
Biostatistics(2012),13, 2, pp.341–354
doi:10.1093/biostatistics/kxr048
Advance Access publication on January 4, 2012

A Bayesian model for time-to-event data
with informative censoring

NIKO A. KACIROTI ∗, TRIVELLORE E. RAGHUNATHAN, JEREMY M. G. TAYLOR

Department of Biostatistics, Center for Human Growth and Development,
University of Michigan, Ann Arbor, MI 48109, USA

nicola@umich.edu

STEVO JULIUS

Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA

SUMMARY

Randomized trials with dropouts or censored data and discrete time-to-event type outcomes are frequently
analyzed using the Kaplan–Meier or product limit (PL) estimation method. However, the PL method as-
sumes that the censoring mechanism is noninformative and when this assumption is violated, the infer-
ences may not be valid. We propose an expanded PL method using a Bayesian framework to incorporate
informative censoring mechanism and perform sensitivity analysis on estimates of the cumulative inci-
dence curves. The expanded method uses a model, which can be viewed as a pattern mixture model,
where odds for having an event during the follow-up interval(tk−1, tk], conditional on being at risk at
tk−1, differ across the patterns of missing data. The sensitivity parameters relate the odds of an event,
between subjects from a missing-data pattern with the observed subjects for each interval. The large
number of the sensitivity parameters is reduced by considering them as random and assumed to follow
a log-normal distribution with prespecified mean and variance. Then we vary the mean and variance to
explore sensitivity of inferences. The missing at random (MAR) mechanism is a special case of the ex-
panded model, thus allowing exploration of the sensitivity to inferences as departures from the inferences
under the MAR assumption. The proposed approach is applied to data from the TRial Of Preventing
HYpertension.
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1. INTRODUCTION

Randomized control trials where the primary outcome is time-to-event are subject to censoring. Censoring
can occur due either to dropout or violations of the study protocol. The resulting censoring mechanism
could be considered noninformative if the time of censoring is independent of the time of event and

∗To whom correspondence should be addressed.

c© The Author 2012. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.



342 N. A. KACIROTI AND OTHERS

informative otherwise. To analyze these data, where the censoring mechanism is potentially informative,
additional data or assumptions are required to make valid inferences (Zheng and Klein, 1995).

There are 3 general approaches for analyzing data with dropouts or censoring.Rotnitzky and
others(2001), Scharfsteinand others(2001), andScharfstein and Robins(2002) adopt a selection model
approach where an explicit censoring mechanism is formulated and related to the unobserved outcome.
On the other hand,Little (1995), Little and Rubin(2002), andBirminghamand others(2003) used a
pattern-mixture (PM) approach where the distribution of the outcome across different patterns formed
by censoring times are related by some identifiability constraints.Wu and Carroll(1988) used a shared-
parameter model. This model uses common random effects to relate the response to the missing-data
indicator (Guo and others, 2004). All 3 approaches involve untestable assumptions about the censoring
mechanism, therefore must be followed with sensitivity analysis (Molenberghs and Kenward, 2007).

In a PM setting,Daniels and Hogan(2000) and Kenwardand others(2003) identified parameters
using constraints.Roy and Daniels(2008) use latent class PM models with Bayesian model averaging.
Previously, we developed a model for binary outcomes with missing data (Kaciroti and others, 2009) and
used Bayesian estimation methods for sensitivity analysis. Here, we propose a Bayesian model using a
parameterization within the PM approach to analyze time-to-event data with informative censoring.

The product limit (PL) estimator is a general purpose nonparametric approach used to analyze data
from clinical trials with time-to-event outcomes and noninformative censoring. Using a Bayesian method-
ology, Susarla and Van Ryzin(1976) propose a Dirichlet process andHjort (1990) propose a Beta pro-
cess for analyzing time-to-event data with noninformative censoring.Phadia and Susarla(1983) and
Tsai (1986) extend the method ofSusarla and Van Ryzin(1976) by introducing a bivariate exponen-
tial distribution on the parameters of the Dirichlet process to allow the possibility of dependent cen-
soring. However, choosing a distribution that captures the correct dependence between censoring and
event times is not easy to specify as it is not estimatable from the observed data.Ibrahim and others
(2001) give a comprehensive review on Bayesian survival analysis. More recently,Scharfsteinand others
(2003) propose a fully Bayesian methodology that accounts for informative censoring by introducing
prior restrictions on the selection mechanism and follow with sensitivity analysis. Alternatively, we pro-
pose here a fully Bayesian methodology within the PM setting, using a nonparametric approach for
the censoring mechanism. Our goal is to use the appealing methodology of PL estimator but expand
it to incorporate informative censoring. We first formulate the PL estimator using a Bayesian frame-
work. When the censoring mechanism is informative, we introduce intuitive parameters that are used
for sensitivity analysis. These parameters capture the difference between the censored and the observed
data.

To reduce the large number of the sensitivity parameters, we consider them random from a prior
distribution. The prior distribution links all these parameters together around an average missing-data
mechanism (mean parameter) while simultaneously accommodating possible differences among them by
introducing random variation. The parameterization and the prior distribution associated with it are easy-
to-use and accommodate modeling of different types of missing data, including those with informative
censoring or missing not at random (MNAR). It also contains MAR as a special case enabling a local
sensitivity analysis for departures in a neighborhood of MAR (Ma and others, 2005). We incorporate
a probabilistic range on the sensitivity parameters by introducing a prior distribution on them and then
applying Bayesian strategies to derive inferences (Kaciroti and others, 2006, 2008, 2009; Daniels and
Hogan, 2007).

In Section2, we develop the Bayesian approach for PL estimate with no censoring and expand it to
include informative censoring in Section3 . In Section4, we describe the Trial Of Preventing Hypertension
(TROPHY) study, which motivated and provided the context for the methods developed here. In Section5,
we apply the proposed models to the TROPHY data and in Section6, we give results from comparative
studies and offer conclusions in Section7.
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2. BAYESIAN FORMULATION OF PL ESTIMATOR

First, we begin with the formulation of a version of a PL method using a Bayesian framework without
censoring. LetY = (Y0, Y1, . . . , YK )′ be a vector of binary responses, indicating the presence of the
event at baseline (Y0) andK follow-up visits(Y1, . . . , YK )′. Let tk denote the time from baseline for the
follow-up visit k = 1, 2, . . . , K , and t0 = 0. Let T be the measure of time when the event occurred,
T ∈ {t1, t2, . . . , tK }; with T = tk if and only if Yk−1 = 0 andYk = 1, andT > tK if no event occurred by
tK . The focus here is to compare the cumulative incidence,I (t) = Pr(T 6 t), between groups.

Let pgk be the probability of an event in(tk−1, tk] for a subject who is at risk attk−1 in the treatment
groupg. The cumulative incidence function up to timetk is

Ig(tk) = 1 − Sg(tk) = 1 −
k∏

j =1

(1 − pgj ), (2.1)

whereSg(tk) = Pr(T > tk|Trt = g).
Let Ngk be the number of individuals at risk at timetk−1; andegk be the number of events occurring

in (tk−1, tk] among these subjects forg = 0, 1 andk = 1, 2, . . . , K . In absence of censoring,Ngk =
Ng −

∑k−1
j =0 egj , whereNg is the number of subjects at the beginning of the study andeg0 = 0. The

likelihood function of the parameterpg = (pg1, . . . , pgK ), conditional oneg = (eg1, . . . , egK), Ng, and
treatment indicator is

L(pg|eg, Ng, Trt) = f (eg1|Ng, pg1, Trt)
K∏

k=2

f (egk|eg1, . . . , egk−1, Ng, pgk, Trt),

whereeg1|Ng, pg1 ∼ Bin(Ng, pg1) and fork = 2, 3, . . . , K ,

egk|eg1, . . . , egk−1, Ng, pgk ∼ Bin(Ngk pgk) = Bin



Ng −
k−1∑

j =1

egj , pgk



 .

Framing the inference problem from a Bayesian perspective, the posterior distribution ofpgk assuming a
noninformative prior Beta(0.001, 0.001) is

pgk|eg1, . . . , egk, Ng ∼ Beta



egk + 0.001, Ng −
k∑

j =1

egj + 0.001



 . (2.2)

The inference on the cumulative incidenceIg = (Ig(t1), . . . , Ig(tK )) is derived from (2.1) and using
Monte Carlo (MC) simulations, with the posterior mean ofIg(tk) estimated by

Îg(tk) =
1

S

S∑

s=1

I s
g(tk) = 1 −

1

S

S∑

s=1

k∏

j =1

(1 − ps
gj ),

whereps
gj is thesth draw from (2.2), andS = 100, 000 simulations. The posterior standard deviation of

Ig(tk) is also estimated using MC simulations.
Our main hypothesis is thatI0 and I1 (or equivalentlyS0 andS1) are different over the study period

and also at the 4-year mark. We compare these curves between 2 groups by using the average distance on
a log scale:

Z =
1

K

K∑

k=1

{log(S0(tk)) − log(S1(tk))} =
K∑

j =1

K − j + 1

K
log

(
1 − p0 j

1 − p1 j

)
. (2.3)
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If I0 = I1, i.e., no group differences, thenZ should be 0. In a Bayesian approach, we calculate the
posterior distribution ofZ and the Bayesianp value using MC simulations. Thep value is equal to
2 ∗ min{Pr(Z > 0), Pr(Z < 0)} and is calculated as the smaller of the proportion ofZ > 0 or Z <
0 times 2 for a 2-sided test. Similarly, the incidence rates at the end of the study are compared using
D = I1(tK ) − I0(tK ).

3. EXPANDED MODEL

When censored data occurred, the estimates, described in Section2, are modified to account for censoring
mechanism. LetRi be the random variable indexing the missing-data patterns, which is equal tok if
subjecti was censored in(tk−1, tk], k = 1, . . . , K . Let Ri = K+1 when subjecti had no event and
completed the study. If the censoring mechanism is nonignorable, then Pr(Ri = k) would depend on the
unobservedYik , and additional assumptions or constraints are needed to identify the model.

In a longitudinal setting,Little (1993) used identifying restrictions by setting the density of missing
components, conditional on the observed components, to be equal to the corresponding distribution of
the subgroup of completers or some other relevant pattern. For monotone missing data,Molenberghsand
others(1998) extended Little’s approach to available case missing value (ACMV) restriction by setting
the density of missing components at visitk, conditioned on the previous components, to be equal to
the corresponding distribution of the observed data at visitk. That is, f (yk|y0, y1, . . . , yk−1, R = r ) =
f (yk|y0, y1, . . . , yk−1, R > k) for ∀ k >0, ∀ r 6 k. They showed that ACMV restriction is equivalent to
MAR. Here, we extend the ACMV approach to identify PM models when missing data are MNAR: the
extension also provides a necessary and sufficient condition for MAR, which is used for local sensitivity
analysis around MAR. For MNAR, the identifying constraints relate the distribution of the missing data
to that of the observed data. Because there are no data to estimate the identifying constraints, it is useful
to have intuitive and easy-to-use parameters, which can then be evaluated using a sensitivity analysis. We
propose the following parameterization.

Let p(0)
gk = Pr(Yk = 1|Yk−1 = 0, Trt = g, R > k) be the probability of an event in(tk−1, tk] for

subjects who are at risk and observed in(tk−1, tk]. Let N(0)
gk be the number of subjects at risk and observed

in (tk−1, tk], ande(0)
gk be the number of events that occurred in(tk−1, tk] among these subjects. Next, let

p(r )
gk = Pr(Yk = 1|Yk−1 = 0, Trt = g, R = r ) be the probability of an event in(tk−1, tk] for subjects

censored in(tr −1, tr ] who would be at risk attk−1 for 0 < r 6 k. Last, letN(r )
gk be the number of subjects

censored in(tr −1, tr ] who would have been at risk attk−1, ande(r )
gk be the number of events occurring in

(tk−1tk] among these subjects. Then,

e(r )
gr |cgr , p(r )

gr ∼ Bin(N(r )
gr , p(r )

gr ),

and fork > r > 0,

e(r )
gk |e(r )

gr , e(r )
gr+1, . . . , e(r )

gk−1, cgr p(r )
gk ∼ Bin(N(r )

gk , p(r )
gk ), (3.1)

whereN(r )
gr = cgr and N(r )

gk = N(r )
gk−1 − e(r )

gk−1 for k > r > 0. There are no data to estimate the pa-
rameters of the distribution (3.1). To overcome this problem, we relate the parameters of the distribu-
tion for the missing data to the parameters of the distribution for the observed data, using the following
parameterization:
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p(r )
gk

1 − p(r )
gk

= λ̃grk
p(0)

gk

1 − p(0)
gk

(3.2)

for anyk > 0, 0 < r 6 k, andg. Here,λ̃grk is the odds ratio of having an event in(tk−1, tk], being at
risk attk−1, between those subjects in missing patternr (censored in(tr −1, tr ]), and the observed subjects
in (tk−1, tk] for groupg. Theλ̃grk parameters measure the departure from MAR and cannot be estimated
from the data. We assume thatλ̃grk has a log-normal prior distribution with meanlgrk and variancec2l 2

grk,
wherec is the coefficient of variation. Thelgrk andc parameters are used for sensitivity analysis, where
lgrk = 1 andc = 0 correspond to MAR, satisfying the ACMV constraint. Note that for time-to-event

outcomes (whereYk = 1 ⇒ Yk′ = 1, ∀ k
′

> k), the ACMV restriction is equivalent top(r )
gk = p(0)

gk ,
∀ k > 0, ∀ r 6 k. Indeed, f (yk|y0, y1, . . . , yk−1) = f (yk|yk−1); and becausef (yk = 1|yk−1 = 1, R =
r ) = f (yk = 1|yk−1 = 1, R > k) = 1, the only requirement for ACMV isf (yk = 1|yk−1 = 0, R =
r ) = f (yk = 1|yk−1 = 0, R > k) or equivalentlyp(r )

gk = p(0)
gk , ∀ k > 0, 0< r 6 k, andg.

In the longitudinal setting, withK follow-up measures, up toK + 1 missing-data patterns can occur,
resulting in a maximum ofK ×(K +1)/2 constraints (̃λgrk indices) for each group required to identify the
model. AsK increases, the number of identifying parameters become too large to be feasible for sensitiv-
ity analysis. Therefore, it is important to reduce the dimension of the space for the sensitivity parameters.
For example,Scharfsteinand others(2001) introduced a parametric function for their sensitivity param-
eters;Birminghamand others(2003) reduced the dimension of their sensitivity parameters by assuming
all to be the same.

Here, we reduce the dimension of the sensitivity space by introducing a prior distribution for the
identifying parameters̃λgrk with mean,E(λ̃grk) = lg, yet we introduce random variation that allows each
λ̃grk to vary within a range for differentr andk. Thus,λ̃grk are consider random variables from a log-

normal prior distribution log(λ̃grk) ∼ N
(
log(lg)−

log(1+c2)
2 , log(1+c2)

)
, (this corresponds toE(λ̃grk) =

lg and Var(λ̃grk) = c2l 2
g). Here,lg andc are second-order sensitivity parameters:lg indicates the average

difference from MAR, andc indicates the degree of the random variation (potential dissimilarities) across
different patterns and over time. A coefficient ofc = 0 corresponds to a deterministic constraint, whereas
c > 0 corresponds to a stochastic constraint that becomes less informative asc increases. As in complete
case analysis, we test the null hypothesis of no difference between 2 curves using theZ distance (2.3).

3.1 Fitting the model

We fit our model following a full Bayesian approach, where the quantities of interest are the cumulative
incidence curves for each group as if no subject dropped out:Ig(tk) = 1 −

∑k
j =1(1 − pgj ). Here, pgj

is the probability of having an endpoint in(t j −1,t j ] interval for subjects who would have been at risk at

t j −1, this includes both observed and censored subjects. Under PM specificationpgj =
∑ j

r =0 π
(r )
g j p(r )

g j ,

whereπ
(r )
g j is the weight (proportion) of the dropout patternr at time j for each group. Here,πg j =

(π
(0)
g j , π

(1)
g j , . . . , π

( j )
g j ) are not observed and thus are unknown parameters.

Under a fully Bayesian approach, the inferences are derived from the joint posterior distribution
[π(R)

g , e(R)
g , λ̃g, p(0)

g |Data, lg, c]. Where Data={e(0)
g1 , e(0)

g2 , . . . , e(0)
gK , cg1, . . . , cgK , Ng|g = 0, 1}; p(0)

g =

(p(0)
g1 , p(0)

g2 , . . . , p(0)
gK ) is the set of parameters for the observed data;e(R)

g = (e(1)
g1 , e(1)

g2 , . . . , e(1)
gK , . . . , e(r )

gr ,

e(r )
gr+1, . . . , e(r )

gK , . . . , e(K )
gK ) are the unobserved data for the censored subjects;π

(R)
g = (π

(0)
g1 , π

(1)
g1 , π

(0)
g2 ,

π
(1)
g2 , π

(2)
g2 , . . . , π

(0)
gK , π

(1)
gK , . . . , π

(K )
gK ) are the proportions of subjects who would be at risk at a given time

for each missing-data pattern; andλ̃g = (λ̃g11, λ̃g12, . . . , λ̃g1K , . . . , λ̃grr , λ̃grr +1, . . . , λ̃gr K , . . . , λ̃gK K ).
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Draws from this posterior distribution are obtained using the following partition:

[π(R)
g , e(R)

g , λ̃g, p(0)
g |Data, lg, c] = [λ̃g|Data, lg, c]

︸ ︷︷ ︸
1: Log−Normal

[ p(0)
g |λ̃g, Data, lg, c]

︸ ︷︷ ︸
2: Beta

[e(R)
g |λ̃g, p(0)

g , Data, lg, c]
︸ ︷︷ ︸

3: Binomial

[π(R)
g |e(R)

g , λ̃g, p(0)
g , Data, lg, c]

︸ ︷︷ ︸
4: Dirichlet

.

We sequentially draw values based on this partition as described in the following steps.
1.Draw from [λ̃g|Data, lg, c][λ̃g|Data, lg, c][λ̃g|Data, lg, c]. In a PM setting, the data provide no evidence for sensitivity parameters,

[λ̃g|Data, lg, c] = [λ̃g|lg, c] (Little, 1995). Thus,λ̃grk are drawn from

log(λ̃grk) ∼ N

(

log(lg) −
log(1 + c2)

2
, log(1 + c2)

)

.

2. Draw from [ p(0)
g |λ̃g, Data, lg, c][ p(0)
g |λ̃g, Data, lg, c][ p(0)
g |λ̃g, Data, lg, c]. First note that within the PM approach, the fit of the model to the

observed data is identical for all choices of sensitivity parameters or [p(0)
g |λ̃g, Data, lg, c] = [ p(0)

g |Data]

(Little, 1995). Let Ng be the initial number of subjects att = 0, let e(0)
gk andcgk be the number of the

observed events and the censored subjects in the(tk−1, tk] interval (g = 0, 1). Then,

e(0)
gk |e(0)

g1 , . . . , e(0)
gk−1, cg1, . . . , cgk, Ng, p(0)

gk ∼ Bin(N(0)
gk , p(0)

gk ),

whereN(0)
gk is the number of subjects at risk and observed in the(tk−1, tk]: N(0)

gk = Ng −
∑k−1

j =0 e(0)
g j −

∑k
j =1 cgj for k = 1, . . . , K , and e(0)

g0 = 0. We assume noninformative independent priorsp(0)
gk ∼

Beta(0.001, 0.001) from which

p(0)
gk |e(0)

g1 , . . . , e(0)
gk−1, cg1, . . . , cgk, Ng ∼ Beta(e(0)

gk + 0.001, N(0)
gk − e(0)

gk + 0.001).

3. Draw from [e(R)
g |p(0)

g , λ̃g, Data, lg, c][e(R)
g |p(0)

g , λ̃g, Data, lg, c][e(R)
g |p(0)

g , λ̃g, Data, lg, c]. Whenk > 1 and 0< r 6 k, let N(r )
gk be the number of

subjects censored at visitr who would have been at risk for an event at visitk (no event bytk−1). Let e(r )
gk

be the number among theseN(r )
gk subjects who would have had the event in the(tk−1, tk] interval. Then,

e(r )
gr |cgr , p(r )

gr ∼ Bin(N(r )
gr , p(r )

gr )

and fork > r ,
e(r )

gk |e(r )
gr , e(r )

gr+1, . . . , e(r )
gk−1, cgr , p(r )

gk ∼ Bin(N(r )
gk , p(r )

gk ).

where from (3.2),

p(r )
gk =

p(0)
gk λ̃grk

1 − p(0)
gk (1 − λ̃grk)

. (3.3)

Here,N(r )
gr = cgr , andN(r )

gk = N(r )
gk−1 − e(r )

gk−1 for k > r . Within this step, the draw ofe(r )
g is sequential,

specifically,e(r )
gr is drawn first, and thene(r )

gr+1 up toe(r )
gK are drawn next, sequentially conditioned on the

previous draws. IfN(r )
gk = 0, thene(r )

gk = 0.
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4. Draw from [π(R)
g |e(R)

g , p(0)
g , λ̃g, Data, lg, c][π(R)

g |e(R)
g , p(0)

g , λ̃g, Data, lg, c][π(R)
g |e(R)

g , p(0)
g , λ̃g, Data, lg, c]. Here, π(r )

gk , r = 1, 2, . . . , k, is the proportion of
subjects who belong to missing-data patternr at timetk among subjects who would be at risk at the be-
ginning of(tk−1, tk] interval;π(0)

gk corresponds to the proportion of subjects who are at risk and observed
in (tk−1, tk] interval. Then for eachk,

(N(0)
gk , N(1)

gk , . . . , N(k)
gk ) ∼ Multinomial(π(0)

gk , π
(1)
gk , . . . , π

(k)
gk ).

Assuming a noninformative Dirichlet prior distribution forπgk = (π
(0)
gk , π

(1)
gk , . . . , π

(k)
gk ) with parameters

a(r )
gk = 0.01,πgk are drawn from the corresponding posterior Dirichlet distributionD

( N(0)
gk

Ngk
+ a(0)

gk ,
N(1)

gk
Ngk

+

a(1)
gk , . . . ,

N( j )
gk

Ngk
+ a(k)

gk

)
.

5. Derive draws of marginal parameters pgpgpg. For each draw ofp(0)
gk , λ̃grk, andπ

(r )
gk , the marginal

parameterspgk are calculated aspgk =
∑k

r =0 π
(r )
gk p(r )

gk , wherep(r )
gk for r > 0 is derived from (3.3).

5A. Draws of marginal parameterspgpgpg. Instead of computingpgk in Step (5), we can simulate draws
of pgk from the completed data. This can be viewed as a multiple imputation version of Step 5 and has

been proposed inDemirtas and Schafer(2003). Thus, under this approach, oncee(r )
gk are drawn/imputed,

the draws forpgk are obtained based on the imputed data set as if there were no censoring. For each
pgk, we assume a noninformative prior distribution, Beta(0.001, 0.001), independent of each other, which
results in the following posterior distributions:

pgk|eg1, . . . , egk, Ng ∼ Beta



egk + 0.001, Ng −
k∑

j =1

egj + 0.001



 .

Here,egk =
∑k

r =0 e(r )
gk , wheree(0)

gk are observed ande(r )
gk are draws from Step 3. Though Step 5 is probably

most computationally efficient, but this alternative step is much easier to implement in available software
packages such as WinBUGS. Applying either Step 5 or 5A to the smaller data set analyzed in Section6,
we obtained identical results up to the third decimal. For the TROPHY data, which has a larger number
of missing-data patterns, we used the Step 5A approach. Note that, for MAR case (lg = 1, c = 0), thepg

(based on the full imputed data) was the same asp(0)
g (based on the observed data) as expected.

Sensitivity analysis.We vary lg and c to perform sensitivity analysis. When the missing data are
MAR, then allλ̃grk = 1 or lg = 1 andc = 0; thuslg andc can be considered ignorability indices. When
the missing data are MNAR, then not allλ̃grk equal to 1. Finding the best combination of sensitivity
parameters is usually not possible, but reasonable choices for such parameters can often suffice. For in-
stance, trying different values of sensitivity parameters in a neighborhood of the MAR (lg ≈ 1, small
c) could often provide reassuring information about whether the inferences are robust to moderately in-
formative censoring mechanisms. In addition, finding valueslg = l̄ g for which group comparisons are
just significant is also important. That is, finding how much different the censored data must be from the
observed data for treatment differences to be just significant.

Here,λ̃grk are interpretable and easy-to-use for sensitivity analysis. By considering them random, we
(1) provide a probabilistic range for differences among censored and observed subjects,(2) allow for
random variation on such differences across different missing-data patterns and over time,(3) reduce the
dimension of the sensitivity parameters’ space by using the shrinkage parameters (lg andc) for sensitivity
analysis, and(4) account for the overall uncertainty related to censoring by using Bayesian methods.
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4. MOTIVATION : TROPHY STUDY

The TROPHY (Julius and others, 2006) was an investigator-initiated study to examine whether early
treatment of prehypertension might prevent or delay the development of hypertension. Our primary
objective was to determine whether for patients with prehypertension, 2 years of treatment with candesar-
tan would reduce the incidence of hypertension for up to 2 years after active treatment was discontinued.

The study consisted first of a 2-year double-blind placebo-controlled phase; followed by a 2-year
phase in which all study patients received a placebo. Subjects were examined every 3 months as well as
1 month after the beginning of each phase.

4.1 Primary event

The development of hypertension was chosen as the primary study event. It was defined as the first occur-
rence of any one of the following: (i) systolic blood pressure (SBP)>140 and/or diastolic blood pressure
(DBP) > 90 mmHg at any 3 visits during the 4 years of the study; (ii) SBP> 160 and/or DBP>100
mmHg at any visit during 4 years; (iii) SBP>140 and/or DBP>90 mmHg at the end of the study; and
(iv) patients requiring treatment as decided by the attending physician. After an event occurred, antihy-
pertension treatment with metoprolol, hydrochlorothiazide, or other medications, with the exception of
angiotensin-receptor blockers, was offered at no cost.

The “3 times in 4 years” definition of hypertension differs from more contemporary accepted definition
of hypertension based on the guidelines published in the Seventh Report of the Joint National Committee
on Hypertension (JNC 7). Following the new guidelines, patients with an average clinic reading of systolic
140 mmHg or higher and/or diastolic of 90 mmHg or higher on 2consecutive clinic visits are now
considered to need treatment for hypertension. TROPHY results are published for both definitions (Julius
and others, 2006, 2008). We focus here on the sensitivity analysis for the definition of hypertension that
follows the current JNC 7 guidelines.

4.2 Censored data

Data in TROPHY are censored for 2 reasons:(1) if subjects dropout before the event or(2) if subjects
violated the protocol. The violation is related to a post hoc change in the definition of the hypertension.
That is, a subject who satisfied the 3 times in 4 years criteria of hypertension may not have had 2 consecu-
tive readings of SBP>140 and /or DBP>90 and so would not be considered as hypertensive based on the
new definition. Following the protocol, treatment of blood pressure (BP) was initiated for such subjects
an thus the follow-up BP data are affected and cannot be used.

The intention-to-treat population for the study consisted of 772 patients randomly assigned to can-
desartan (391) or placebo (381). Among the 772 participants, 109 (54 in placebo) dropped out before
developing hypertension. When the new definition of hypertension was used, 92 subjects, classified with
hypertension based on the original definition, did not satisfy the new definition (JNC 7). Following the
protocol, these subjects received antihypertension treatment, therefore, they are censored at the time the
treatment was initiated for the analysis using the new event definition. In addition, 2 subjects who had
dropped out satisfy the new event definition. Thus, the number of subjects with a missing event per the
new definition is increased to 199 (101 in placebo). Figure1 shows the rate of censoring, which is higher
for subjects in the placebo group.

5. APPLICATION

In this section, we apply the method developed in Section3 to the data from the TROPHY study using
WinBUGS1.4 (Spiegelhalterand others, 2003). The effect of candesartan compared with a placebo is
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Fig. 1. PL estimate for time-to-dropout in placebo and candesartan group.

estimated over the entire study period as well as its end. Different scenarios about the censoring mechanism
are considered to assess the effect of the censored data on the final results. We perform a local sensitivity
analysis around the region where missing-data mechanism is MAR (c = 0, l0 = l1 = 1). We consider
c = 0, c = 0.5, andc = 1 with lg varying between 0.8 and 1.2. A value oflg > 1 indicates that, on
average, the censored subjects are more likely to develop hypertension than the observed subjects and the
opposite would be true forlg < 1. In addition, sensitivity analyses based on assumptions that make the
treatment effect just significant,lg = l̄ g, are also included. The results of sensitivity analysis are shown
in Table1. Figure2 shows the cumulative incidence curves of hypertension for the 2 groups for different
values forl0 andl1 andc = 0.5. The sensitivity analysis shows that the effect of candesartan varies by the
assumptions made about the censored data and that the impact of the assumed censoring mechanism on
the incidence curves increases over time. That reflects the fact that the cumulative number of the censored
subjects that contribute to estimation of the incidence curves increases over time. The bold lines corre-
spond to noniformative censoring,l0 = l1 = 1 andc = 0, and are the same as the PL estimates derived
from a frequentist approach using Proc Lifetest in SAS.

The incidence of hypertension at 48 months ranges from 58.6% to 62.1% for the placebo group and
from 49.6% to 52.8% for the candesartan group. The overall incidence of hypertension over time is signif-
icantly lower in candesartan group for all the assumed scenarios in Table1. The incidence of hypertension
at 48 months is also lower for the candesartan group under all assumed scenarios; but findings become
borderline or nonsignificant for censoring mechanisms that increasingly favor the placebo group. For ex-
ample, in scenario 6b, where the censored subjects compared with the observed subjects (in any interval)
are on average 1.32 (95% credible interval [0.47; 2.98]) times more likely to develop hypertension in the
candesartan group but are just as likely (95% credible interval [0.36; 2.26]) in the placebo group, then the
group difference at 48 months is just significant. In scenario 5b, where the censored subjects compare with
the observed subjects are on average 1.2 (95% credible interval [0.43; 2.71]) times more likely to develop
hypertension in the candesartan group, but 0.8 times as likely (95% credible interval [0.28; 1.81]) in the
placebo group, the effect of candesartan is nonsignificant at 48 months,p = 0.087. Under noninformative
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Table 1. Sensitivity analysis under different censoring mechanisms

Placebo Candesartan p value Z Z
I48 (95% CR) I48 (95% CR) (48 months) mean (SD) p value

c = 0
1a l0 = 1, l1 = 1 60.8 (55.1–66.4) 50.9 (45.3–56.6) 0.015 0.296 (0.049)<0.0001
2a l0 = 1.2,l1 = 1 62.1 (56.3–67.7) 50.9 (45.4–56.6) 0.007 0.309 (0.050)<0.0001
3a l0 = 1, l1 = 1.2 60.8 (55.1–64.4) 52.2 (46.5–57.8) 0.034 0.288 (0.049)<0.0001
4a l0 = 1.2,l1 = 0.8 62.0 (56.3–67.7) 49.6 (44.1–55.2) 0.002 0.317 (0.049)<0.0001
5a l0 = 0.8,l1 = 1.2 59.4 (53.8–65.0) 52.2 (46.5–57.8) 0.074 0.273 (0.048)<0.0001
6a l0 = 1, l1 = 1.32 60.8 (55.2–66.4) 52.8 (47.2–58.4) 0.05 0.283 (0.049)<0.0001
7a l0 = 0.72, l1 = 1 58.8 (53.3–64.3) 50.9 (45.4–56.6) 0.05 0.275 (0.048)<0.0001

c = 0.5
1b l0 = 1, l1 = 1 60.7 (55.0–66.3) 50.8 (45.2–56.5) 0.016 0.295 (0.049)<0.0001
2b l0 = 1.2,l1 = 1 61.9 (56.1–67.6) 50.8 (45.2–56.5) 0.007 0.308 (0.050)<0.0001
3b l0 = 1, l1 = 1.2 60.7 (55.0–66.4) 52.0 (46.3–57.7) 0.034 0.288 (0.049)<0.0001
4b l0 = 1.2,l1 = 0.8 61.9 (56.2–67.6) 49.5 (44.0–55.1) 0.002 0.316 (0.050)<0.0001
5b l0 = 0.8,l1 = 1.2 59.3 (53.7–64.9) 52.0 (46.3–57.7) 0.017 0.273 (0.049)<0.0001
6b l0 = 1, l1 = 1.32 60.7 (55.0–66.3) 52.7 (46.9–58.3) 0.05 0.283 (0.050)<0.0001
7b l0 = 0.73, l1 = 1 58.8 (53.2–64.4) 50.8 (45.2–56.6) 0.05 0.275 (0.048)<0.0001

c = 1.0
1c l0 = 1, l1 = 1 60.5 (54.8–66.2) 50.6 (44.9–56.3) 0.016 0.294 (0.049)<0.0001
2c l0 = 1.2,l1 = 1 61.7 (55.9–67.4) 50.6 (45.0–56.3) 0.008 0.307 (0.050)<0.0001
3c l0 = 1, l1 = 1.2 60.5 (54.8–66.2) 51.7 (46.0–57.4) 0.033 0.287 (0.050)<0.0001
4c l0 = 1.2,l1 = 0.8 61.7 (55.9–67.4) 49.6 (44.1–55.2) 0.002 0.317(0.049)<0.0001
5c l0 = 0.8,l1 = 1.2 59.2 (53.5–64.8) 51.7 (46.0–57.4) 0.068 0.274 (0.048)<0.0001
6c l0 = 1, l1 = 1.32 60.5 (54.7–66.2) 52.3 (46.6–58.1) 0.05 0.283 (0.050)<0.0001
7c l0 = 0.72, l1 = 1 58.6 (53.0–64.2) 50.6 (44.9–56.3) 0.05 0.274 (0.048)<0.0001

censoring mechanism the incidence of hypertension at 48 months was lower for the candesrtan group, at
50.9%, compared with the placebo group, 60.8%. Finally, when comparing the overall incidence curves,
the significance is strong regardless of the censoring mechanism. This is because large differences be-
tween curves occur early when the number of the censored subjects is small, and thus such differences are
fairly robust to the assumptions on the censoring mechanism.

In summary, the differences in the incidence of hypertension between 2 groups over the entire study
are robust for different censoring mechanisms. However, the group differences at 48 months are more
sensitive to the censoring mechanism, varying from 12.4% under scenario 4a to 7.2% under scenario
5a. When the censoring mechanism is noninformative, a 2-year treatment with candesartan reduces the
incidence of hypertension at 4 years by 9.9% (95% credible interval [1.9; 17.8]). In addition, the effect
candesartan treatment is robust around a local region of the MAR mechanism. It would take differences
on the odds of developing hypertension among dropouts favoring placebo (scenarios 6–7) for the effect of
treatment to become borderline significant.

6. COMPARATIVE STUDIES

The proposed model can be directly applied to other studies with similar design. For illustration as well as
comparison with other alternative approaches, we apply our method to the data analyzed byScharfstein
and others(2001) (SRER), which are relevant for this setting. SRER analyzed data from a randomized
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Fig. 2. Sensitivity analysis for cumulative incidence of hypertension between placebo and candesartan groups over a
48-month period. Bold lines correspond to noninformative censoring,l0 = l1 = 1 andc = 0.

clinical trial focusing on the effect of 2 mg risperidone in treating schizophrenia. The endpoint outcome
was defined as a 20% or more reduction in the Positive and Negative Symptom Scale relative to the base-
line value. The subjects were followed up at 1, 2, 4, 6, and 8 weeks; data are shown in their Table1 (for full
details of the study refer to their paper). Following a selection model approach, SRER propose a model to
perform sensitivity analysis under different censoring mechanisms by introducing censoring bias functions
qt , for t = 1, 2, . . . , K . They used intuitive parametric functionsqt (T; α, Trt = g) = αg{T − (t + 1)}
to reduce the number of the sensitivity parameters but, as the authors pointed out in their discussion, one
can consider an infinite number of forms forqt , and therefore the results of the sensitivity analysis would
be specific to the parametric functionsqt . Specifically, they chose a parameterization whereα is the log-
odds ratio of dropping out betweent and t + 1 per unit increase inT for subjects who were at risk at
t . As an alternative, we propose a full Bayesian approach within a PM setting using intuitive identifying
parameters̃λr t , for sensitivity analysis, which are assumed random following a log-normal distribution:
E(λ̃r t ) = l , Var(λ̃r t ) = c2l 2. There is no an exact relationship between our identifying parameters,l and
c, and SRER sensitivity parameterα. However, our sensitivity parameters and theirs have an overall con-
nection in terms of measuring the degree and the nature of the departure from a noninformative censoring
mechanism.

Under noninformative censoringl = 1 andc = 0 that corresponds toα = 0. When censoring is
informative,l > 1(< 1) corresponds toα < 0(> 0). That is, anl > 1 indicates that compared with
the observed subjects, the censored subjects are more likely to have an endpoint int to t + 1 and so are
more likely to have a shorter event timeT . Or equivalently, subjects with smallerT are more likely to
be censored, which corresponds to a negativeα. For small departures from a noninformative censoring
mechanism,l is close to 1, which corresponds toα close to 0.

Next, we apply our method to the data analyzed by SRER. Our results of the sensitivity analysis are
summarized in Figure3, which similar to Figure2(b) in SRER, showing a contour plot forpvalue =
0.05. The region favoring risperidone is the upper left corner region ofl0, l1. That is consistent with
the corresponding region shown in SRER Figure2(b) (the lower right corner region ofα0, α1). Under
either approach, no significant difference appears atp 6 0.05 between treatment and placebo—assuming
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Fig. 3. Sensitivity analysis on the data from SRER.

noninformative censoring. However, it requires only small departures from a noninformative censoring
mechanism for the difference to become significant. For instance, treatment is better whenl0 = 1, l1 =
1.07, andc = 0.5. That is, the censored subjects compared with the observed subjects (in any interval)
are on average 1.07 times more likely to have an endpoint in the treatment group but are just as likely in
the placebo group. Both methods show that small departures from noninformative censoring mechanism
produce significant results.

The strength of our model lies in using a fully Bayesian approach with random sensitivity parameters,
which are easy-to-use, and at the same time does not assume a parametric function on the censoring mech-
anism. Alternatively, one could expect that if a good parametric function for the censoring mechanism is
known, the sensitivity analysis based on the correct specification of such function might well be more
efficient.

7. CONCLUDING REMARKS

In this paper, we presented a Bayesian model for time-to-event data with informative censoring. We ap-
proached the missing data problem by using a PM model, which is identified by introducing an intuitive
parameterization. The identifying parameters,λ̃grk, are defined for each groupg as: the odds ratio of
having an endpoint in(tk−1, tk], conditioned on being at risk attk−1, between subjects from missing-data
patternr with the observed subjects in that interval (k = 1, . . . , K ). Sensitivity analyses are performed
using different prior distributions of̃λgrk. Even though the distribution of̃λgrk is unknown, it is possi-
ble for a subject matter expert to give it a range and then explore the sensitivity of statistical inferences
over such a range. The new parameterization is a nonparametric approach for modeling the censoring
mechanism; and therefore is robust to model misspecification that may result from parametric modeling.
However, when the number of follow-up visits increases, so does the number of the sensitivity param-
eters under a nonparametric approach; and soon a fully unrestricted nonparametric approach becomes
impractical. The robustness of modeling the correct dropout mechanism and reducing the number of the
sensitivity parameters are competing requirements requiring compromise and adjustment according to the
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specific problem. We reduced the dimensionality of the sensitivity space by using a stochastic constraint
to incorporate different levels of uncertainty. That is, we letλ̃grk follow a log-normal distribution with
meanlg and variancec2l 2

g. Then the set of the sensitivity parameters is reduced tolg andc. Our proposed
parameterization is flexible for sensitivity analysis and contains noninformative censoring as a special
case (lg = 1, c = 0). We assumed no knowledge onlg, and sensitivity analysis could be performed forlg
values close to 1.
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