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SUMMARY
Randomized trials with dropouts or censored data and discrete time-to-event type outcomes are frequently
analyzed using the Kaplan—Meier or product limit (PL) estimation method. However, the PL method as-
sumes that the censoring mechanism is noninformative and when this assumption is violated, the infer-
ences may not be valid. We propose an expanded PL method using a Bayesian framework to incorporate
informative censoring mechanism and perform sensitivity analysis on estimates of the cumulative inci-
dence curves. The expanded method uses a model, which can be viewed as a pattern mixture model,
where odds for having an event during the follow-up interfial 1, tk], conditional on being at risk at
tk—1, differ across the patterns of missing data. The sensitivity parameters relate the odds of an event,
between subjects from a missing-data pattern with the observed subjects for each interval. The large
number of the sensitivity parameters is reduced by considering them as random and assumed to follow
a log-normal distribution with prespecified mean and variance. Then we vary the mean and variance to
explore sensitivity of inferences. The missing at random (MAR) mechanism is a special case of the ex-
panded model, thus allowing exploration of the sensitivity to inferences as departures from the inferences
under the MAR assumption. The proposed approach is applied to data from the TRial Of Preventing
HYpertension.

Keywords Clinical trials; Hypertension; Ignorability index; Missing data; Pattern-mixture model; TROPHY trial.

1. INTRODUCTION

Randomized control trials where the primary outcome is time-to-event are subject to censoring. Censoring
can occur due either to dropout or violations of the study protocol. The resulting censoring mechanism
could be considered noninformative if the time of censoring is independent of the time of event and
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informative otherwise. To analyze these data, where the censoring mechanism is potentially informative,
additional data or assumptions are required to make valid inferedbesd and Klein1995.

There are 3 general approaches for analyzing data with dropouts or cendRdtrgtzky and
others(2001), Scharfsteirand otherq2001), andScharfstein and Robi(2002 adopt a selection model
approach where an explicit censoring mechanism is formulated and related to the unobserved outcome.
On the other hand.ittle (1995, Little and Rubin(2002, and Birminghamand others(2003 used a
pattern-mixture (PM) approach where the distribution of the outcome across different patterns formed
by censoring times are related by some identifiability constrailitsand Carroll(1988 used a shared-
parameter model. This model uses common random effects to relate the response to the missing-data
indicator Guo and others2004). All 3 approaches involve untestable assumptions about the censoring
mechanism, therefore must be followed with sensitivity analydisi¢nberghs and Kenwar@007).

In a PM setting,Daniels and Hogaif2000 and Kenwardand others(2003 identified parameters
using constraintsRoy and Danielg§2008 use latent class PM models with Bayesian model averaging.
Previously, we developed a model for binary outcomes with missing Hatzrpti and others2009 and
used Bayesian estimation methods for sensitivity analysis. Here, we propose a Bayesian model using a
parameterization within the PM approach to analyze time-to-event data with informative censoring.

The product limit (PL) estimator is a general purpose nonparametric approach used to analyze data
from clinical trials with time-to-event outcomes and noninformative censoring. Using a Bayesian method-
ology, Susarla and Van Ryzi(1976 propose a Dirichlet process ahtjort (1990 propose a Beta pro-
cess for analyzing time-to-event data with noninformative censofingudia and Susarl@ 983 and
Tsai (1986 extend the method dbusarla and Van Ryziil976 by introducing a bivariate exponen-
tial distribution on the parameters of the Dirichlet process to allow the possibility of dependent cen-
soring. However, choosing a distribution that captures the correct dependence between censoring and
event times is not easy to specify as it is not estimatable from the observedistatam and others
(2007 give a comprehensive review on Bayesian survival analysis. More recBotigsfsteirand others
(2003 propose a fully Bayesian methodology that accounts for informative censoring by introducing
prior restrictions on the selection mechanism and follow with sensitivity analysis. Alternatively, we pro-
pose here a fully Bayesian methodology within the PM setting, using a nonparametric approach for
the censoring mechanism. Our goal is to use the appealing methodology of PL estimator but expand
it to incorporate informative censoring. We first formulate the PL estimator using a Bayesian frame-
work. When the censoring mechanism is informative, we introduce intuitive parameters that are used
for sensitivity analysis. These parameters capture the difference between the censored and the observed
data.

To reduce the large number of the sensitivity parameters, we consider them random from a prior
distribution. The prior distribution links all these parameters together around an average missing-data
mechanism (mean parameter) while simultaneously accommodating possible differences among them by
introducing random variation. The parameterization and the prior distribution associated with it are easy-
to-use and accommodate modeling of different types of missing data, including those with informative
censoring or missing not at random (MNAR). It also contains MAR as a special case enabling a local
sensitivity analysis for departures in a neighborhood of MARa @nd others 2005. We incorporate
a probabilistic range on the sensitivity parameters by introducing a prior distribution on them and then
applying Bayesian strategies to derive inferend€ac{roti and others 2006 2008 2009 Daniels and
Hogan 2007.

In Section2, we develop the Bayesian approach for PL estimate with no censoring and expand it to
include informative censoring in Secti@n In Sectiord, we describe the Trial Of Preventing Hypertension
(TROPHY) study, which motivated and provided the context for the methods developed here. In Section
we apply the proposed models to the TROPHY data and in Se6tiae give results from comparative
studies and offer conclusions in Sectitin
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2. BAYESIAN FORMULATION OF PL ESTIMATOR

First, we begin with the formulation of a version of a PL method using a Bayesian framework without

censoring. LetY = (Yo, Y1, ..., Yk)' be a vector of binary responses, indicating the presence of the
event at baselineYp) andK follow-up visits(Ys, ..., Yk)'. Let tx denote the time from baseline for the
follow-up visitk = 1,2,..., K, andtg = 0. Let T be the measure of time when the event occurred,

T e {ty, to, ..., tk}; with T =ty if and only if Yx_1 = O andYx = 1, andT > tk if no event occurred by
tk . The focus here is to compare the cumulative incideh@g,= Pr(T < t), between groups.

Let pgk be the probability of an event ifik—1, tk] for a subject who is at risk dk_1 in the treatment
groupg. The cumulative incidence function up to tires

k
lg(t) =1— St =1—[] @ - pgp), (2.1)
j=1
where§(tx) = Pr(T > t|Trt = g).

Let Ngk be the number of individuals at risk at tinhe 1, andegk be the number of events occurring
in (-1, tc] among these subjects for = 0,1 andk = 1,2, ..., K. In absence of censoringNgx =
Ng — Z‘j‘;(l) €j, whereNg is the number of subjects at the beginning of the study gpd= 0. The
likelihood function of the parametgly = (pPgz1, - . ., Pgk), conditional oneg = (€ga, . . ., €gk), Ng, and
treatment indicator is

K
L(pgleg, Ng, Trt) = f (eg1INg, Pz, Trt) [ | f (egklegn. - .-, €gk-1, Ng, Pgk, Tr1),
k=2

whereeg1|Ng, pg1 ~ Bin(Ng, pg1) and fork = 2,3, ..., K,

k—1
€gkl€g1, - . ., €gk—1, Ng, Pgk ~ Bin(Ngkpgk) = Bin | Ng — Zegj, Pgk
j=1
Framing the inference problem from a Bayesian perspective, the posterior distribupignagsuming a
noninformative prior Betg.001 0.00)) is

k

Pgkl€g1, - - -, €gk, Ng ~ Beta| egk + 0.001, Ng — Zegj +0.001] . (2.2)
j=1

The inference on the cumulative incidenkg = (Ig(t1), ..., Ig(tk)) is derived from 2.1) and using
Monte Carlo (MC) simulations, with the posterior mean gftc) estimated by

A 1 S 1 S k
lg(tk) = s > 15t =1— 3 > [Ta-rg.
s=1

s=1j=1

where pgj is thesth draw from @.2), andS = 100, 000 simulations. The posterior standard deviation of
Ig(tk) is also estimated using MC simulations.
Our main hypothesis is thay and 11 (or equivalentlyS and ;) are different over the study period
and also at the 4-year mark. We compare these curves between 2 groups by using the average distance on
a log scale:

K

1 & K—j+1 1 — poj
Z = > llog(So(t)) — Iog(Su(t)} = > K‘ = log ( — g(l’j) : (2.3)
k=1 j=1
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If Io = I, i.e., no group differences, thefi should be 0. In a Bayesian approach, we calculate the
posterior distribution ofZ and the Bayesiamp value using MC simulations. The value is equal to

2« min{Pr(Z > 0), P(Z < 0)} and is calculated as the smaller of the proportiorZof- 0 or Z <

0 times 2 for a 2-sided test. Similarly, the incidence rates at the end of the study are compared using

D = I1(tk) — lo(tk).

3. EXPANDED MODEL

When censored data occurred, the estimates, described in S&ai@modified to account for censoring
mechanism. LeR, be the random variable indexing the missing-data patterns, which is eqlaf to
subjecti was censored irity—1,t], K = 1,..., K. Let R = K+1 when subject had no event and
completed the study. If the censoring mechanism is nonignorable, tiiEn £rk) would depend on the
unobservedk, and additional assumptions or constraints are needed to identify the model.

In a longitudinal settingl.ittle (1993 used identifying restrictions by setting the density of missing
components, conditional on the observed components, to be equal to the corresponding distribution of
the subgroup of completers or some other relevant pattern. For monotone missingalatderghsand
others(1998 extended Little’s approach to available case missing value (ACMV) restriction by setting
the density of missing components at vikjtconditioned on the previous components, to be equal to
the corresponding distribution of the observed data at kistthat is, f (y«|Yo, Y1, ..., Yk-1, R=r) =
f(yklYo, Y1, .-+, Yk=1, R > k) for Vk >0,Vr < k. They showed that ACMV restriction is equivalent to
MAR. Here, we extend the ACMV approach to identify PM models when missing data are MNAR: the
extension also provides a necessary and sufficient condition for MAR, which is used for local sensitivity
analysis around MAR. For MNAR, the identifying constraints relate the distribution of the missing data
to that of the observed data. Because there are no data to estimate the identifying constraints, it is useful
to have intuitive and easy-to-use parameters, which can then be evaluated using a sensitivity analysis. We
propose the following parameterization.

Let pé?() = Pr(Yx = 1Yk-1 = 0, Trt = g, R > k) be the probability of an event itx_1, tx] for

subjects who are at risk and observedtin 1, tk]. Let Néok) be the number of subjects at risk and observed
in (t—1, t], and eé?()
pgk) = Pr(Yx = 1|Yk—1 = 0, Trt = g, R = r) be the probability of an event iftx_1, tk] for subjects

be the number of events that occurredtin1, t] among these subjects. Next, let

censored if(t; —1, ty] who would be at risk aty_1 for 0 < r < k. Last, IetNérk) be the number of subjects

censored irn(t;—1, tr] who would have been at risk ¢ 1, andegk) be the number of events occurring in
(tk—1tk] among these subjects. Then,

eg(;rr)|cgra pgr) ~ Bin(NE(!rf)’ pgr))’
and fork > r > 0,

r r r r . r r
ellel)., eér)ﬂ, - egk)_l, Cor Py ~ BIn(NS.. p{). (3.1)

whereNg? = cgr andN{) = N, —€l)_, fork > r > 0. There are no data to estimate the pa-
rameters of the distributiorB(1). To overcome this problem, we relate the parameters of the distribu-
tion for the missing data to the parameters of the distribution for the observed data, using the following

parameterization:
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r) ©)
pgk ~ ‘ pgk
n — o ©0)
pgk 1- pgk

(3.2)

foranyk > 0,0 < r < k, andg. Here,/lgrk is the odds ratio of having an event (tx—1, t¢], being at

risk atty_1, between those subjects in missing pattetoensored irt; —1, t;]), and the observed subjects

in (tx—1, t] for groupg. Thelgrk parameters measure the departure from MAR and cannot be estimated
from the data. We assume tb@‘,k has a log-normal prior distribution with meggk and variancezlérk,
wherec is the coefficient of variation. Thigyk andc parameters are used for sensitivity analysis, where
Ilgrk = 1 andc = 0 correspond to MAR, satisfying the ACMV constraint. Note that for time-to-event

outcomes (wheréy = 1 = Y, =1, vk > k), the ACMV restriction is equivalent tq»(rk) = pgf(),

vk > 0,Vr < k. Indeed, f(yk|yo, Vi, ..., Yk=1) = F(yklYk=1); and becausé (yx = 1|yk-1 = 1, R =
r = f(yk = 1lyk-1 = 1, R > k) = 1, the only requirement for ACMV if (yk = 1|yk—-1 = 0, R =
r)= f(yk =1lyk-1=0,R> kjor equwalentlyp(rk) = pé?(), vk > 0,0<r <k, andg.

In the longitudinal setting, withk follow-up measures, up t + 1 missing-data patterns can occur,
resulting in a maximum oK x (K +1)/2 constraintsf(grk indices) for each group required to identify the
model. AsK increases, the number of identifying parameters become too large to be feasible for sensitiv-
ity analysis. Therefore, it is important to reduce the dimension of the space for the sensitivity parameters.
For exampleScharfsteirand otherg2001) introduced a parametric function for their sensitivity param-
eters;Birminghamand otherg2003 reduced the dimension of their sensitivity parameters by assuming
all to be the same.

Here, we reduce the dimension of the sensitivity space by introducing a prior distribution for the
identifying parametersgrk with mean,E(1grk) = lg, yet we introduce random variation that allows each

,lgrk to vary within a range for different andk. Thus, /Igrk are consider random variables from a log-
normal prior distribution Ioglgrk) ~ (Iog(lg)—'og(lT“LC), Iog(1+cz)), (this corresponds tE(lgrk) =

lg and Va(lg,k) = CZ|§). Here |4 andc are second-order sensitivity parametégsndicates the average
difference from MAR, and indicates the degree of the random variation (potential dissimilarities) across
different patterns and over time. A coefficientwf O corresponds to a deterministic constraint, whereas
¢ > 0 corresponds to a stochastic constraint that becomes less informatiwgcasases. As in complete
case analysis, we test the null hypothesis of no difference between 2 curves usihdithience 2.3).

3.1 Fitting the model

We fit our model following a full Bayesian approach, where the quantltles of interest are the cumulative
incidence curves for each group as if no subject droppedig(k) = 1 — Z —1(1 — pgj)- Here, pgj
is the probability of having an endpoint {iy _1,tj] interval for subjects who Would have been at risk at

tj_1, this includes both observed and censored subjects. Under PM specifipgtien er o7 gj) ng)a

Wherengj) is the weight (proportion) of the dropout patterrat time j for each group. Herergj =

(7 é?), é}), . (”) are not observed and thus are unknown parameters.

Under a fuIIy Bayesian approach, the inferences are derived from the joint posterior distribution
(77, ef. Zg. p{ IData lg, c]. Where Datatey. ). ... e{%. c1. ... gk, Nglg = 0,1}; p’ =

(0) 0 (0 (1) (1) (1) (r)
(pgl, Pg2s - - pgK) is the set of parameters for the observed d;%@ egl, €92 €k -+ €r >
egr)H, e eg&, e (K)) are the unobserved data for the censored subjeé@ = (né(l)), é?, nég),

né?, nég), .. é?g, néllz, . (K)) are the proportions of subjects who would be at risk at a given time

for each missmg -data pattern, ah@i_ (/lgll, /1912, e /lglK, e, /lg”,igrurl, e, ing, e, /ngK).
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Draws from this posterior distribution are obtained using the following partition:

(7§70, e, Lg, pyData lg, ] = [g|Data Ig, cJ p{’|1q, Data Ig, c]

1: Log—Normal 2: Beta

[e{P17g, P Data lg, c] [z{P1e(Y, 1g, p{?, Data lg, c] .

3: Binomial 4: Dirichlet

We sequentially draw values based on this partition as described in the following steps.
1.Draw from [Ag|Data lg, c]. In a PM setting, the data provide no evidence for sensitivity parameters,
[/glData lg, c] = [Zgllg, €] (Little, 1995. Thus, gk are drawn from

log(1+ ¢?)

|Og(zgrk) ~ N(|09(|g) - 5

,log(1 + c2)) .

2.Draw from [pg°)|ig, Data lg, c]. First note that within the PM approach, the fit of the model to the
observed data is identical for all choices of sensitivity parameterpgg?ru[g, Data lg, c] = [p(°)|Data]
(Little, 1995. Let Ng be the initial number of subjects at= 0, let e(ok) andcgk be the number of the
observed events and the censored subjects ittithe, tk] interval (g = 0, 1). Then,

0), (0 0 0 . 0) (0
e )|eél), ... ék)_l, Cgl, - - - » Cgks Ng, pék) ~ Bm(Nék) pék))

whereN(O) is the number of subjects at risk and observed in(ter, t]: Néok) = Ng — Z‘J‘ 5e gj)

Z'J‘_lc fork = 1,...,K, and é%) = 0. We assume noninformative independent pl’lpg ~
Beta0. 00], 0.009 from which

PUrlely . - . Ca1. - - - Cgks Ng ~ Beta(elf) +0.001 N\ — ) +0.001).

3. Draw from [e(R)|pg°) ).g, Data lg,c]. Whenk > 1 and O< r < K, let N(r) be the number of
subjects censored at visitvho would have been at risk for an event at vis{ho event byty_1). Lete )
be the number among theslék subjects who would have had the event in e 1, tc] interval. Then,

e Icgr, pgY ~ Bin(N{, p§))

andfork>T, 0! Q) 0! Q) " O
r r r r . r r
ok 1807 > €grs1s - €ge_1> Car» Pk ~ BIN(Ng,, pg)-
where from 8.2),
07
" pgkigrk

p —. (3.3)
ok 1- p(O) (1 - /lgrk)

Here, Nér) = cgr, andN(rk) = Nérk) |- gk) , for k > r. Within this step, the draw cﬂg) is sequential,
speuﬂcallyegr is drawn first, and theg")

gr+1
previous draws. INé =0, thene(r) 0.

up to e(r) are drawn next, sequentially conditioned on the
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4. Draw from [75(R)|eg pgo) ,19, Data lg, c]. Here, nérk), r = 1,2,...,k, is the proportion of
subjects who belong to missing-data patteat timety among subjects who would be at risk at the be-
ginning of (tx—1, tk] interval; néo) corresponds to the proportion of subjects who are at risk and observed

in (tx—1, t] interval. Then for eack,

N(k))~MuItlnomlaI(7r(O) D (k))

O @
(N N gk s gk s

gk, gk,..

© @

gk > Tgks -« > (k)) with parameters

Assuming a noninformative Dirichlet prior distribution fegx = (7

gk) =0. 01 ngk are drawn from the corresponding posterior Dirichlet dlstr|buﬂ1(nl‘ agk Ngk

1) (9]
agk,..., Ngk agk)
5. Derive draws of marginal parameters pg. For each draW obgk, igrk, andngk,

parametergk are calculated apgk = Zr on(r) ) wherep forr > Ois derived from3.3).
5A. Draws of marginal parameters pg. Insteag of computlngpgk in Step (5), we can simulate draws
of pgk from the completed data. This can be viewed as a multiple imputation version of Step 5 and has

been proposed iBemirtas and SchaféR003. Thus, under this approach, omeﬁ are drawn/imputed,

the draws forpgk are obtained based on the imputed data set as if there were no censoring. For each
pgk, we assume a noninformative prior distribution, Bét801 0.001), independent of each other, which
results in the following posterior distributions:

the marginal

k

Pgkl€g1. - - - - €gk. Ng ~ Beta egk + 0.001 Ng — > egj + 0.001] .
j=1

Here,ggx = Zr 0 e(r) Wheree(o) are observed amegk are draws from Step 3. Though Step 5 is probably

most computationa Qily eff|C|ent but this alternative step is much easier to implement in available software
packages such as WinBUGS. Applying either Step 5 or 5A to the smaller data set analyzed in@ection
we obtained identical results up to the third decimal. For the TROPHY data, which has a larger number
of missing-data patterns, we used the Step 5A approach. Note that, for MAR gasé (c = 0), the pg

(based on the full imputed data) was the sampég?s(based on the observed data) as expected.

Sensitivity analysisWe varylg andc to perform sensitivity analysis. When the missing data are
MAR, then allZqk = 1 orlg = 1 andc = 0; thuslq andc can be considered ignorability indices. When
the missing data are MNAR, then not é.'é’rk equal to 1. Finding the best combination of sensitivity
parameters is usually not possible, but reasonable choices for such parameters can often suffice. For in-
stance, trying different values of sensitivity parameters in a neighborhood of the MAR (, small
¢) could often provide reassuring information about whether the inferences are robust to moderately in-
formative censoring mechanisms. In addition, finding valyes- I_g for which group comparisons are
just significant is also important. That is, finding how much different the censored data must be from the
observed data for treatment differences to be just significant.

Here,lgrk are interpretable and easy-to-use for sensitivity analysis. By considering them random, we
(1) provide a probabilistic range for differences among censored and observed su@Zjeatkyw for
random variation on such differences across different missing-data patterns and ovéB)tiradyice the
dimension of the sensitivity parameters’ space by using the shrinkage pararhgaedad) for sensitivity
analysis, and4) account for the overall uncertainty related to censoring by using Bayesian methods.
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4. MOTIVATION: TROPHY sTuDY

The TROPHY (ulius and others 2006 was an investigator-initiated study to examine whether early
treatment of prehypertension might prevent or delay the development of hypertension. Our primary
objective was to determine whether for patients with prehypertension, 2 years of treatment with candesar-
tan would reduce the incidence of hypertension for up to 2 years after active treatment was discontinued.

The study consisted first of a 2-year double-blind placebo-controlled phase; followed by a 2-year
phase in which all study patients received a placebo. Subjects were examined every 3 months as well as
1 month after the beginning of each phase.

4.1 Primary event

The development of hypertension was chosen as the primary study event. It was defined as the first occur-
rence of any one of the following: (i) systolic blood pressure (SBR®)0 and/or diastolic blood pressure
(DBP) > 90 mmHg at any 3 visits during the 4 years of the study; (i) SBR60 and/or DBP>100

mmHg at any visit during 4 years; (iii) SBR 140 and/or DBE> 90 mmHg at the end of the study; and

(iv) patients requiring treatment as decided by the attending physician. After an event occurred, antihy-
pertension treatment with metoprolol, hydrochlorothiazide, or other medications, with the exception of
angiotensin-receptor blockers, was offered at no cost.

The “3 times in 4 years” definition of hypertension differs from more contemporary accepted definition
of hypertension based on the guidelines published in the Seventh Report of the Joint National Committee
on Hypertension (JNC 7). Following the new guidelines, patients with an average clinic reading of systolic
140 mmHg or higher and/or diastolic of 90 mmHg or higher onahsecutae clinic visits are now
considered to need treatment for hypertension. TROPHY results are published for both defihitiioiss (
and others2006 2008. We focus here on the sensitivity analysis for the definition of hypertension that
follows the current JINC 7 guidelines.

4.2 Censored data

Data in TROPHY are censored for 2 reasofi3:if subjects dropout before the event @) if subjects
violated the protocol. The violation is related to a post hoc change in the definition of the hypertension.
Thatis, a subject who satisfied the 3 times in 4 years criteria of hypertension may not have had 2 consecu-
tive readings of SBR:-140 and /or DBP>90 and so would not be considered as hypertensive based on the
new definition. Following the protocol, treatment of blood pressure (BP) was initiated for such subjects
an thus the follow-up BP data are affected and cannot be used.

The intention-to-treat population for the study consisted of 772 patients randomly assigned to can-
desartan (391) or placebo (381). Among the 772 participants, 109 (54 in placebo) dropped out before
developing hypertension. When the new definition of hypertension was used, 92 subjects, classified with
hypertension based on the original definition, did not satisfy the new definition (JNC 7). Following the
protocol, these subjects received antihypertension treatment, therefore, they are censored at the time the
treatment was initiated for the analysis using the new event definition. In addition, 2 subjects who had
dropped out satisfy the new event definition. Thus, the number of subjects with a missing event per the
new definition is increased to 199 (101 in placebo). Fidusbows the rate of censoring, which is higher
for subjects in the placebo group.

5. APPLICATION

In this section, we apply the method developed in Secsitm the data from the TROPHY study using
WinBUGS1.4 Epiegelhaltelmand others 2003. The effect of candesartan compared with a placebo is
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Fig. 1. PL estimate for time-to-dropout in placebo and candesartan group.

estimated over the entire study period as well as its end. Different scenarios about the censoring mechanism
are considered to assess the effect of the censored data on the final results. We perform a local sensitivity
analysis around the region where missing-data mechanism is MAR @, Ip = |1 = 1). We consider

c = 0,c = 0.5, andc = 1 with I4 varying between 0.8 and 1.2. A valuelgf > 1 indicates that, on
average, the censored subjects are more likely to develop hypertension than the observed subjects and the
opposite would be true fdg < 1. In addition, sensitivity analyses based on assumptions that make the
treatment effect just significarty = Iq, are also included. The results of sensitivity analysis are shown

in Tablel. Figure2 shows the cumulative incidence curves of hypertension for the 2 groups for different
values forlg andl; andc = 0.5. The sensitivity analysis shows that the effect of candesartan varies by the
assumptions made about the censored data and that the impact of the assumed censoring mechanism on
the incidence curves increases over time. That reflects the fact that the cumulative number of the censored
subjects that contribute to estimation of the incidence curves increases over time. The bold lines corre-
spond to noniformative censoring, = 13 = 1 andc = 0, and are the same as the PL estimates derived

from a frequentist approach using Proc Lifetest in SAS.

The incidence of hypertension at 48 months ranges from 58.6% to 62.1% for the placebo group and
from 49.6% to 52.8% for the candesartan group. The overall incidence of hypertension over time is signif-
icantly lower in candesartan group for all the assumed scenarios in Talike incidence of hypertension
at 48 months is also lower for the candesartan group under all assumed scenarios; but findings become
borderline or nonsignificant for censoring mechanisms that increasingly favor the placebo group. For ex-
ample, in scenario 6b, where the censored subjects compared with the observed subjects (in any interval)
are on average 1.32 (95% credible interval [ 2.88]) times more likely to develop hypertension in the
candesartan group but are just as likely (95% credible interval {@.26]) in the placebo group, then the
group difference at 48 months is just significant. In scenario 5b, where the censored subjects compare with
the observed subjects are on average 1.2 (95% credible interval 20743) times more likely to develop
hypertension in the candesartan group, but 0.8 times as likely (95% credible intervall| 828 in the
placebo group, the effect of candesartan is nonsignificant at 48 mgnth€.087. Under noninformative
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Table 1. Sensitivity analysis under different censoring hretisms

Placebo Candesartan p value Z Z
l48 (95% CR) l48 (95% CR) (48 months) mean (SD) pvalue

c=0

la lo=1,11=1 60.8 (55.1-66.4) 50.9 (45.3-56.6) 0.015 0.296 (0.049X 0.0001
2a lp=12,l11=1 62.1 (56.3-67.7) 50.9 (45.4-56.6) 0.007 0.309 (0.050% 0.0001
3a lp=1,11=1.2 60.8 (55.1-64.4) 52.2 (46.5-57.8) 0.034 0.288 (0.0495 0.0001
4a lp=1.2,11, =08 62.0(56.3-67.7) 49.6 (44.1-55.2) 0.002 0.317 (0.04930.0001
5a lp=0.8,11 =12 59.4(53.8-65.0) 52.2(46.5-57.8) 0.074 0.273 (0.048)0.0001
6a lo=1,11 =1.32 60.8 (55.2-66.4) 52.8 (47.2-58.4) 0.05 0.283 (0.0493 0.0001
7a l[p=0721; =1 58.8(53.3-64.3) 50.9 (45.4-56.6) 0.05 0.275 (0.048) 0.0001
c=05

1b lo=1,11=1 60.7 (55.0-66.3) 50.8 (45.2-56.5) 0.016 0.295 (0.049% 0.0001
2b lp=121;=1 61.9 (56.1-67.6) 50.8 (45.2-56.5) 0.007 0.308 (0.050% 0.0001
3b lo=1,11 =12 60.7 (55.0-66.4) 52.0 (46.3-57.7) 0.034 0.288 (0.0495 0.0001
4b lop=12,11 =08 61.9(56.2-67.6) 49.5(44.0-55.1) 0.002 0.316 (0.0505 0.0001
5b lp=0.8,l1 =12 59.3(53.7-64.9) 52.0(46.3-57.7) 0.017 0.273 (0.049) 0.0001
6b lp=1,11 =132 60.7(55.0-66.3) 52.7 (46.9-58.3) 0.05 0.283 (0.050) 0.0001
7b f[p=07311=1 58.8(53.2-64.4) 50.8 (45.2-56.6) 0.05 0.275 (0.048) 0.0001
c=1.0

1c lo=1,11=1 60.5 (54.8-66.2) 50.6 (44.9-56.3) 0.016 0.294 (0.049% 0.0001
2c lp=12,l11=1 61.7 (55.9-67.4) 50.6 (45.0-56.3) 0.008 0.307 (0.050% 0.0001
3c lp=1,11=1.2 60.5 (54.8-66.2) 51.7 (46.0-57.4) 0.033 0.287 (0.050% 0.0001
4c lp=12,11y =08 61.7 (55.9-67.4) 49.6 (44.1-55.2) 0.002 0.317(0.049% 0.0001
5c lp=0.8,11 =12 59.2(53.5-64.8) 51.7 (46.0-57.4) 0.068 0.274 (0.048)0.0001
6¢C lp=1,11 =132 60.5(54.7-66.2) 52.3 (46.6-58.1) 0.05 0.283 (0.050) 0.0001
7c lp=0.7211 =1 58.6(53.0-64.2) 50.6 (44.9-56.3) 0.05 0.274 (0.048% 0.0001

censoring mechanism the incidence of hypertension at 48 months was lower for the candesrtan group, at
50.9%, compared with the placebo group, 60.8%. Finally, when comparing the overall incidence curves,
the significance is strong regardless of the censoring mechanism. This is because large differences be-
tween curves occur early when the number of the censored subjects is small, and thus such differences are
fairly robust to the assumptions on the censoring mechanism.

In summary, the differences in the incidence of hypertension between 2 groups over the entire study
are robust for different censoring mechanisms. However, the group differences at 48 months are more
sensitive to the censoring mechanism, varying from 12.4% under scenario 4a to 7.2% under scenario
5a. When the censoring mechanism is noninformative, a 2-year treatment with candesartan reduces the
incidence of hypertension at 4 years by 9.9% (95% credible interval 1Z.8]). In addition, the effect
candesartan treatment is robust around a local region of the MAR mechanism. It would take differences
on the odds of developing hypertension among dropouts favoring placebo (scenarios 6—7) for the effect of
treatment to become borderline significant.

6. COMPARATIVE STUDIES

The proposed model can be directly applied to other studies with similar design. For illustration as well as
comparison with other alternative approaches, we apply our method to the data analy&sdthlfgtein
and others(2001) (SRER), which are relevant for this setting. SRER analyzed data from a randomized
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Fig. 2. Sensitivity analysis for cumulative incidence of hypertension between placebo and candesartan groups over a
48-month period. Bold lines correspond to noninformative censadling,l1 = 1 andc = 0.

clinical trial focusing on the effect of 2 mg risperidone in treating schizophrenia. The endpoint outcome
was defined as a 20% or more reduction in the Positive and Negative Symptom Scale relative to the base-
line value. The subjects were followed up at 1, 2, 4, 6, and 8 weeks; data are shown in thelr(fabiell
details of the study refer to their paper). Following a selection model approach, SRER propose a model to
perform sensitivity analysis under different censoring mechanisms by introducing censoring bias functions
o, fort = 1,2,..., K. They used intuitive parametric functiong(T; a, Trt = g) = ag{T — (t + 1)}
to reduce the number of the sensitivity parameters but, as the authors pointed out in their discussion, one
can consider an infinite number of forms it and therefore the results of the sensitivity analysis would
be specific to the parametric functiogs Specifically, they chose a parameterization wherie the log-
odds ratio of dropping out betwedrandt + 1 per unit increase i for subjects who were at risk at
t. As an alternative, we propose a full Bayesian approach within a PM setting using intuitive identifying
parameters.,, for sensitivity analysis, which are assumed random following a log-normal distribution:
E(irt) = I, Var(dyt) = ¢?2. There is no an exact relationship between our identifying paramétans,
¢, and SRER sensitivity parameter However, our sensitivity parameters and theirs have an overall con-
nection in terms of measuring the degree and the nature of the departure from a noninformative censoring
mechanism.

Under noninformative censoring= 1 andc = 0 that corresponds te = 0. When censoring is
informative,| > 1(< 1) corresponds te < O(> 0). That is, anl > 1 indicates that compared with
the observed subjects, the censored subjects are more likely to have an endptirit# 1 and so are
more likely to have a shorter event tinfe Or equivalently, subjects with small@r are more likely to
be censored, which corresponds to a negativEor small departures from a noninformative censoring
mechanismi, is close to 1, which correspondsdcclose to 0.

Next, we apply our method to the data analyzed by SRER. Our results of the sensitivity analysis are
summarized in Figur8®, which similar to Figure2(b) in SRER, showing a contour plot fgvalue =
0.05. The region favoring risperidone is the upper left corner regioip,df. That is consistent with
the corresponding region shown in SRER Figa¢e) (the lower right corner region afp, a1). Under
either approach, no significant difference appears €t0.05 between treatment and placebo—assuming
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Fig. 3. Sensitivity analysis on the data from SRER.

noninformative censoring. However, it requires only small departures from a noninformative censoring
mechanism for the difference to become significant. For instance, treatment is bettdpwhdnl, =

1.07, andc = 0.5. That is, the censored subjects compared with the observed subjects (in any interval)
are on average 1.07 times more likely to have an endpoint in the treatment group but are just as likely in
the placebo group. Both methods show that small departures from noninformative censoring mechanism
produce significant results.

The strength of our model lies in using a fully Bayesian approach with random sensitivity parameters,
which are easy-to-use, and at the same time does not assume a parametric function on the censoring mech-
anism. Alternatively, one could expect that if a good parametric function for the censoring mechanism is
known, the sensitivity analysis based on the correct specification of such function might well be more
efficient.

7. CONCLUDING REMARKS

In this paper, we presented a Bayesian model for time-to-event data with informative censoring. We ap-
proached the missing data problem by using a PM model, which is identified by introducing an intuitive
parameterization. The identifying paramete?@,k, are defined for each groupas: the odds ratio of

having an endpoint ifity—1, t], conditioned on being at risk &1, between subjects from missing-data
patternr with the observed subjects in that intervial£ 1, ..., K). Sensitivity analyses are performed

using different prior distributions oigrk. Even though the distribution o?fgrk is unknown, it is possi-

ble for a subject matter expert to give it a range and then explore the sensitivity of statistical inferences
over such a range. The new parameterization is a nhonparametric approach for modeling the censoring
mechanism; and therefore is robust to model misspecification that may result from parametric modeling.
However, when the number of follow-up visits increases, so does the number of the sensitivity param-
eters under a nonparametric approach; and soon a fully unrestricted nonparametric approach becomes
impractical. The robustness of modeling the correct dropout mechanism and reducing the number of the
sensitivity parameters are competing requirements requiring compromise and adjustment according to the
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specific problem. We reduced the dimensionality of the sensitivity space by using a stochastic constraint
to incorporate different levels of uncertainty. That is, weﬁlgtk follow a log-normal distribution with
meanlgy and variancezlé. Then the set of the sensitivity parameters is reducéglandc. Our proposed
parameterization is flexible for sensitivity analysis and contains noninformative censoring as a special
caselg = 1, c = 0). We assumed no knowledge lgn and sensitivity analysis could be performed Ifpr

values close to 1.

ACKNOWLEDGMENTS

We thank the Editor, Associate Editor, and a referee for careful review and insightful comments, which
considerably improved this paper. Many thanks to Rhea Kish for her help with editimdlict of Interest:
None declared.

Access to the WinBUGS code can be obtained fraimmola@umich.edu.

FUNDING
National Institute of Health (5P01HD039386-10).

REFERENCES

BIRMINGHAM, J., ROTNITZKY, A. AND FITZMAURICE, G. M. (2003). Pattern-mixture and selection models for
analyzing longitudinal data with monotone missing pattedosrnal of the Royal Statistical Society, Serie6®5
275-297.

DANIELS, M. AND HOGAN, J. (2000). Reparameterizing the pattern mixture model for sensitivity analysis under
informative dropoutBiometrics56, 1241-1248.

DANIELS, M. AND HOGAN, J. (2007)Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and
Sensitivity AnalysiBoca Raton, FL: Chapman & Hall.

DEMIRTAS, H. AND SCHAFER, J. L. (2003). On the performance of random-coefficient pattern-mixture models for
non-ignorable drop-ouStatistics in Medicin@2, 2553-2575.

Guo, W., RATCLIFFE, S. J.AND TEN HAVE, T. T. (2004). A random pattern-mixture model for longitudinal data
with dropouts.Journal of the American Statistical Associati@® 929—-937.

HJoRT, N. L. (1990). Nonparametric Bayes estimators based on beta processes in models for life histényrddsa.
of Statististsl8, 1259-1294.

IBRAHIM, J. G., GHEN, M. AND SINHA, D. (2001).Bayesian Survival Analysiblew York: Springer.

JuLius, S., KacirROTI, N., NESBITT, S., EGAN, B. M. AND MICHELSON, E. L.FOR THETRIAL OF PREVENTING
HYPERTENSION(TROPHY)INVESTIGATORS (2008). TROPHY study: outcomes based on the JNC 7 definition
of hypertensionJournal of the American Society of Hypertensi39-43.

JuLius, S., NESBITT, S., EGAN, B., WEBER, M. A., MICHELSON, E. L., KACIROTI, N., BLACK, H. R., GRIMM,
R. H., MESSERL| F. H., OPARIL, S.AND SCHORK, M. A. FOR THETRIAL OF PREVENTION HYPERTENSION
(TROPHY) SrubDy INVESTIGATORS(2006). Feasibility of treating prehypertension with an angiotensin-receptor
blocker.New England Journal of Medicir&b4, 1685-1697.

KACIROTI, N., RAGHUNATHAN, T. E., SCHORK, M. A. AND CLARK, N. M. (2008). A Bayesian model for longi-
tudinal count data with non-ignorable dropafipplied Statistic®7, 521-534.

KACIROTI, N., RAGHUNATHAN, T. E., SSHORK, M. A., CLARK, N. M. AND GONG, M. (2006). A Bayesian
approach for clustered longitudinal ordinal outcome with nonignorable missing data: evaluation of an asthma
education progranidournal of the American Statistical Associatibdl, 435—446.



354 N. A. KACIROTI AND OTHERS

KACIROTI, N., SCHORK, M. A., RAGHUNATHAN, T. E.AND JuLIUS, S. (2009). A Bayesian sensitivity model for
intention-to-treat analysis on binary outcomes with dropdsiatistics in Medicin@8, 572-585.

KENWARD, M. G., MOLENBERGHS G. AND THIJS, H. (2003). Pattern-mixture models with proper time depen-
dence Biometrika90, 53-71.

LITTLE, R. J. A. (1993). Pattern-mixture models for multivariate incomplete datanal of the American Statistical
AssociatiorB8, 125-134.

LITTLE, R. J. A. (1995). Modeling the dropout mechanism in repeated measures sfadiegl of the American
Statistical Associatio80, 1113-1121.

LiTTLE, R. J. A.AND RuBIN, D. B. (2002).Statistical Analysis With Missing Dat&nd edition. New York: John
Wiley.

MA, G., TROXEL, A. B. AND HEITJAN, D. (2005). An index of local sensitivity to nonignorable drop-out in longi-
tudinal modelingStatistics in Medicin@4, 2129-2150.

MOLENBERGHS G. AND KENWARD, M. G. (2007).Incomplete Data in Clinical Studie€hichester, UK: John
Wiley.

MOLENBERGHS G., MICHIELS, B., KENWARD, M. G. AND DIGGLE, P. J. (1998). Monotone missing data and
pattern-mixture modelsStatistica Neerlandic&2, 153-161.

PHADIA, E. G.AND SUSARLA, V. (1983). Nonparametric Bayesian estimation of a survival curve with dependent
censoring mechanisrAnnals of the Institute of Statistical Mathemat8% 389-400.

ROTNITZKY, A., SCHARFSTEIN, D. O., SJ, T. AND ROBINS, J. M. (2001). Methods for conducting sensitivity
analysis of trials with potentially nonignorable competing causes of cens@&imgetrics57, 103-113.

Roy, J. AND DANIELS, M. (2008). A general class of pattern-mixture models for nonignorable dropout with many
possible dropout time&iometrics64, 538-545.

SCHARFSTEIN, D. O., DaNIELS, M. J. AND ROBINS, J. M. (2003). Incorporating prior beliefs about selection bias
into the analysis of randomized trials with missing outconBégstatistics4, 495-512.

SCHARFSTEIN, D. O. AND ROBINS, J. M. (2002). Estimation of the failure time distribution in the presence of
informative censoringBiometrika89, 617-634.

SCHARFSTEIN, D. O., ROBINS, J. M., EDDINGS, W. AND ROTNITZKY, A. (2001). Inference in randomized studies
with informative censoring and discrete time-to-event endpoBitsnetrics57, 404—413.

SPIEGELHALTER, D. J., THOMAS, A., BEST, N. G.AND LUNN, D. (2003).Sampling Based Approaches to Calcu-
late Marginal DensitiesCambridge, UK: MRC Biostatistics Unit. WinBUGS User Manual: Version 1.4.

SUSARLA, V. AND VAN RYZIN, J. (1976). Nonparametric Bayesian estimation of survival curves from incomplete
observationsJournal of the American Statistical Associatidoh 897—-902.

TsAl, W. (1986). Estimation of survival curves from dependent censorship models via a generalized self-consistent
property with nonparametric Bayesian estimation applicafitve. Annals of Statistick4, 238—249.

Wu, M. C. AND CARROLL, R. J. (1988). Estimation and comparison of changes in the presence of informative right
censoring by modeling the censoring proc&iemetrics44, 175-188.

ZHENG, M. AND KLEIN, J. P. (1995). Estimates of marginal survival for dependent competing risks based on an
assumed copul&iometrika82, 127-138.

[Received July 13, 2010; revised November 23, 2011; accepted for publication November 24, 2011



	Introduction
	Bayesian formulation of PL estimator
	Expanded model
	Fitting the model

	Motivation: TROPHY study
	Primary event
	Censored data

	Application
	Comparative studies
	Concluding remarks

