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Abstract
Background—The D1275N SCN5A mutation has been associated with a range of unusual
phenotypes including conduction disease and dilated cardiomyopathy (DCM) as well as atrial and
ventricular tachyarrhythmias. However, when D1275N is studied in heterologous expression
systems, most studies show near-normal sodium channel function. Thus, the relationship of the
variant to the clinical phenotypes remains uncertain.

Methods and results—We identified D1275N in a patient with atrial flutter, atrial standstill,
conduction disease, and sinus node dysfunction. There was no major difference in biophysical
properties between wild-type and D1275N channels expressed in CHO or tsA201 cells in the
absence or presence of β1 subunits. To determine D1275N function in vivo, the Scn5a locus was
modified to knock out the mouse gene, and the full-length wild-type (H) or D1275N (DN) human
SCN5A cDNAs were then inserted at the modified locus using recombinase mediated cassette
exchange. Mice carrying the DN allele displayed slow conduction, heart block, atrial fibrillation,
ventricular tachycardia, and a DCM phenotype, with no significant fibrosis or myocyte disarray on
histological examination. The DN allele conferred gene-dose dependent increases in SCN5A
mRNA abundance, but reduced sodium channel protein abundance and peak sodium current
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amplitudes (H/H, −41.0±2.9 pA/pF at −30mV; DN/H, 19.2±3.1 pA/pF, P<0.001 versus H/H; DN/
DN, −9.3±1.1 pA/pF, P<0.001 versus H/H).

Conclusions—Although D1275N produces near normal currents in multiple heterologous
expression experiments, our data establish this variant as a pathological mutation that generates
conduction slowing, arrhythmias, and a DCM phenotype by reducing cardiac sodium current.
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genetics; ion channels; cardiomyopathy; electrophysiology

Introduction
Voltage-gated sodium channels play a critical role in the generation and propagation of the
cardiac action potential, and mutations in SCN5A, the gene encoding the major pore-forming
sodium channel α subunit in the heart (Nav 1.5), cause multiple inherited cardiac arrhythmia
syndromes including long QT syndrome, the Brugada syndrome, isolated cardiac conduction
disease, sinus node dysfunction, and atrial fibrillation.1–7 More recently, SCN5A mutations
have been associated with dilated cardiomyopathy (DCM), and such DCM mutations have
also been associated with a similar range of arrhythmias.8–15

The D1275N SCN5A mutation was initially reported in a Dutch family affected by atrial
standstill, mild conduction disease, and atrial enlargement, but no ventricular structural
abnormality; only subjects that carried a variant in the connexin 40 (Cx40) promoter
displayed the clinical phenotype.16 Subsequently D1275N was implicated in a large family
affected by DCM and various arrhythmias including sinus node dysfunction, atrial and
ventricular tachyarrhythmias, and conduction disease.8, 9, 17 Most recently, the mutation was
reported in a family with atrial tachyarrhythmias, conduction disease, and ventricular
enlargement without impaired contractility.18

Heterologous expression systems are conventionally used to assess function of ion channel
mutations.2, 19 Most studies (including our own data described below) that have compared
wild-type and D1275N channels in heterologous expression systems have not shown major
differences in the biophysical properties of the variant channel.16, 20 Thus, although the
mutation has been reported as a cause of unusual phenotypes in a number of kindreds, its
relationship to the clinical phenotypes remains uncertain.

To address this discrepancy, we have used recombinase-mediated cassette exchange21 to
engineer mice expressing the mutant human channel (here termed DN); we compared the
functional properties of these animals to those expressing wild-type human alleles (H), that
we previously generated in an identical fashion.21 The data demonstrate that D1275N causes
a severe defect in sodium channel function in vivo, consistent with the reported clinical
phenotypes.

Methods
Study subjects

The proband and family members were screened for mutations in SCN5A by PCR
amplification of coding regions and flanking intronic sequences, followed by direct
sequencing of amplicons on an ABI PRISM 3730 DNA Sequence Detection System
(Applied Biosystems, Foster City, CA). Informed consent was obtained for presentation of
the kindred.
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Animal model
All studies using animals were approved by the institutional animal care and use committees
at Vanderbilt University, and performed in accordance with NIH guidelines. We have
previously modified the Scn5a locus in mouse embryonic stem cells to enable the technique
of recombinase mediated cassette exchange.21–23 In our initial studies, we inserted the full-
length human SCN5A cDNA into the targeted locus.21 Mice homozygous for the exchanged
allele (termed H/H) expressed only the human allele and had normal electrocardiograms
(ECGs) and ventricular sodium current, supporting the hypothesis that expression of the
exchanged allele was under control of endogenous Scn5a regulatory mechanisms.

For the present study, we used the same technique to generate DN mice, in which the
exchanged construct was identical to that previously used for the H/H mice with the
exception of (1) a c.3823G→A mutation resulting in p.D1275N and (2) insertion of a FLAG
epitope between residues 153 and 154 of the extracellular linker S1-S2 in domain I; the
FLAG insertion into S1-S2 linker has previously been found to have no effect on channel
gating or cell surface expression.24, 25 We also generated FG mice bearing the wild-type
SCN5A allele with the FLAG tag. Initial matings between mice heterozygous for engineered
alleles resulted in H/H, DN/H, and FG/H mice, and these were then bred into the 129/Sv
background. H/H, DN/H, and DN/DN mice were generated from DN/H × DN/H matings
and H/H littermates were used as controls for all experiments. To genotype mice, genomic
DNA was isolated from mouse tails, the target SCN5A PCR amplicon (c.3688 to c.4082)
was incubated with Taq I (New England Biolabs, Ipswich, MA), and then was
electrophoresed in agarose gels. Taq1 digests the fragment containing p.D1275 but does not
digest that with p.N1275.

Surface electrocardiogram
ECGs were recorded during administration of isoflurane vapor titrated to maintain light
anesthesia.26 Baseline ECG (leads I and II) was recorded for 15 minutes. Heart rate was
measured as the average during a 30-second interval at baseline when a steady state was
reached during anesthesia. For measurement of all other ECG parameters, 30 seconds of
data in each lead were signal averaged using a custom-built LabVIEW program (National
Instruments, Austin, TX) and the resultant waveform was analyzed using an electric caliper
by an electrophysiologist blind to the genotype.27 The larger value from each lead was used.
QRS duration was measured from the first deflection of the Q-wave (or R-wave when the Q-
wave was absent) and the end of the S-wave defined as the point of minimum voltage in the
terminal phase of the QRS complex. QT interval was measured from the beginning of the
QRS complex to the end of the T-wave defined as the point where the T-wave merges with
the isoelectric line. Heart rate-corrected QT interval (QTc) was calculated using a formula
developed for mice: QTc = QT/(RR/100)1/2.28

Echocardiogram
Transthoracic echocardiograms were performed on resting conscious mice and analyzed by
a sonographer blind to the genotype. Signals were acquired using a 15-MHz transducer
(Sonos 5500 system, Agilent, Santa Clara, CA) at the Murine Cardiovascular Core,
Vanderbilt University as previously described.29

Histology
Hearts were fixed overnight in 10% formalin, paraffin embedded, sectioned at 5 µm, and
stained with Masson trichrome.
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mRNA quantitation
Real-Time PCR was conducted using a 7900HT Real-Time Instrument (Applied
Biosystems). mRNA was isolated from the left ventricles and cDNA was synthesized from 2
µg of the RNA using Transcriptor First Strand cDNA Synthesis Kit with random hexamer
primers (Roche Applied Science, Indianapolis, IL) and used as template. To generate a
standard curve for absolute quantification, genes of interest were subcloned into the pGEM-
T vector (Clontech, Mountain View, CA). cDNA and 5 different dilutions of the vector with
target DNA were prepared with pre-designed 6-carboxyfluorescein (FAM)-labeled
fluorogenic TaqMan probe and primers (Applied Biosystems) for SCN5A (Hs00165693_m1)
or β-actin (Mm00607939_S1) in triplicate in a same 94-well plate for real-time PCR
amplification. Data were collected with instrument spectral compensation and analyzed
using absolute quantification and a standard curve by SDS 2.2 software (Applied
Biosystems). Each value was normalized to that for β-actin.

Western blotting
Protein was extracted from flash frozen hearts that were pulverized into powder and
homogenized in a Dounce apparatus with 1×RIPA. Lysates were centrifuged at 10000 ×g for
five minutes and protein content was analyzed using a bicinchoninic acid assay (Pierce
Biochemicals, Rockford, IL). Forty to one hundred micrograms of protein from each cardiac
sample was separated by running the sample on a NuPage 8% Tris-Acetate gel (Invitrogen,
Carlsbad, CA). The protein was transferred to 0.2 µm nitrocellulose membranes (Amersham
Biosciences, Sweden) which were blocked overnight in (TTBS) 0.05%Tween-20 Tris-
buffed saline plus 5% non-fat dry milk at 4 °C, and then were incubated with antibodies
targeting anti-Nav1.5 (pAb 1:200, Alomone Labs, Israel), or anti-calnexin (pAb 1:1000,
Stressgen Bioreagents, Belgium) at room temperature for 2 hours. Membranes were washed
three times with TTBS for 10 minutes each and incubated with secondary anti-mouse and
anti-rabbit horseradish peroxidase-linked antibodies (Amersham Biosciences) in TTBS at
room temperature for 1 hour. The blots were then washed four times for 10 minutes each in
TTBS. We visualized antibody interactions using the ECL system (Amersham Biosciences).

Immunostaining/confocal microscopy
Unfixed hearts were frozen in Tissue Tek and sectioned at 6 µm. Sections were washed in
1× DPBS and then incubated in 1× DPBS containing 0.3% fish gelatin and 0.1% Triton
(block) for one hour at 4°C. Sections were immunostained with antibodies targeting anti-
Nav 1.5 (pAb 1:50, Alomone Labs) diluted in block solution overnight. Samples were then
washed three times and incubated with Allexa 488 conjugated goat anti-mouse IgG (1:400,
Invitrogen) secondary antibody for one hour at room temperature. Sections were then
washed and coverslips were applied with Vectashield (Vector Labs, Burlingame, CA).
Images were collected using a Zeiss LSM510 Meta confocal imaging system using 20×1.3
NA lens (pinhole equals one airy disc) with 2× zoom and analyzed using LSM 4.0 software.

Sodium current recordings
Sodium current was recorded using whole-cell voltage-clamp technique in single ventricular
myocytes isolated by a modified collagenase/protease method or in Chinese hamster ovary
(CHO) cells transiently expressing wild-type or D1275N SCN5A.21, 30, 31 The SCN5A DNA
(NM_198056) was subcloned into the pBK-CMV vector (Stratagene, La Jolla, CA) and the
mutation was prepared using the QuickChange II XL site-directed mutagenesis kit
(Stratagene) followed by verification by resequencing. SCN5A DNA (1 µg) was transfected
with the plasmid encoding the eGFP (pEGFP-IRES, Clontech) using Fugene6 (Roche
Applied Science, Indianapolis, IN) in CHO cells. Cells were grown for 48 hours after
transfection before study. Similar methods were used to study the biophysical properties of
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wild-type and D1275N sodium channels transfected with the sodium channel β1 subunit in
human embryonic kidney cells (tsA201). Late sodium current was measured at the end of
200-ms test pulses to −20 mV from a holding potential of −120 mV (interpulse duration, 5
s).

The extracellular bath solution contained (in mmol/l): 145 NaCl, 4.0 KCl, 1.0 MgCl2, 1.8
CaCl2, 10 glucose, 10 HEPES, pH 7.4 (NaOH) for sodium current recording in CHO and
tsA201 cells. Patch pipettes (~1.5 MΩ) contained (in mmol/l): 10 NaF, 110 CsF, 20 CsCl,
10 EGTA, and 10 HEPES, pH 7.4 (CsOH). To allow recording of sodium current in
cardiomyocytes, the external Na+ concentration was lowered to 5 mM, electrodes with tip
resistance <1 MΩ were used, and experiments were conducted at 18°C. Data acquisition was
carried out using an Axopatch 200B patch-clamp amplifier and pCLAMP software (version
9.2, Molecular Devices, Sunnyvale, CA). Currents were filtered at 5 kHz and digitized using
an analog-to-digital interface (Digidata 1322A, Molecular Devices). To minimize capacitive
transients, capacitance and series resistance were adjusted to 70–85%. Details of the pulse
protocols are presented schematically in the figures.

Action Potential Recordings
Action potentials from isolated mouse ventricular myocytes were elicited with injection of
brief stimulus current (1–2 nA, 2–6 ms) at 5 Hz in current clamp mode (Axopatch 200A
amplifier, Molecular Devices). The extracellular bath solution contained (in mmol/L): NaCl
140, KCl 5.4 , CaCl2 1.8, and MgCl2 1, HEPES 5, glucose 10, with a pH of 7.4 (adjusted by
NaOH). Patch pipettes contained (in mmol/L): KCl 110, K2-ATP 5, MgCl2 1, BAPTA 0.1,
HEPES 10, with a pH of 7.2 (adjusted by KOH). Microelectrodes of 3–5 MΩ were used.
Data acquisition was carried out using an Axopatch 200B patch-clamp amplifier and
pCLAMP. The action potential durations at 50% and 90% repolarization and the action
potential amplitude were measured.

Data analysis
Results are presented as mean±SEM. The unpaired t-test was used for comparisons of
electrophysiologic characteristics between D1275N and wild-type channels expressed in
heterologous expression systems. ANOVA followed by a post hoc analysis with Bonferroni
correction was used for all of comparisons among the genotypes of mice, except for the
linear mixed-effects models with Bonferroni correction for comparisons of in vitro
electrophysiologic characteristics of mice. All statistical analyses were performed with
SPSS, version 12.0 (SPSS Inc, Chicago, IL). A value of two-tailed P <0.05 was considered
statistically significant.

Results
Clinical case presentation

A 19-year-old Caucasian male (II-1) presented with recurrent exertional syncope (Figure
1A, arrow). Physical examination and echocardiography were normal, and his ECG
demonstrated unusually slow atrial flutter that was conducted 1:1 to the ventricles with
hypotension during exertion (Figure 1B). After catheter ablation of the cavotricuspid
isthmus for atrial flutter, he had atrial standstill, prolonged QRS duration, sinus node
dysfunction, high degree atrioventricular block, and normal QT interval. A cardioverter-
defibrillator was implanted, and he has been asymptomatic for 10 years and
echocardiography has been normal. We identified a missense mutation in SCN5A, c.
3823G→A in exon 21 (Figure 1C), resulting in p.D1275N within a transmembrane domain
of the protein (segment 3, domain III); the variant Cx40 associated with atrial standstill in
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the reported Dutch kindred was absent.16 Both his mother (I-2) and one son (III-2) share the
mutation but have no clinical findings.

D1275N mice are viable and display gene-dose-dependent conduction slowing and
arrhythmias

The distribution of pups from DN/H × DN/H matings was in Hardy-Weinberg equilibrium
(52 H/H, 107 DN/H, 54 DN/DN). During a follow-up of 12 weeks, one DN/DN mouse died
suddenly, but there were no deaths in DN/H or H/H mice. ECG recordings revealed that the
DN allele caused abnormal phenotypes in a gene-dose-dependent fashion at 3 weeks (Figure
2 A and 2B, Table 1). The DN allele was associated with slow heart rate and slow cardiac
conduction (prolongation of the P-wave duration, PR interval, and QRS duration) at 3 weeks
and similar changes were observed at 12 weeks. In mice with ECGs recorded at both 3 and
12 weeks, the prolongation of the P-wave duration, PR interval, and QRS duration
associated with the DN allele were progressive with age. In addition, spontaneous
monomorphic and polymorphic ventricular tachycardia were observed in 7 out of 9 DN/DN
mice during 15 minute recording periods under light anesthesia at 12 weeks, but no
arrhythmia was observed in 18 DN/H or 10 H/H littermates studied under the same
conditions (Figure 2C). Sinus node dysfunction (n = 3), atrioventricular block (≥second
degree) (n = 4), and atrial fibrillation/tachycardia (n = 5) also occurred only in DN/DN mice,
but not in DN/H or H/H littermates.

Reduced contractile function in DN mice
There was consistent and statistically significant end-diastolic and end-systolic left
ventricular dilatation and calculated left ventricular fractional shortening reduction in a
gene-dose-dependent fashion (Figure 3A, Table 2). Histological examination of mouse
hearts revealed that the DN allele was associated with ventricular dilatation, but was not
associated with significant fibrosis or myocyte disarray (Figure 3B). One possibility is that
the FLAG tag incorporated into the DN allele contributes to the phenotypes in the DN
animals. However, we found no difference in electrocardiographic and echocardiographic
phenotypes between H/H and FG/FG animals, indicating that the FLAG tag does not
contribute to the ventricular dysfunction or other phenotypes observed in DN animals.

Sodium current is reduced in DN myocytes
The manifest conduction slowing in DN mice is consistent with loss of sodium channel
function. However, sodium current amplitudes and gating observed with heterologous
expression of wild-type and D1275N channels in CHO cells were near-indistinguishable
(Figure 4A, 4B and 4C; Table 3). In CHO cells, there was also no difference in the voltage
dependence of activation and inactivation, or in the time course of inactivation. Similarly,
only minor differences were observed between wild-type and D1275N channels coexpressed
with β1 subunits in tsA201 cells: current amplitudes were near-identical, but there was a
slight shift in the voltage dependence of activation and an increase in late sodium current
(percent to peak current; wild-type, 0.22±0.05%, n=7; D1275N, 1.34±0.11%, n=8; P<0.001)
(Figure 4D, 4E, and 4F; Table 3).

By contrast, in ventricular cardiomyocytes, peak sodium current amplitude was markedly
reduced in DN/H and DN/DN mice compared to that observed in H/H littermates (Figure 5A
and 5B, Table 3). In addition, late sodium current was increased in DN/DN mice compared
to that in DN/H and H/H littermates (Figure 5C). We also found that sodium current in DN/
DN myocytes displayed consistent changes in gating. The voltage dependence of
inactivation was positively shifted in DN/DN mice compared to that in DN/H and H/H mice
(Figure 5D). The time course of inactivation was slower in DN/DN mice compared to that in
DN/H and H/H littermates (time constant at −30 mV; DN/DN, 5.5±0.2 ms; DN/H, 2.8±0.1
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ms; H/H, 2.7±0.2 ms) (Figure 5E and 5F). There was no difference in the voltage-
dependence of activation. The DN allele was associated with decreased action potential
amplitude consistent with the decrease in peak sodium current, and with prolonged action
potential duration, consistent with the increase in late current (Figure 6).

Sodium channel protein abundance is reduced in DN myocytes
Western blotting showed reduction in sodium channel protein abundance associated with the
DN allele and the changes were much more dramatic in DN/DN compared to DN/H hearts
(Figure 7A and 7B). The abundance of the control calnexin protein was similar among H/H
(reference, 100±6%), DN/H (103±4% of H/H), and DN/DN mice (100±5% of H/H) (P=NS
for each). Although sodium current and sodium channel protein were reduced in DN/DN
and DN/H mice compared to H/H littermates, real-time PCR showed that SCN5A transcript
levels were elevated in mice with the DN allele (Figure 7C). Expression levels of β-actin
transcripts were similar among H/H (reference, 100±1%), DN/H (100±1% of H/H), and DN/
DN mice (102±5% of H/H) (P=NS for each). Immunostaining experiments were conducted
in heart sections at 3 weeks (Figure 8). The DN allele was associated with reduced levels of
cell surface expression. Notably, staining was obvious on the lateral myocyte aspects in H/H
hearts but was near-absent in DN/DN hearts stained under identical conditions.

Discussion
The D1275N mutation has been associated with a range of sinus node dysfunction,
conduction abnormalities, tachyarrhythmias, and contractile dysfunction.8, 9, 16–18 However,
in previous studies, the evidence implicating D1275N as the causative mutation has been
weak: for example, in the large Dutch kindred, the contribution of an additional connexin
variant was invoked to explain why only a minority of subjects displayed a clinical
phenotype, but that variant was absent in the proband reported here. In addition, D1275N
does not generate major changes in sodium channel function in heterologous expression
studies.8, 9, 16–18 Thus, despite the previous and the present clinical case reports, the formal
possibility remained that D1275N does not actually contribute to the abnormal phenotypes.
To address the role of this (and other) variants in mediating sodium channel-linked clinical
phenotypes, we generated a series of mouse lines in which the murine cardiac sodium
channel was ablated and human alleles were substituted in the murine Scn5a locus. The
technique of recombinase mediated cassette exchange allowed us to place wild-type or
mutant human sodium channel cDNAs in the murine cardiac sodium channel locus.21 We
have previously reported that this approach eliminates expression of the murine channel and
that sodium currents from unmodified wild-type murine ventricular myocytes and those
expressing wild-type human SCN5A are indistinguishable, indicating that expression of the
exchanged sequence is determined by endogenous sodium channel regulatory
mechanisms.21

D1275N mice display sodium channel dysfunction
Sodium current amplitude was similar between D1275N and wild-type channels when
expressed in heterologous expression systems in the present study, either in the absence or
presence of β1 subunit.16 This is in agreement with most results previously reported,
although one group has found that D1275N channels generate significantly less current than
wild-type channels in tsA201 cells; the reason for this discrepancy is unknown.20 In our
mouse model, D1275N was associated with decreased levels of sodium channel protein by
Western analysis of total ventricular protein, decreased expression of sodium channels at the
ventricular myocyte surface, and marked reduction of sodium current. In addition, we
observed increased late current and altered voltage-dependence of channel inactivation.
Thus, channel dysfunction conferred by D1275N becomes evident in the myocyte
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environment. The major change, reduction in peak sodium current, could represent
decreased cell surface expression and/or altered gating of the channel protein. One possible
explanation in either case is altered interactions with sodium channel partners, present in
myocytes and absent in CHO and tsA201 cells.32, 33 There is precedent for such a
hypothesis: the E1053K SCN5A mutation, which is associated with a loss of sodium channel
function phenotype, has no effect on current density when studied in heterologous
expression systems, but abolishes binding of the channel to ankyrin-G and reduces cell
surface expression and sodium current in cultured cardiomyocytes.34 However, while
E1053K does affect channel gating under heterologous expression,34 altered channel gating
by D1275N was only found in the mice, but not in heterologous systems in our study. This is
clearly not a general rule, since channel dysfunction observed with heterologous expression
of other mutants (delKPQ1505-1507 and 1795insD) does recapitulate phenotypes observed
clinically and in genetically modified mice.7, 35–37

Association of sodium channel with cardiomyopathy
In addition to arrhythmias, SCN5A mutations have been associated with
cardiomyopathy.8–15 To date, 12 rare variants in SCN5A have been identified in
cardiomyopathy and all of the variants have also been associated with arrhythmia
phenotypes that result from loss of sodium channel function.8–15 In our mouse model, the
loss of sodium channel function by D1275N is consistent with biophysical properties of
other SCN5A mutations associated with DCM,10, 11, 38 and findings in clinical and
experimental studies suggest that marked reduction of sodium current is critical for
development of cardiomyopathy.13, 14, 39, 40 In prior studies, mice with 90% reduction of
Scn5a expression level develop cardiac dysfunction,39 while heterozygous Scn5a
knockdown mice (Scn5a+/−) display normal cardiac function.40 In our study, mice
expressing D1275N, one of the initially reported SCN5A mutations in a cardiomyopathy
kindred,8, 9 showed reduction of sodium current with disrupted channel gating and
developed evident cardiomyopathy at 12 weeks. This is consistent with other reports
describing that both R814Q occurring homozygously and the compound heterozygous
occurrence of the W156X and R225W are associated with cardiomyopathy.13, 14 In these
settings, the cardiomyopathy phenotype is generally absent in heterozygotes.13, 14

Among 12 rare variants in SCN5A associated with cardiomyopathy, 7 are located in
transmembrane domains, and 6 of them including D1275N are predicted to change the
electrical charge of substituted amino acids.8–15 These substitutions may lead changes in
channel structure, resulting in altered channel gating and/or reduced channel expression
levels directly or by disrupted interaction with sodium channel accessory proteins.

Although this study and previous work strongly imply that loss of sodium channel function
has a critical role for development of cardiomyopathy,10, 41 the mechanisms remain
controversial. The surface ECG tracings in DN mice (Figure 2) not only demonstrate gene-
dose-dependent conduction slowing but suggest altered activation sequence (with ECG
complex splintering); thus, electromechanical dyssynchrony, a well-recognized cause of
cardiac contractile dysfunction,42 may be sufficient to explain the DCM phenotype. Another
possibility raised by a recent report that suggests two pools of sodium channel protein in
heart is that the mutant channel does not target to the appropriate subcellular domain to
support normal cell-propagation.43 Among causative genes for DCM, cytoskeletal
components such as syntrophins and dystrophins have been associated with SCN5A channel
and disrupted interaction with such proteins may result in cardiomyopathy.44–46 Although
SCN5A mutations have been associated with cardiac fibrosis,3, 40, 47 we did not observe
fibrosis when the mice carrying the DN allele developed cardiac dysfunction. It has been
reported that SCN5A-related DCM phenotype usually develops later (>10 years) than onset
of arrhythmia phenotypes suggesting a possibility that DCM phenotype is secondarily
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mediated by arrhythmia.8–10, 48 However, in our study, the cardiomyopathy phenotype was
evident relatively early, in the absence of sustained arrhythmia. Taken together, we propose
that sodium channel dysfunction and electromechanical dyssynchrony represent the primary
pathophysiology for DCM in this setting.

In conclusion, we found that the D1275N SCN5A mutation was associated with
cardiomyopathy and multiple arrhythmias in vivo, in line with clinical findings in our and
other studies.8, 9, 16–18 Although D1275N did not generate serious channel dysfunction when
studied in heterologous expression systems, the mutation produced extensive channel
dysfunction, notably marked reduction in peak current amplitude, and a cardiomyopathy
phenotype in our mouse model. Further experiments along the lines outlined above will be
required to elucidate the precise mechanisms for channel dysfunction and how this leads to
the DCM phenotype. Defining the mechanisms underlying the disconnect between the
results in heterologous expression systems and those in myocytes will contribute to further
understanding of the variable phenotypes and penetrance of D1275N and other SCN5A
mutations.
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Figure 1.
D1275N SCN5A mutation in a patient with sinus node dysfunction, atrial flutter, and
conduction disease. A, Pedigree. The proband is indicated by the arrow. Individuals carrying
the mutation are indicated (+). Individuals tested negative for the mutation are indicated (−).
A filled symbol indicates phenotype positive. B, Electrocardiogram and rhythm strips in the
proband. C, Heterozygous single-nucleotide change in SCN5A (c.3823G→A) resulting in
p.D1275N.
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Figure 2.
Electrocardiography in mice. A, Representative ECG traces in leads I at 3 weeks. B,
Representative signal-averaged ECG traces in leads I (black) and II (gray) at 3 weeks. See
Table 1 for detailed results. C, Arrhythmias recorded in DN/DN mice at 12 weeks.
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Figure 3.
Dilated cardiomyopathy phenotype. A, Representative echocardiograms showing prominent
increased end-systolic dimensions in DN/H and DN/DN mice at 12 weeks. See Table 2 for
summary results. B, Masson’s trichrome staining in mice hearts. Scale bars indicate 1 mm.
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Figure 4.
Wild-type and D1275N sodium current in Chinese hamster ovary cells (A, B, C) and tsA201
cells (D, E, F). Wild-type or D1275N channels were coexpressed with β1 subunits in tsA201
cells. A and D, Representative current traces. See Table 3 for summary results. B and E,
Current voltage relationships. C and F, Voltage dependence of activation and inactivation.
The pulse protocols are shown in the inset.
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Figure 5.
Sodium current in male ventricular cardiomyocytes at 3 weeks showing altered sodium
channel function by the DN allele. A, Representative current traces in H/H, DN/H, and DN/
DN cells. See Table 3 for summary results. B, Current voltage relationships. C, Late sodium
current at −30 mV. Late current amplitude was normalized to peak current amplitude. D,
Voltage dependence of activation and inactivation. E and F, Inactivation time constant (τ) at
−30 mV. *P<0.001 versus H/H. †P<0.001 versus DN/H. N indicates the number of
cardiomyocytes from 3 mice.
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Figure 6.
Action potential in male ventricular cardiomyocytes at 3 weeks. A, Representative action
potential traces. B, Action potential duration at 50% and 90% repolarization. C, Action
potential amplitude. *P<0.05 versus H/H. †P<0.01 versus H/H. ‡P<0.01 versus DN/H. N
indicates the number of cardiomyocytes from 3 mice.
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Figure 7.
Sodium channel expression levels at 3 weeks. A, Representative Western blots in ventricles.
B, Sodium channel expression levels normalized to those of H/H. Calnexin was used as the
loading control. C, Relative expression levels of SCN5A transcript normalized to those of β-
actin in ventricle. *P<0.05 versus H/H.
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Figure 8.
Immunostaining for sodium channel (Nav1.5) at 3 weeks. Heart sections from the ventricles
were stained with anti Nav1.5 (green). Note the obvious lateral staining in the H/H heart and
its absence in the DN/DN heart.
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Table 1

Electrocardiographic phenotype

H/H DN/H DN/DN

3 weeks n=11 n=20 n=9

   Heart rate, bpm 388 ± 8 354 ± 8* 335 ± 15*

   P-wave duration, ms 13.0 ± 0.6 17.0 ± 0.3* 19.4 ± 0.5*†

   PR interval, ms 33.7 ± 0.7 35.6 ± 0.7 44.1 ± 0.9*†

   QRS duration, ms 9.8 ± 0.2 11.8 ± 0.3* 22.3 ± 2.2*†

   QT interval, ms 48.5 ± 1.9 50.2 ± 1.1 67.6 ± 4.2*†

   QTc interval, ms 38.9 ± 1.6 38.5 ± 0.8 50.2 ± 2.5*†

12 weeks n=10 n=18 n=9

   Heart rate, bpm 387 ± 8 368 ± 11 317 ± 18*

   P-wave duration, ms 14 ± 0.5 18.6 ± 0.3* 27.1 ± 1.2*†

   PR interval, ms 37.8 ± 0.8 39.7 ± 0.7 57.1 ± 3.1*†

   QRS duration, ms 10.7 ± 0.4 12.9 ± 0.3 33.4 ± 2.7*†

   QT interval, ms 51.2 ± 0.6 54.8 ± 0.8 77.9 ± 3.7*†

   QTc interval, ms 41.1 ± 0.6 42.8 ± 0.9 55.9 ± 1.8*†

% ratio of 12 weeks to 3 weeks ‡ n=9 n=14 n=6

   Heart rate 101 ± 2 103 ± 4 119 ± 18

   P-wave duration 104 ± 4 112 ± 5 143 ± 11*†

   PR interval 113 ± 3 115 ± 2 125 ± 5*

   QRS duration 111 ± 4 116 ± 4 154 ± 14*†

   QT interval 106 ± 5 114 ± 3 117 ± 11

   QTc interval 106 ± 5 115 ± 3 123 ± 6

QTc = QT/(RR/100)1/2 (mouse-specific).

*
P<0.05 versus H/H.

†
P<0.05 versus DN/H.

‡
For animals with measurements at both time points.
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Table 2

Echocardiographic phenotype at 12 weeks

H/H, n=9 DN/H, n=19 DN/DN, n=12

Septal wall, mm 0.75 ± 0.02 0.72 ± 0.02 0.69 ± 0.03

Posterior wall, mm 0.51 ± 0.03 0.47 ± 0.01 0.51 ± 0.04

Left ventricle, mm

   End diastole 3.01 ± 0.08 3.09 ± 0.08 3.33 ± 0.07*

   End systole 1.49 ± 0.09 1.76 ± 0.05* 2.01 ± 0.05*†

Fractional shortening, % 52.0 ± 1.6 43.1 ± 0.7* 39.9 ± 0.7*†

*
P <0.05 versus H/H.

†
P <0.05 versus DN/H.
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