Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 24;68(Pt 3):o849–o850. doi: 10.1107/S1600536812007374

(E)-N′-(3-Eth­oxy-4-hy­droxy­benzyl­idene)-4-meth­oxy­benzohydrazide

Hoong-Kun Fun a,*,, Premrudee Promdet b, Jirapa Horkaew b, Chatchanok Karalai b, Suchada Chantrapromma b,§
PMCID: PMC3297905  PMID: 22412708

Abstract

In the mol­ecule of the title benzohydrazide derivative, C17H18N2O4, the dihedral angle between the benzene rings is 6.86 (11)°. The meth­oxy group of the 4-meth­oxy­phenyl fragment deviates slightly [Cmethyl—O—C—C = 10.0 (4)°] with respect to the benzene ring, whereas the eth­oxy group of the 3-eth­oxy-4-hy­droxy­phenyl fragment is is almost coplanar [C—O—C—Cmethyl = 178.5 (2)°]. In the crystal, mol­ecules are linked by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds into a two-dimensional network parallel to the ab plane. C—H⋯π inter­actions and C⋯O [2.980 (3) Å] short contacts are also observed.

Related literature  

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2011); Horkaew et al. (2011); Promdet et al. (2011). For background and applications to benzohydrazide derivatives, see: Bedia et al. (2006); Loncle et al. (2004); Raj et al. (2007).graphic file with name e-68-0o849-scheme1.jpg

Experimental  

Crystal data  

  • C17H18N2O4

  • M r = 314.33

  • Orthorhombic, Inline graphic

  • a = 5.0607 (9) Å

  • b = 11.086 (2) Å

  • c = 27.629 (5) Å

  • V = 1550.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 297 K

  • 0.56 × 0.10 × 0.07 mm

Data collection  

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.948, T max = 0.993

  • 10252 measured reflections

  • 2637 independent reflections

  • 1921 reflections with I > 2σ(I)

  • R int = 0.100

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.154

  • S = 1.04

  • 2637 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812007374/rz2713sup1.cif

e-68-0o849-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007374/rz2713Isup2.hkl

e-68-0o849-Isup2.hkl (129.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007374/rz2713Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O3 0.82 2.41 2.683 (2) 100
O4—H1O4⋯O1i 0.82 2.21 2.981 (2) 156
N1—H1N1⋯O1ii 0.90 2.10 2.994 (3) 172
C10—H10A⋯O4iii 0.93 2.55 3.462 (3) 168
C16—H16BCg1i 0.97 2.68 3.499 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

PP thanks the Development and Promotion of Science and Technology Talents Project for a fellowship. JH thanks the Crystal Materials Research Unit, Prince of Songkla University, for financial support. PP and JH thank Dr Nawong Boonnak for useful suggestions. Mr Teerasak Anantapong, Department of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, is acknowledged for baterial assays. The authors thank the Prince of Songkla University and the Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

During the course of our on-going research on benzohydrazide derivatives, which have been reported to possess various biological properties such as antibacterial and antifungal (Loncle et al., 2004), antitubercular (Bedia et al., 2006) and antiproliferative (Raj et al., 2007) activities, the synthesis and crystal structures of benzohydrazide derivatives have been reported (Fun et al., 2011; Horkaew et al., 2011; Promdet et al., 2011). The title compound was synthesized and tested for its antioxidant and antibacterial activities and found to be inactive.

The molecule of the title benzohydrazide derivative (Fig. 1) exists in a trans-configuration with respect to the C8═N2 bond [1.286 (4) Å], as indicated by the torsion angle N1–N2–C8–C9 = -178.2 (2)°. The molecule is slightly twisted with the dihedral angle between the two benzene rings of 6.86 (11)°. The middle bridge fragment (O1/C7/N1/N2/C8) is planar with the torsion angle N2–N1–C7–O1 = 0.8 (4)° and the r.m.s. of 0.0360 (2) Å for the five non-H atoms. The mean plane through this bridge makes dihedral angles of 28.94 (15) and 26.51 (15)° with the C1–C6 and C9–C14 phenyl rings, respectively. The methoxy group of 4-methoxyphenyl is slightly twisted with respect to its bound benzene ring [torsion angle C15–O2–C4–C5 = 10.0 (4)°], whereas the ethoxy group of 3-ethoxy-4-hydroxyphenyl is co-planar with the torsion angle C11–O3–C16–C17 = 178.5 (2)°.

An intramolecular O4—H1O4···O3 hydrogen bond generates a S(5) ring motif (Bernstein et al., 1995). Bond distances are of normal values (Allen et al., 1987) and are comparable with those found in related structures (Fun et al., 2011; Horkaew et al., 2011; Promdet et al., 2011).

In the crystal packing (Fig. 2), the molecules are linked by N—H···O and O—H···O hydrogen bonds and weak C—H···O interactions (Table 1) into a two-dimensional network paralell to the ab plane. The crystal is further stabilized by C—H···π weak interaction (Table 1). A C8···O4iv [2.980 (3) Å: (iv) = -x, 1/2+y, 1/2+z] short contact was observed.

Experimental

The title compound was prepared by dissolving 4-methoxybenzohydrazide (2 mmol, 0.30 g) in ethanol (10 ml). A solution of 3-ethoxy-4-hydroxybenzaldehyde (2 mmol, 0.30 g) in ethanol (10 ml) was then added slowly to the reaction. The mixture was refluxed for about 5 h and a white solid appeared. The mixture was then cooled to room temperature and filtered. Colourless needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature after several days. M. p. 486-488 K.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(N-H) = 0.90 Å, d(O-H) = 0.82 Å, d(C-H) = 0.93 Å for aromatic and CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq(C, N, O) for methyl, hydroxy and amine H atoms and 1.2Ueq(C) for the remaining H atoms. A rotating group model was used for the methyl groups. 1879 Friedel pairs were merged. Three outliers (2 1 1, 1 4 0, 3 2 12) were omitted for the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 45% probability displacement ellipsoids. Hydrogen bond are drawn as dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C17H18N2O4 Dx = 1.347 Mg m3
Mr = 314.33 Melting point = 486–488 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2637 reflections
a = 5.0607 (9) Å θ = 1.5–30.1°
b = 11.086 (2) Å µ = 0.10 mm1
c = 27.629 (5) Å T = 297 K
V = 1550.1 (5) Å3 Needle, colorless
Z = 4 0.56 × 0.10 × 0.07 mm
F(000) = 664

Data collection

Bruker APEX DUO CCD area-detector diffractometer 2637 independent reflections
Radiation source: sealed tube 1921 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.100
φ and ω scans θmax = 30.1°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −7→7
Tmin = 0.948, Tmax = 0.993 k = −15→15
10252 measured reflections l = −38→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0865P)2 + 0.0494P] where P = (Fo2 + 2Fc2)/3
2637 reflections (Δ/σ)max = 0.001
210 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.7066 (4) 0.1645 (2) 0.40465 (7) 0.0575 (5)
O2 0.2255 (5) −0.16566 (19) 0.57022 (7) 0.0623 (6)
O3 0.5434 (4) 0.52128 (16) 0.19944 (6) 0.0450 (4)
O4 0.2111 (4) 0.70975 (15) 0.20065 (7) 0.0499 (5)
H1O4 0.2354 0.6755 0.1747 0.075*
N1 0.2812 (5) 0.2287 (2) 0.40261 (8) 0.0445 (5)
H1N1 0.1137 0.2022 0.4041 0.067*
N2 0.3378 (5) 0.30448 (19) 0.36411 (8) 0.0465 (5)
C1 0.4040 (5) 0.0790 (2) 0.46083 (9) 0.0390 (5)
C2 0.5413 (6) −0.0295 (3) 0.46673 (9) 0.0469 (6)
H2A 0.6794 −0.0482 0.4458 0.056*
C3 0.4754 (7) −0.1084 (2) 0.50282 (9) 0.0518 (7)
H3A 0.5660 −0.1810 0.5057 0.062*
C4 0.2741 (6) −0.0809 (2) 0.53512 (9) 0.0460 (6)
C5 0.1377 (7) 0.0268 (3) 0.53087 (10) 0.0516 (7)
H5A 0.0048 0.0464 0.5527 0.062*
C6 0.2019 (6) 0.1050 (2) 0.49356 (10) 0.0471 (6)
H6A 0.1079 0.1766 0.4902 0.057*
C7 0.4803 (5) 0.1604 (2) 0.42070 (9) 0.0415 (5)
C8 0.1489 (6) 0.3765 (2) 0.35246 (9) 0.0439 (6)
H8A −0.0064 0.3750 0.3705 0.053*
C9 0.1701 (5) 0.4600 (2) 0.31206 (9) 0.0394 (5)
C10 0.3601 (5) 0.4457 (2) 0.27571 (9) 0.0387 (5)
H10A 0.4775 0.3812 0.2770 0.046*
C11 0.3739 (5) 0.5275 (2) 0.23787 (8) 0.0363 (5)
C12 0.2013 (5) 0.6265 (2) 0.23665 (9) 0.0374 (5)
C13 0.0117 (6) 0.6400 (2) 0.27242 (9) 0.0438 (6)
H13A −0.1046 0.7049 0.2714 0.053*
C14 −0.0044 (6) 0.5566 (2) 0.30982 (9) 0.0455 (6)
H14A −0.1331 0.5656 0.3336 0.055*
C15 −0.0056 (8) −0.1503 (4) 0.59944 (11) 0.0733 (10)
H15A −0.0236 −0.2179 0.6209 0.110*
H15B −0.1585 −0.1453 0.5790 0.110*
H15C 0.0102 −0.0776 0.6180 0.110*
C16 0.7123 (5) 0.4166 (2) 0.19693 (9) 0.0417 (5)
H16A 0.6065 0.3437 0.1961 0.050*
H16B 0.8265 0.4133 0.2251 0.050*
C17 0.8749 (7) 0.4267 (3) 0.15168 (9) 0.0539 (7)
H17A 0.9934 0.3593 0.1496 0.081*
H17B 0.9749 0.5003 0.1525 0.081*
H17C 0.7603 0.4270 0.1240 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0414 (11) 0.0677 (13) 0.0635 (12) 0.0013 (10) 0.0107 (10) 0.0136 (11)
O2 0.0805 (16) 0.0535 (11) 0.0528 (10) −0.0074 (11) 0.0050 (12) 0.0097 (10)
O3 0.0437 (10) 0.0448 (9) 0.0465 (9) 0.0102 (8) 0.0082 (9) 0.0071 (8)
O4 0.0578 (12) 0.0402 (8) 0.0519 (10) 0.0089 (8) 0.0092 (10) 0.0100 (8)
N1 0.0411 (12) 0.0485 (11) 0.0439 (11) −0.0042 (9) 0.0058 (10) 0.0092 (9)
N2 0.0441 (13) 0.0508 (11) 0.0445 (11) −0.0076 (10) 0.0024 (11) 0.0059 (10)
C1 0.0379 (13) 0.0411 (11) 0.0380 (12) −0.0011 (10) −0.0006 (10) −0.0033 (9)
C2 0.0437 (15) 0.0510 (13) 0.0461 (13) 0.0085 (11) 0.0032 (12) −0.0063 (12)
C3 0.0602 (18) 0.0456 (13) 0.0496 (15) 0.0083 (13) −0.0036 (14) 0.0001 (12)
C4 0.0525 (16) 0.0438 (12) 0.0416 (12) −0.0070 (12) −0.0032 (12) −0.0025 (11)
C5 0.0522 (17) 0.0563 (14) 0.0462 (14) 0.0015 (13) 0.0104 (13) 0.0041 (12)
C6 0.0467 (14) 0.0447 (12) 0.0500 (14) 0.0076 (11) 0.0051 (13) −0.0009 (11)
C7 0.0383 (13) 0.0431 (11) 0.0431 (12) −0.0021 (10) 0.0031 (12) −0.0028 (10)
C8 0.0413 (14) 0.0457 (12) 0.0448 (13) −0.0052 (11) 0.0028 (11) 0.0008 (10)
C9 0.0387 (13) 0.0383 (10) 0.0411 (12) −0.0036 (9) −0.0027 (11) 0.0007 (10)
C10 0.0353 (13) 0.0359 (10) 0.0448 (12) 0.0015 (9) −0.0023 (10) 0.0017 (9)
C11 0.0321 (11) 0.0354 (10) 0.0415 (11) −0.0018 (9) 0.0004 (10) −0.0005 (9)
C12 0.0350 (12) 0.0314 (9) 0.0457 (12) 0.0003 (9) −0.0014 (11) 0.0010 (9)
C13 0.0419 (14) 0.0344 (11) 0.0549 (14) 0.0030 (10) 0.0051 (13) −0.0016 (10)
C14 0.0430 (14) 0.0454 (12) 0.0480 (13) −0.0020 (11) 0.0075 (12) −0.0017 (11)
C15 0.069 (2) 0.099 (3) 0.0512 (16) −0.021 (2) 0.0028 (18) 0.0182 (18)
C16 0.0397 (13) 0.0379 (11) 0.0474 (13) 0.0053 (10) 0.0016 (12) 0.0000 (10)
C17 0.0583 (18) 0.0576 (15) 0.0460 (14) 0.0112 (14) 0.0044 (14) −0.0024 (12)

Geometric parameters (Å, º)

O1—C7 1.229 (3) C6—H6A 0.9300
O2—C4 1.373 (3) C8—C9 1.455 (3)
O2—C15 1.431 (5) C8—H8A 0.9300
O3—C11 1.366 (3) C9—C14 1.390 (4)
O3—C16 1.443 (3) C9—C10 1.400 (4)
O4—C12 1.358 (3) C10—C11 1.385 (3)
O4—H1O4 0.8198 C10—H10A 0.9300
N1—C7 1.356 (4) C11—C12 1.403 (3)
N1—N2 1.386 (3) C12—C13 1.386 (4)
N1—H1N1 0.8977 C13—C14 1.389 (3)
N2—C8 1.286 (4) C13—H13A 0.9300
C1—C6 1.396 (4) C14—H14A 0.9300
C1—C2 1.398 (4) C15—H15A 0.9600
C1—C7 1.481 (3) C15—H15B 0.9600
C2—C3 1.368 (4) C15—H15C 0.9600
C2—H2A 0.9300 C16—C17 1.501 (4)
C3—C4 1.388 (4) C16—H16A 0.9700
C3—H3A 0.9300 C16—H16B 0.9700
C4—C5 1.384 (4) C17—H17A 0.9600
C5—C6 1.385 (4) C17—H17B 0.9600
C5—H5A 0.9300 C17—H17C 0.9600
C4—O2—C15 117.6 (3) C11—C10—C9 120.1 (2)
C11—O3—C16 116.72 (18) C11—C10—H10A 119.9
C12—O4—H1O4 109.3 C9—C10—H10A 119.9
C7—N1—N2 117.9 (2) O3—C11—C10 125.8 (2)
C7—N1—H1N1 120.2 O3—C11—C12 114.3 (2)
N2—N1—H1N1 115.3 C10—C11—C12 119.9 (2)
C8—N2—N1 114.5 (2) O4—C12—C13 118.3 (2)
C6—C1—C2 117.8 (2) O4—C12—C11 121.8 (2)
C6—C1—C7 123.4 (2) C13—C12—C11 119.9 (2)
C2—C1—C7 118.8 (2) C12—C13—C14 119.9 (2)
C3—C2—C1 120.9 (3) C12—C13—H13A 120.0
C3—C2—H2A 119.5 C14—C13—H13A 120.0
C1—C2—H2A 119.5 C13—C14—C9 120.6 (2)
C2—C3—C4 120.5 (3) C13—C14—H14A 119.7
C2—C3—H3A 119.8 C9—C14—H14A 119.7
C4—C3—H3A 119.8 O2—C15—H15A 109.5
O2—C4—C5 124.2 (3) O2—C15—H15B 109.5
O2—C4—C3 115.8 (3) H15A—C15—H15B 109.5
C5—C4—C3 120.1 (3) O2—C15—H15C 109.5
C4—C5—C6 119.1 (3) H15A—C15—H15C 109.5
C4—C5—H5A 120.5 H15B—C15—H15C 109.5
C6—C5—H5A 120.5 O3—C16—C17 107.8 (2)
C5—C6—C1 121.7 (3) O3—C16—H16A 110.2
C5—C6—H6A 119.2 C17—C16—H16A 110.2
C1—C6—H6A 119.2 O3—C16—H16B 110.2
O1—C7—N1 122.6 (2) C17—C16—H16B 110.2
O1—C7—C1 122.4 (3) H16A—C16—H16B 108.5
N1—C7—C1 115.0 (2) C16—C17—H17A 109.5
N2—C8—C9 122.2 (2) C16—C17—H17B 109.5
N2—C8—H8A 118.9 H17A—C17—H17B 109.5
C9—C8—H8A 118.9 C16—C17—H17C 109.5
C14—C9—C10 119.5 (2) H17A—C17—H17C 109.5
C14—C9—C8 118.6 (2) H17B—C17—H17C 109.5
C10—C9—C8 122.0 (2)
C7—N1—N2—C8 −172.3 (2) N1—N2—C8—C9 −178.2 (2)
C6—C1—C2—C3 1.4 (4) N2—C8—C9—C14 −162.0 (3)
C7—C1—C2—C3 −179.0 (3) N2—C8—C9—C10 18.0 (4)
C1—C2—C3—C4 −1.6 (4) C14—C9—C10—C11 0.1 (4)
C15—O2—C4—C5 10.0 (4) C8—C9—C10—C11 −179.9 (2)
C15—O2—C4—C3 −170.4 (3) C16—O3—C11—C10 3.6 (3)
C2—C3—C4—O2 −179.4 (3) C16—O3—C11—C12 −175.6 (2)
C2—C3—C4—C5 0.3 (4) C9—C10—C11—O3 −177.6 (2)
O2—C4—C5—C6 −179.2 (3) C9—C10—C11—C12 1.6 (4)
C3—C4—C5—C6 1.2 (4) O3—C11—C12—O4 −1.8 (3)
C4—C5—C6—C1 −1.3 (4) C10—C11—C12—O4 178.9 (2)
C2—C1—C6—C5 0.1 (4) O3—C11—C12—C13 177.1 (2)
C7—C1—C6—C5 −179.5 (3) C10—C11—C12—C13 −2.2 (4)
N2—N1—C7—O1 0.8 (4) O4—C12—C13—C14 180.0 (2)
N2—N1—C7—C1 −178.3 (2) C11—C12—C13—C14 1.0 (4)
C6—C1—C7—O1 150.6 (3) C12—C13—C14—C9 0.7 (4)
C2—C1—C7—O1 −29.0 (4) C10—C9—C14—C13 −1.2 (4)
C6—C1—C7—N1 −30.2 (4) C8—C9—C14—C13 178.8 (2)
C2—C1—C7—N1 150.2 (2) C11—O3—C16—C17 178.5 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C9–C14 ring.

D—H···A D—H H···A D···A D—H···A
O4—H1O4···O3 0.82 2.41 2.683 (2) 100
O4—H1O4···O1i 0.82 2.21 2.981 (2) 156
N1—H1N1···O1ii 0.90 2.10 2.994 (3) 172
C10—H10A···O4iii 0.93 2.55 3.462 (3) 168
C16—H16B···Cg1i 0.97 2.68 3.499 (2) 142

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x−1, y, z; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2713).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645. [DOI] [PMC free article] [PubMed]
  6. Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985. [DOI] [PMC free article] [PubMed]
  7. Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071. [DOI] [PubMed]
  8. Promdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224. [DOI] [PMC free article] [PubMed]
  9. Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812007374/rz2713sup1.cif

e-68-0o849-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007374/rz2713Isup2.hkl

e-68-0o849-Isup2.hkl (129.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007374/rz2713Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES