = 1) = 0.236; for the two partially adjusted models, (3.4) and (3.5), we
generated simulated data sets based on the observed Pr(X, Z5) and Pr(X, Z6), respectively, and usinĝβz5

andβ̂z6 based on a fit of the full data. Power calculations based on the fully adjusted model also used the
observed structures in the complete data; hence, these power estimates are based on the “gold standard”
situation where everything is known about the joint distribution Pr(Y, X, Z1, . . . , Z6) except forβx.

Across all four models, we fixed the value ofθx = exp(βx) = 1.3. While the interpretation and nu-
merical values ofβx in each of the four models will generally differ, we emphasize that the goal of this
section is the investigation of the impact of structural misspecification of confounding on estimates of
power. That is we seek to understand how, beyond numerical differences in the parameters, misspec-
ification of the statistical model underlying the calculations can severely bias the sample size/power
estimates. This reflects the setting where researchers may plug in reasonable values for the target pa-
rameter (i.e.βx in model (2.1)) into an overly simplistic model. We return to the issue of interpretational
and numerical differences in theβx parameters and their implications for discrepant power estimates, in
Section5.
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Fig. 1. Estimated power curves for detectingθx = 1.3 under a balanced case–control study, as a function of the
case–control sample sizen = n0 + n1. Each curve corresponds to a model that forms the basis for the power calcu-
lation (Sections2.2and3.1). Estimates were obtained using the algorithm in the supplementary material (available at
Biostatisticsonline) with R = 10 000.

3.3 Discrepant estimates

Figure1 presents estimated power curves for detecting an odds ratio ofθx = 1.3 under a balanced case–
control study, as a function of the case–control sample sizen. There is a clear substantial discrepancy
in estimated power to detectθx = 1.3 between calculations based on the unadjusted and fully adjusted
models. We find that to have at least 80% power to detectθx = 1.3, power calculations based on the naive
unadjusted model would conclude that the study needs to enroll approximatelyn = 2500 individuals.
However, enrollingn = 2500 individuals would only provide an estimated 55% power, based on the
appropriate fully adjusted model. Furthermore, to ensure at least 80% power to detectθx = 1.3, the study
would need to enroll approximatelyn = 4750 individuals; almost twice the sample size indicated by the
calculations based on the unadjusted model. We note that, for these data, the variance inflation factor is
1.05; hence, applying the approach ofHsiehand others(1998), one erroneously concludes thatn = 2650
would be sufficient to ensure 80% power. The discrepancy is, in part, explained by the VIF being a poor
approximation, for these data at least, of the ratio of the variances of the MLEs for the adjusted analysis
and unadjusted analyses. Finally, the conclusions one would draw based on model (3.4) are similar to
those based on the unadjusted model, whereas those based on (3.5) are intermediary.

4. TWO-STAGE SAMPLE SIZE/POWER CALCULATIONS

Section3 showed that structural misspecification can have a substantial impact on sample size/power
calculations. In this particular setting, the substantial overestimation of power would have important im-
plications for the potential success of the study. Furthermore, the estimates based on the partially adjusted
models, models (3.4) and (3.5), indicate that the discrepancy in power is not simply a function of having to
estimate additional parameters. The nature of the confounder and its relationships with both the exposure
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of interest and the outcome play an important role. While results are specific to the infant mortality exam-
ple, it is reasonably representative of a typical observation study; 6 potential confounders are not unusual
(and may be low) and the confounders themselves are a mix of continuous and categorical, with varying
strengths of association between both the exposure and the outcome.

Based on these results, and our experience in other settings, we believe that the reliance on formula-
based approaches for sample size/power calculations in observational studies may be unwise and advocate
the use of simulation. For the case–control design, the algorithm outlined in the supplementary material
(available atBiostatisticsonline) is simple and easily implemented. However, the elicitation of required
scientific inputs, from subject matter collaborators or the scientific literature, presents a challenging prob-
lem. While the specification ofβx is required for all sample size/power calculations, the additional need
for realistic elicitation of the joint exposure/confounder distribution, Pr(X, Z1, . . . , Zp), and the direc-
tion/magnitudes of the confounder coefficients,{βz1, . . . , βzp}, renders the task all the more difficult. This
will be particularly so whenp is greater than 3 or 4, as might be expected in a typical observational study.

In some circumstances, researchers may have access to pilot data that can inform these inputs. Ideally,
the pilot data would consist of information on all important exposures/confounders and be specific to the
population under investigation. This will not always be the case though. Indeed, the present study may be
motivated by previous investigations not having been comprehensive in their adjustment of confounding
or having been conducted in different populations. Towards taking advantage of pilot data while resolving
this difficulty, we propose the following two-stage framework for simulation-based sample size/power
calculations in observational studies:

(I) During the design and proposal development phase, establish bounds for sample size/power across
a range of scenarios concerning confounding. These bounds are used to inform the potential success
of the study and, consequently, the decision of whether or not the study should funded.

(II) Assuming the study is initiated, as data collection proceeds, use accrued information as internal pilot
data to inform realistic estimates of Pr(X, Z1, . . . , Z6) and{βz1, . . . , βzp}. Use these estimates to
refine the power calculations.

4.1 Stage I: establish bounds for sample size/power

During the design and proposal development phase, sample size/power calculations are used to provide
evidence of the potential success of the study. Practically, this is often done by estimating power across a
range of potential sample sizes as well as varying scenarios for the effect size(s). As is clear from Section
3, obtaining realistic estimates of power for an observational study must account for the eventual need to
control for confounding. In the absence of comprehensive, realistic information on Pr(X, Z1, . . . , Z6) and
{βz1, . . . , βzp}, the only reasonable strategy is to examine a range of scenarios for potential confounding.
In essence, perform a sensitivity analysis to investigate the number of potential confounders as well as the
nature of the confounding (i.e. strength and/or direction).

Table 1 provides a illustrative sensitivity analysis for the infant mortality example. Specifically, it
presents estimated power to detectθx = 1.3 based on a case–control study withn0 = n1 = 1750.
Throughout we take the exposure prevalence to beE[X] = 0.2, approximately that observed for race
in the North Carolina data. Each row represents a scenario regarding the underlying structures that gov-
ern confounding and adjustment for{Z1, . . . , Zp}, for p = 1, . . . , 6. For each scenario, we examine the
cumulative impact of sequentially incorporating up top = 6 potential confounders;Z1, Z3, andZ5 are
continuous and distributed according to a Normal (0, 1);Z2, Z4, andZ6 are binary withE[Z j ] = 0.2. In
the supplementary material (available atBiostatisticsonline), we provide a simple approach to generat-
ing {X, Z1, . . . , Z6} with these features, based on an latent multivariate normal distribution. Finally, the
results of Table1 assume independence across theZ j .



280 S. HANEUSE AND OTHERS

Table 1. Initial estimated bounds for power to detect an odds ratio (OR) ofθx = 1.3, based on a case–
control design with n0 = n1 = 1750. The exposure of interest, X, is binary with E[X] = 0.2. Up
to 6 confounders are considered; zero confounders corresponds to an unadjusted analysis. Estimates
were obtained using the algorithm in the supplementary material (available at Biostatistics online) with

R = 10000

OR between OR between
Number of confounders,p

Scenario Z j andX, φxzj Z j andY, θzj 0 1 2 3 4 5 6
Constant strength

1. Weak 1.5 1.5 89 89 88 87 87 86 86
2. Moderate 2.0 2.0 89 86 86 82 81 77 76
3. Strong 2.5 2.5 89 84 83 76 73 63 59

Diminishing strength
4. Moderate 3.0→ 1.5 3.0→ 1.5 89 82 80 75 74 71 71
5. Strong 4.0→ 1.5 4.0→ 1.5 90 78 74 65 62 59 59

Scenarios 1–3 consider “constant” confounding in that each confounder has the same odds ratio re-
lationship with both the exposure, denotedφxzj , and the same relationship with the outcome, denoted
θzj . Note, for continuous confounders,φxzj is based on a unit change inZ j . The results indicate lower
estimates of power as one sequentially incorporates the 6 potential confounders, with the impact increas-
ing as the strength of confounding increases. For example, assuming moderate constant confounding
(φxzj = θzj = 2.0), basing calculations on a model that incorporates all 6 confounders, one would con-
clude that the design only has approximately 76% power to detectθx = 1.3. This is in contrast to the
estimated 89% power that one would conclude the study to have had the calculations been based on the
naive unadjusted model (see the first column of Table1 with p = 0).

While scenarios 1–3 may provide useful bounds, to assume that all 6 potential confounders have
equally strong relationships with both the exposure and outcome is realistic. It may therefore be of interest
to permit the strength of confounding to vary across theZ j . Scenarios 4 and 5 assume the associations
between{Z1, . . . , Z6} and both the exposure and outcome to diminish. For each row, the 6 confounders
are incorporated from the strongest to the weakest. Table1 indicates that, under two reasonable scenarios,
by incorporating all 6 confounders into the power analysis, we would conclude that a case–control design
with n0 = n1 = 1750 would have between 60% and 70% power to detectθx = 1.3.

In addition to examining sensitivity to the number of potential confounders, and their strength/direction,
it will typically be of interest to examine sensitivity to sample size,n. Figure2 presents estimated power
curves under four confounder scenarios. These include scenarios 2, 4, and 5 from Table1 and an additional
scenario that consists of 8 confounders; the first 6 have moderate constant strength ofφxzj = θzj = 2.0,
while the last two have weaker strength ofφxzj = θzj = 1.5. Based on these four scenarios, the study
would need to collect between 4000 and 6000 case–control samples to have at least 80% power to detect
θx = 1.3.

We emphasize that the results of Table1 and Figure2 are illustrative in that they present a limited
range of potential confounding scenarios; in practice, researchers will likely need to run a broader range.
For example, one could also investigate the consequences of modifying the marginal characteristics of
the confounders (i.e. the prevalence for binary confounders and/or the variance for the continuous con-
founders) or the consequences of introducing dependence between the confounders. We examined the
latter by repeating the simulation of Table1 assuming moderate (common) correlation in the latent mul-
tivariate normal distribution: corr(Z j , Zk) = 0.25. Although details are not presented, we found that, for
the scenarios we consider, there is generally a reduction in estimated power, although it typically did not
exceed more than 5%.



Sample size/power calculations for observational studies 281

Fig. 2. Estimated bounds for power to detectθx = 1.3, based on a case–control design, as a function of case–
control sample sizen for various scenarios for confounding. Estimates were obtained using the algorithm in the
supplementary material (available atBiostatisticsonline) with R = 10 000.

4.2 Stage II: internal pilot data

Within the proposed strategy, the purpose of Stage I is to inform the decision of whether or not to initiate
the study by establishing realistic bounds for sample size/power across a range of scenarios for potential
confounding. Assuming the study goes forward, data are collected as participants are enrolled and the
study progresses. Prior to the final analysis (where estimation and inference with respect to the exposure
of interest is performed), the accrued data can be viewed as “internal pilot data” that can then be used to
refine the calculations. Specifically, updated estimates of sample size/power can be obtained by using the
internal pilot data to inform steps (a) and (b) of the algorithm in the supplementary material (available at
Biostatisticsonline).

Suppose the internal pilot data consist of a case–control sample of sizem. Step (a) of the algorithm
requires constructing a (hypothetical) population of sizeN, with joint exposure/confounder distribution
Pr(X, Z1, . . . , Z6). However, under the traditional case–control design, one observes random samples
from the outcome-specific joint exposure/confounder distributions. We denote these asP̂r0(X, Z1, . . . , Z6)
andP̂r1(X, Z1, . . . , Z6) for the controls and cases, respectively. To generate a population of sizeN in step
(a) with Pr(X, Z1, . . . , Z6), we sample(1− π̃y)N individuals with replacement from̂Pr0(X, Z1, . . . , Z6)
andπ̃yN individuals with replacement from̂Pr1(X, Z1, . . . , Z6), whereπ̃y = Pr(Y = 1) is the overall
outcome prevalence. For step (b) of the algorithm, estimates of the confounder effects,{β̂z1, . . . , β̂z6}, are
obtained via a fit of the fully adjusted model (2.1) to the pilot case–control data. Recall, this model is the
one that would be specified in the study analysis plan and, hence, is the ideal model for power calculations.

We examined this strategy in the context of estimating power to detectθx = 1.3 in the infant mortality
example, under on a balanced case–control design. Figure3 presents estimated power curves, as a function
of n, for 4 independent realizations of the approach usingm = 250,m = 500, andm = 1000. That is,
each subfigure presents simulation-based estimates of power that one would have seen had the study been
initiated, data collection begun and estimates of Pr(X, Z1, . . . , Z6) and{βz1, . . . , βz6} obtained at each
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Fig. 3. Results from four independent realizations of stage II, with pilot data sample sizes ofm = 250,m = 500,
andm = 1000. In each subfigure, power curves based on complete data (CD) for the unadjusted and fully adjusted
models. Estimates were obtained using the algorithm in the supplementary material (available atBiostatisticsonline)
with R = 10 000.

of the three internal pilot sample sizes. Asm increases, we mimicked reality by adding to the previous
samples. So the pilot data withm = 500 consists of the originalm = 250 subsamples together with
an additional 250 subsamples. Throughout, we took controls and cases to be accrued in parallel (i.e.
m1 = m0 = m/2) and estimates of power were based on the fully adjusted model. For comparison, each
subfigure also shows the unadjusted and “fully adjusted” power curves from Figure1. The latter represents
the gold standard in that it is the power curve that uses estimates of Pr(X, Z1, . . . , Z6) and{βz1, . . . , βzp}
based on the complete data (i.e. all 223 400 births) and on the appropriate model (i.e. model (2.1)).

We find that for three of four realizations, power estimates based on internal pilot data with as little
asm = 250 are already close to those based on the complete data. In all cases, estimates based on the
pilot data are much closer to the gold standard than to the naive power curves that ignore confounding.
Finally, asm increases, the estimated power curves get closer to the gold standard. To further examine
the operating characteristics of the process, we ran a total of 1000 implementations of stage II for the
infant mortality data. For a balanced case–control design withn = 5000, the mean estimated power is
approximately 77%, 79%, and 81% based onm = 250, m = 500, andm = 1000, respectively (see
Figure SM-1 of the supplementary material, available atBiostatisticsonline). Even with relatively small
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m (5% or 10% ofn = 5000), calculations based on internal pilot data provide a much more realistic
assessment of power than naive calculations based on the unadjusted model. From Figure1, basing power
calculations on the unadjusted model would indicate approximately 98% power forn = 5000. Basing
power on the fully adjusted model and knowing the actual Pr(X, Z1, . . . , Z6) and{βz1, . . . , βz6} would
indicate 82% power. As one would expect, asm increases, the additional precision in characterizing the
underlying Pr(X, Z1, . . . , Z6) translates into increased precision for the estimation of power. Across the
1000 repetitions, the standard deviation of the estimated power is 8.1%, 6.0%, and 4.1% form = 250,
m = 500, andm = 1000, respectively.

4.3 Caveat regarding the specification ofβx

The key advantage of using the internal pilot data is that it provides direct comprehensive information on
key scientific quantities for the population of interest that can then be used in refined power calculations.
However, without modifications to the basic design, one cannot use the accrued stage II internal pilot data
to obtain an estimate ofβx for use in the refined calculations. By only conditioning onP̂r(X, Z1, . . . , Z6)
and{β̂z1, . . . , β̂z6}, the nominal type I error rate is maintained since no interim information regardingβx

is used for study progression. This is analogous to group sequential testing in which only estimates of
variability are used for maintaining study power but the probability of study discontinuation is zero at
all interim analyses (Lan and DeMets, 1983; Burington and Emerson, 2003). In contrast, by conditioning
on β̂x in stage II, the nominal type I error rate is not maintained and repeated inferential assessments
with respect toβx may lead to a situation where one samples to a foregone conclusion: one of statistical
significance (Berry, 1987). Group sequential methods provide a framework within which information
from β̂x may be used.

5. DISCREPANT TARGETS OF ESTIMATION/INFERENCE

Section4 outlines a strategy to overcome the challenging problem of specifying design parameters for
confounding when performing sample size/power calculations for an observational study. In addition to
Pr(X, Z1, . . . , Zp) and {βz1, . . . , βzp}, sample size/power calculations also require specification of the
effect sizeβx. However, as noted in Section3.2, the interpretation and numerical ofβx differs across
models. Such differences may have important implications for the elicitation process where researchers
often appeal to the pilot studies or the published literature to inform scientifically relevant effect sizes
and yet ignore discrepancies between the analyses that underlie such studies and those proposed in their
grant. To emphasize differences in parameter interpretation, we introduce more specific notation for the
unadjusted and fully adjusted models as follows:

logit Pr(Y = 1| X) = βm
0 + βm

x X, (5.6)

logit Pr(Y = 1| X, Z) = βc
0 + βc

x X +
6∑

j =1

βc
zj

Z j . (5.7)

The superscript “m” in model (5.6) highlights that the interpretation ofβm
x is marginalwith respect to ad-

justment forZ. In model (5.7), the superscript “c” highlights that the interpretation ofβc
x is “conditional”

on Z. Note this parameter corresponds toβx in model (2.1) and is therefore the parameter of primary
scientific interest for the hypothetical case–control study. Finally, for notational convenience, we letθm

x =
exp{βm

x } andθc
x = exp{βc

x} denote the marginal and conditional odds ratio parameters, respectively.
Assuming a (marginal) exposure prevalence of Pr(X = 1) = 0.2, basing calculations on the marginal

model (5.6), one would conclude thatn0 = n1 = 2500 provides approximately 78% power to detect
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θm
x = 1.3. We refer to this as the “apparent” power of the study in that it ignores the eventual need to adjust

for confounding. Beyond the consequences of structural misspecification, this naive power calculation also
ignores fundamental differences betweenθm

x andθc
x . Specifically, while interpretational differences are not

relevant for study design (since scientific interest solely lies in the model eventually fit as part of the final
study analyses), numerical differences betweenθm

x andθc
x will be relevant. In the next two sections, we

explore the relationship between the two parameters and the implications for sample size/power.

5.1 Relationship between marginal and conditional parameters

The notation of models (5.6) and (5.7) highlight thatθm
x andθc

x are fundamentally different parameters
with differing interpretations. The extent to which the parameters differ numerically depends on theZ–Y
andZ–X relationships. WhenZ is independent of the outcome (i.e.βc

z = 0), model (5.7) reduces to model
(5.6) andθm

x ≡ θc
x numerically; in this case,Z is not a confounder in the usual sense (e.g.Greenlandand

others, 2008). In the presence of confounding, however,θm
x andθc

x will differ. To see this, supposeX in
models (5.6) and (5.7) is binary. The marginal odds ratioθm

x is defined as

θm
x =

Pr(Y = 1| X = 1)/ Pr(Y = 0| X = 1)

Pr(Y = 1| X = 0)/ Pr(Y = 0| X = 0)
. (5.8)

Each of the probabilities in (5.8) can be written as

Pr(Y = y| X = x) =
∑

z

Pr(Y = y| X = x, Z = z) × Pr(Z = z| X = x). (5.9)

Inspection of expression (5.9) reveals that the values ofθm
x andθc

x are directly related via the Pr(Y =
y| X = x, Z = z) terms. Unfortunately, the exact nature of the relationship betweenθm

x and θc
x is

complex. For simplicity, we consider a single binaryZ and calculate the value ofθc
x for a givenθm

x using
expressions (5.8) and (5.9). The calculation requires specification of Pr(Y = y| X = x, Z = z) and
Pr(Z = z| X = x). The former is given by model (5.7); we parameterize the latter via two quantities:
(i) the probability of the confounder among the unexposed, Pr(Z = 1| X = 0), which we fix at 0.2,
and (ii) the odds ratio association betweenX andZ, denoted byφxz, which is permitted to vary between
0.33 and 3.00. We also variedθc

z between 0.33 and 3.00 and, for any given confounding scenario, set the
value ofβc

0 such that the (marginal) outcome prevalence was Pr(Y = 1) = 0.05 (see Section B of the
supplementary material, available atBiostatisticsonline).

The top half of Table2 provides the values ofθc
x that corresponds toθm

x = 1.3, under a range of
scenarios for potential confounding. As expected, ifθc

z = 1.0, thenθc
x = θm

x = 1.3. For the settings con-
sidered in Table2, the same occurs whenφxz = 1.0, although this is not generally the case. Specifically,
due to the nonlinearity of the logistic function, ifθc

z 6= 1.0, thenθm
x 6= θc

x even if φxz = 1.0 (andZ
is, therefore, not a confounder), a phenomenon referred to as “non-collapsibility” (Greenlandand others,
1999b; Janesand others, 2010). For a rare outcome, however, the strength of theZ–Y relationship needs
to be quite strong for meaningful differences betweenθm

x andθc
x , as evidenced by Table2. For common

outcomes, the strength of theZ–Y relationship does not have to be as strong for differences to manifest
(Schoenfeld and Borenstein, 2005).

Arguably, the impact of confounding is of most concern when the magnitude of the adjusted parameter
is smaller than that of the unadjusted parameter:θc

x < θm
x . From Table2, we see this occurs when the

directions of theZ–Y andZ–X associations are the same;Z is either positively or negatively associated
with bothY andX. For example, ifθc

z = φxz = 2.0, thenθc
x = 1.17 or ifθc

z = 0.33 andφxz = 0.50, then
θc

x = 1.22, both of which are less thanθm
x = 1.3. However, if the directions differ, then the numerical

value of the adjusted parameter is greater than that of the unadjusted parameter:θc
x > θm

x . For example,
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Table 2. Value of the conditional odds ratio,θc
x , (top half) and corresponding estimates of actual power

(bottom half), based on a case–control study with n0 = n1 = 1250, for an assumed marginal effect size of
θm

x = 1.3, under various scenarios for the strength of confounding. The (marginal) outcome and exposure
prevalences arePr(Y = 1) = 0.05 andPr(X = 1) = 0.2, respectively, and the (conditional) confounder

prevalence among the unexposed is fixed atPr(Z = 1|X = 0) = 0.2

Confounder/exposure odds ratio,φxz

Confounder effect,θc
z 0.33 0.50 0.67 1.00 1.50 2.00 3.00

Conditional odds ratio,θc
x

0.33 1.19 1.22 1.25 1.30 1.38 1.44 1.57
0.50 1.22 1.24 1.26 1.30 1.35 1.40 1.49
0.67 1.25 1.26 1.27 1.30 1.33 1.36 1.42
1.00 1.30 1.30 1.30 1.30 1.30 1.30 1.30
1.50 1.38 1.36 1.34 1.30 1.26 1.23 1.18
2.00 1.45 1.41 1.37 1.30 1.23 1.17 1.10
3.00 1.59 1.49 1.42 1.30 1.18 1.09 0.98

Estimated actual power
0.33 41 52 62 77 90 96 100
0.50 51 59 66 77 88 94 98
0.67 61 66 71 78 84 89 93
1.00 76 77 77 78 78 77 76
1.50 90 88 84 78 66 55 38
2.00 96 94 89 76 55 36 15
3.00 100 98 94 76 38 15 5

if θc
z = 2.00 (i.e. the confounder is positively associated with “risk” of outcome) andφxz = 0.33 (i.e.

confounder is negatively associated with the “risk” of exposure), thenθc
x = 1.45> θm

x = 1.3.

5.2 Implications for sample size/power calculations

While the results of Section3 show that structural misspecification of the model that underlies power
calculations can lead to erroneous estimates of power, numerical differences betweenθm

x andθc
x can also

have important ramifications for estimation of sample size/power. To see this, within the simple setting
of Section5.1, suppose thatθc

z = φxz = 2.0. As noted in Table2, for θm
x = 1.3, the true value ofθc

x
is 1.17. At the design stage, the ideal calculations would acknowledge the impact of confounding on the
numerical value of the target parameter. Based on (5.7), the lower half of Table2 indicates that a case–
control study withn0 = n1 = 1250 would only provide approximately 36% power to detectθc

x = 1.17.
We refer to this as the “actual” power of the study and contrast it with the estimated 78% apparent power
to detectθm

x = 1.3. If the confounding is somewhat weaker withθc
z = φxz = 1.5, then an appropriate

power calculation would indicate thatn0 = n1 = 1250 provides an estimated 66% actual power to detect
θc

x = 1.26.
As we have noted, for the simple setting of a single binary confounder, if the directions of theZ–Y

andZ–X relationships differ then,θc
x > θm

x . For example, supposeθc
z = 2.00 andφxz = 0.33. From the

upper half of Table2, the true value ofθc
x is 1.45. From the lower half, we find that the estimated actual

power to detectθc
x = 1.45 is 96%. This can also be contrasted with the estimated apparent power of 78%

to detectθm
x = 1.3. We therefore find that the actual power to detectθc

x maybe larger or smaller than the
apparent power to detectθm

x .
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5.3 Implications for elicitation

While the proposed two-stage strategy provides researchers with a framework for specifying realistic de-
sign parameters for the confounding mechanism, biostatisticians will still be required to specify numerical
values for the hypothesized effect size. Eliciting scientifically relevant effect sizes from collaborators can
be difficult and one must often appeal to the published literature or to external pilot data. In doing so,
it is important to understand the structure and setting of the studies that yielded this information and,
in particular, how they differ from the study currently being designed. For example, suppose the current
study is motivated by the desire to build on previous work in which the control of confounding was found
to be inadequate. Or, suppose the current study was preceded by a small pilot study that, due to financial
constraints, did not collect comprehensive confounder information. In either of these settings, the avail-
able information may suggest a value for the hypothesized effect size that more closely correspondsθm

x
thanθc

x . As we have shown, differences betweenθm
x andθc

x can have important implications for sample
size/power calculations, particularly since the conditional (adjusted) parameter may be smaller or larger
than the marginal (unadjusted) parameter, depending on the nature of the confounding.

6. DISCUSSION

Using a realistic hypothetical case–control study, we have shown that ignoring confounding when design-
ing an observational study can lead to substantial differences in estimates of sample size/power, which
may influence the decision to initiate the study and its potential success. At best, this may result in an in-
efficient use of resources if the study is ultimately overpowered; at worst, the study is underpowered and is
unable to discriminate between relevant scientific hypotheses. We have proposed a two-stage framework
that permits the use of internal pilot data to better inform realistic design parameters and, therefore, yield
realistic estimates of power and assessments of sample size. The structure of the two-stage framework
permits researchers to update estimates of Pr(X, Z1, . . . , Z6) and{βz1, . . . , βz6} as the study progresses.
Assuming inference with respect to the parameter of interest,βx, is not conducted, there is no penalty
paid for the repeated reassessment of Pr(X, Z1, . . . , Z6) and{βz1, . . . , βz6}. We are currently extending
the strategy to exploit group sequential methods for randomized clinical trials to permit interim analyses
with respect toβx.

Based on the results in this paper and our observations in other settings, we believe that, except in
trivial settings, the use of formula-based techniques for sample size/power calculations in observational
study design is unwise and we advocate simulation-based estimation of power. The use of simulation,
however, is subject to numerous challenges. Practically, there are technical challenges in that software
will typically have to be developed and tailored to specific settings and, depending on the desired level
of precision for the estimates, the calculations may require longer computing times. For the setting of a
case–control study, we have provided a simple algorithm for calculating power (as well as other operating
characteristics). The algorithm is implemented in the osDesign package for R (Haneuseand others, 2011).

Finally, we emphasize that a key strength of both simulation and the data-oriented two-stage strategy is
its flexibility beyond logistic regression analyses of case–control studies. Indeed, the methods presented
here could easily be applied to other common designs and analyses. The osDesign package, for exam-
ple, has an algorithm for the two-phase study design (Breslow and Chatterjee, 1999). Furthermore, the
methods can easily be expanded to accommodate common statistical challenges, such as missingness and
correlation, that often have a large impact on study power.

SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://biostatistics.oxfordjournals.org.

http://biostatistics.oxfordjournals.org
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