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Memory is essential for our normal daily lives and our sense

of self. Ca2þ influx through the NMDA-type glutamate re-

ceptor (NMDAR) and the ensuing activation of the Ca2þ and

calmodulin-dependent protein kinase (CaMKII) are required

for memory formation and its physiological correlate, long-

term potentiation (LTP). The Ca2þ influx induces CaMKII

binding to the NMDAR to strategically recruit CaMKII to

synapses that are undergoing potentiation. We generated

mice with two point mutations that impair CaMKII binding

to the NMDAR GluN2B subunit. Ca2þ -triggered postsynaptic

accumulation is largely abrogated for CaMKII and destabi-

lized for TARPs, which anchor AMPA-type glutamate recep-

tors (AMPAR). LTP is reduced by 50% and phosphorylation

of the AMPAR GluA1 subunit by CaMKII, which enhances

AMPAR conductance, impaired. The mutant mice learn the

Morris water maze (MWM) as well as WT but show defi-

ciency in recall during the period of early memory consolida-

tion. Accordingly, the activity-driven interaction of CaMKII

with the NMDAR is important for recall of MWM memory as

early as 24h, but not 1–2h, after training potentially due to

impaired consolidation.
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Introduction

A large body of evidence indicates that memories are encoded

by stable increases in the strength of synaptic transmission

(i.e., long-term potentiation (LTP)) as a consequence of

temporally heightened synaptic activity (Martin et al, 2000;

Lee and Silva, 2009; but see Neves et al, 2008 for exceptions).

Although LTP can be induced in different brain regions, it is

especially robust in the hippocampus. In general, learning, as

well as LTP, requires both, Ca2þ influx through the NMDAR

(NMDA-type glutamate receptor) and the ensuing CaMKII

(calmodulin-dependent protein kinase II) activation (Martin

et al, 2000; Collingridge et al, 2004; Malenka and Bear, 2004;

Kerchner and Nicoll, 2008; Lisman and Hell, 2008; Kessels

and Malinow, 2009). Ca2þ influx stimulates not only CaMKII

activity but also CaMKII binding to the NMDAR (Strack and

Colbran, 1998; Leonard et al, 1999; Bayer et al, 2006) and

CaMKII accumulation at postsynaptic sites (Shen and Meyer,

1999; Bayer et al, 2006; Strack and Hell, 2008). This mechan-

ism supports selective enrichment of CaMKII at synapses that

are undergoing potentiation upon repeated glutamate unca-

ging, a model for LTP (Zhang et al, 2008; Lee et al, 2009).

Work in cultured hippocampal slices indicates that CaMKII

binding to GluN2B is important for LTP (Barria and Malinow,

2005). Our previous study on animals expressing an induci-

ble form of the B640 residue long GluN2B C-terminus is

consistent with this finding (Zhou et al, 2007). However, this

mutant mouse must have deficits in addition to disruption

CaMKII binding to GluN2B, presumably by affecting binding

of other proteins to the GluN2B C-terminus or of CaMKII to

other targets, as Morris water maze (MWM) learning in that

mouse was severely affected (Zhou et al, 2007) when com-

plete abrogation of the CaMKII–GluN2B interaction in our

GluN2B knockin mouse (GluN2B KI) had no effect on this

learning at all (see below Figure 8). We created this GluN2B

KI mouse by mutating Leu1298 to Ala and Arg1300 to Gln to

specifically test the functional role of the CaMKII–GluN2B

interaction in vivo. Each mutation individually blocks CaMKII

binding to GluN2B as had been elegantly defined by Colbran

and coworkers (Strack et al, 2000a).

Results

Activity-driven association of CaMKII with the NMDAR

complex is abrogated in GluN2B KI mice

Homozygous GluN2B KI mice showed normal fertility, birth

rate, and body weight and normal Mendelian ratio of off-

spring from heterozygous breeders (Supplementary Figure

S5). The amount of GluN1, GluN2B, GluA1, and CaMKIIa
present in total brain lysates were as in litter-matched WT

mice (Supplementary Figure S1A and B). To biochemically

evaluate content of postsynaptic proteins at the postsynaptic

density (PSD), we isolated PSDs by differential centrifugation

and two sucrose gradient centrifugations, one before and one

after extraction of presynaptic and perisynaptic elements with

Triton X-100. The content of GluN1, GluN2A, GluN2B, GluA1,

PSD-95, and CaMKII in PSD fractions was also comparable

between KI and WT mice (Supplementary Figure S1C and D).

As expected, co-immunoprecipitation (co-IP) of the NMDAR
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complex with CaMKII was reduced by 35–40% in KI mice

(Figure 1A and B). Co-IP of PSD-95 with GluN2B was

unaltered (Figure 1C and D). Accordingly, the KI mutations

specifically target CaMKII association with GluN2B without

affecting binding of PSD-95 to the very C-terminus of GluN2B.

The residual co-IP of the NMDAR with CaMKII was likely due

to CaMKII binding to GluN1 (Leonard et al, 1999, 2002;

Merrill et al, 2007) as extraction conditions (1% deoxycho-

late, pH 8.5) were chosen to preserve the overall integrity of

the NMDAR complex (Leonard et al, 1999).

We found earlier that Ca2þ influx through the NMDAR

increased the NMDAR–CaMKII interaction by about two-fold

in acute hippocampal slices from WT rats (Leonard et al,

1999). We treated acute forebrain slices with NMDA in the

presence of TTX, the latter preventing overexcitation of the

slices, as described earlier (Hell et al, 1996; Leonard et al,

1999). This treatment increased co-IP of the NMDAR with

CaMKII in our WT but not KI mice (Figure 1E and F). Hence,

CaMKII binding to GluN2B is essential for increased recep-

tor–kinase association following NMDAR activity. To control

for potential alterations in access of Ca2þ to CaMKII upon

NMDAR stimulation, we determined CaMKIIa T286 autopho-

sphorylation, a measure of CaMKII activation, which did not

differ between genotypes under basal conditions and follow-

ing NMDA stimulation (Figure 1G and H).

Activity-driven postsynaptic accumulation of CaMKII is

abolished in GluN2B KI mice

Ca2þ influx through the NMDAR induces clustering of ecto-

pically expressed GFP–CaMKIIa in primary hippocampal rat

cultures (Shen and Meyer, 1999; Shen et al, 2000) and

organotypic hippocampal slice cultures (Lee et al, 2009;

Otmakhov et al, 2004; Zhang et al, 2008). We demonstrated

more recently that untagged, endogenous CaMKIIa and

CaMKIIb also cluster upon NMDAR-mediated Ca2þ influx

in primary hippocampal cultures (Merrill et al, 2005; Strack

and Hell, 2008). Hippocampal cultures were prepared in

parallel from littermate WT and KI pubs, treated at 20 DIV

with vehicle or glutamate and fixed immediately.

Immunofluorescence analysis illustrates that CaMKII was

relatively smoothly distributed under control conditions in

WT and KI neurons (Figure 2A, D, M1, and N1). Although

glutamate induced CaMKII clustering in WT and KI neurons

(Figure 2G, J, O1, and P1), double labelling for the synaptic

marker synapsin showed that extensive activity-induced

CaMKII clustering took place at postsynaptic sites only in

WT cultures (Figure 2H, I, O2, and O3). In KI neurons, the

lack of increase in Pearson’s coefficient as well as in the

fraction of CaMKII immunofluorescent pixels that colocalizes

with the synaptic marker synapsin (Mander’s coefficient)

indicates that, contrasting the CaMKII clusters that were

present under basal conditions, the numerous newly formed

CaMKII clusters were mostly not colocalized with or juxta-

posed to synapsin puncta and were, therefore, formed mainly

outside synapses (Figure 2K, L, P2, and P3). In fact, such

activity-induced CaMKII clustering can occur in dendritic

shafts under certain pathological conditions (Hudmon et al,

2005). Colocalization of CaMKII and synapsin indicative of

synaptic localization of CaMKII was unaffected in KI neurons

under non-stimulated conditions as CaMKII binds to two

other major postsynaptic components (densin-180 and

a-actinin) and several other postsynaptic proteins without

requiring activation by Ca2þ (Colbran, 2004; Robison et al,

2005; Strack and Hell, 2008; Nikandrova et al, 2010). Thus,

GluN2B KI mice did not show aberrant targeting of CaMKII

under basal conditions that could have otherwise contributed

to the reduction in CaMKII binding to postsynaptic NMDARs

upon stimulation. Furthermore, the cytoarchitecture was

normal throughout the brains of KI mice as illustrated by

Nissl staining for Cortex and Hippocampus (Supplementary

Figure S2A–H). The GluN2B distribution was also normal

indicating that the point mutations in GluN2B did not affect

its postsynaptic targeting (Supplementary Figure S2I–R). We

conclude that CaMKII binding to GluN2B is the main deter-

minant for activity-driven association of CaMKII with the

NMDAR and for enhanced postsynaptic CaMKII accumula-

tion following NMDAR-mediated Ca2þ influx in vivo.

Basal synaptic transmission is normal but CA1 LTP

reduced in adult GluN2B KI mice

GluN2B KI mice had normal paired-pulse facilitation over the

full range of interpulse intervals with maximal facilitation at

50 ms in both genotypes (Figure 3A). Synaptic responses to

repetitive stimulation at 10 and 100 Hz were unaffected

showing that the totally releasable pool and the readily

releasable pool of synaptic vesicles are normal in KI mice

(Figure 3B and C). The mEPSC frequency and amplitude were

comparable for the two genotypes (Figure 3D). Input–output

relationships as determined by plotting initial slope of fEPSPs

against fibre volley were virtually identical for the two

genotypes (Figure 3E). To evaluate whether postsynaptic

NMDAR activity is affected in KI mice, we measured

NMDAR-mediated fEPSPs. For this purpose, Mg2þ was re-

moved while CNQX added to inhibit AMPAR (AMPA-type

glutamate receptor) and at the same time prevent epilepti-

form activity due to lack of Mg2þ (Huang et al, 2006; Lu et al,

2007). The resulting input–output relationships were indis-

tinguishable for WT and KI mice (Figure 3F). Also, NMDAR

resulting from ectopically expressed GluN1 plus GluN2B with

R1330Q/S1303D double mutation, which, like our L1298A/

R1300Q double mutation, abrogates CaMKII binding, have

normal decay t and current/voltage relationship (Barria and

Malinow, 2005). Accordingly, CaMKII binding to GluN2B

does not overtly affect NMDAR properties. These results,

together with normal CaMKII activation upon NMDAR sti-

mulation (Figure 1G and H) and normal LTD (Figure 4F),

indicate that postsynaptic NMDAR functions are unchanged

under basal conditions in KI mice.

Although basal synaptic transmission is normal in GluN2B

KI mice, LTP induced by two tetani of 100 Hz/1 s was reduced

by about 50% in the KI mice (Figure 4A). The remaining LTP

in KI slices was completely abolished by AP5 and KN93

(Figure 4B and C), indicating that the residual LTP is both

NMDAR- and CaMK-dependent and not due to compensatory

mechanisms that would circumvent CaMKII. We recently

showed in young adult mice that LTP induced by a single

tetanus is sensitive to blockage of PKA whereas a two-tetanus

LTP as measured here is not (Lu et al, 2007). As in WT

(Lu et al, 2007), two-tetanus LTP was not sensitive to H-89,

which inhibits PKA (Supplementary Figure S3). The residual

LTP thus appears to rely on the same main regulatory mechan-

isms as the LTP in WT mice, that is, Ca2þ influx through

NMDAR and the ensuing activation of CaMKII rather than

requiring additional support from PKA, which is otherwise
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Figure 1 Impaired activity-induced CaMKII binding to the NMDAR in GluN2B KI mice. (A) The GluN2B LR/AQ mutations reduce the
association of the NMDAR complex with CaMKII. Membrane fractions from forebrains of WTand heterozygote (Het) and homozygote GluN2B
KI (KI) mice were extracted with 1% deoxycholate before removal of insoluble material by ultracentrifugation, IP with CaMKIIa antibodies or
isotype-matched control IgG (‘Mix’; each genotype contributed 33% of the extract for this control IP) and IB for NMDAR subunits and CaMKIIa
(Leonard et al, 1999). (B) Immunosignals were quantified and NMDAR signals were divided by CaMKIIa signals and normalized to WT values
for the corresponding NMDAR subunit. WT values were normalized to the average WT value over all experiments. Bars represent the average
values±s.e.m. for each genotype for the indicated number of experiments (n). Asterisks (*) indicate Po0.05 compared with WT (one-way
ANOVA). (C) The GluN2B LR/AQ mutation does not reduce the association of the NMDAR complex with PSD-95. Membrane fractions from
GluN2B WT and homozygous GluN2B KI mouse forebrains were extracted with 1% deoxycholate before centrifugation and IP with GluN2B
antibodies or rabbit control IgG (‘Mix’; each genotype contributed 50% of the extract for this control), and IB for NMDAR subunits and PSD-95.
(D) Immunosignals were quantified and PSD-95 signals were divided by GluN2B signals and normalized to WT values for the corresponding
NMDAR subunit. WT values were normalized to the average WT value over all experiments. The data represent the average values±s.e.m. for
three experiments. Statistical analysis showed no differences between genotypes for the co-IPs (P40.05; t-test). (E) Activity-driven CaMKII
binding to the NMDAR requires its interaction with GluN2B. Forebrain slices were treated with vehicle or NMDA (200mM, 5 min; plus 1 mM TTX
to prevent overexcitation) immediately before extraction, CaMKIIa IP and IB for GluN2B, GluN1, and CaMKIIa, as detailed earlier (Leonard
et al, 1999). Mock IP of a mix of 50% WTand 50% KI lysates (Mix) with control IgG showed specificity of CaMKIIa IP. (F) The NMDA-induced
increase in NMDAR association with CaMKII was significantly different between WT and GluN2B KI (t-test: *Po0.05; n¼ 4). (G) CaMKII
stimulation is not affected in GluN2B KI mice. Acute cortical slices were treated with vehicle or NMDA plus TTX prior to IP with anti-CaMKIIa
and IB for phospho-Thr286 (pT286) and total CaMKII. (H) Immunosignals were quantified and pT286 signals were divided by CaMKIIa signals
and normalized to WT values. The data represent the average values±s.e.m. for three experiments. Statistical analysis showed no differences
between genotypes for the co-IPs (P40.05; t-test).
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important for single-tetanus LTP. These results provide

further evidence for the notion that postsynaptic signalling

by Ca2þ is normal although the binding deficiency of

GluN2B for activated CaMKII results in reduced LTP. Other

forms of LTP as triggered by y burst stimulation and by a

10 Hz/15 s stimulus train were also reduced by about half

(Figure 4D and E). Finally, LTD was normal in 2-week-old KI

mice (Figure 4F) further supporting that most synaptic prop-

erties were unaltered and the reduction in LTP was a highly

specific deficit. We conclude that NMDAR and CaMKII play

important roles in LTP independent of their interaction but

binding of CaMKII to GluN2B is necessary for LTP to fully

develop.

Activity-induced phosphorylation of GluA1 on S831 by

CaMKII is abolished in GluN2B KI mice

LTP is, to a large extent, mediated by upregulation of post-

synaptic AMPAR activity (Collingridge et al, 2004; Malenka

and Bear, 2004; Kerchner and Nicoll, 2008; Lisman and Hell,

2008; Kessels and Malinow, 2009). However, the molecular

basis of LTP in general, and specifically how CaMKII upre-

gulates postsynaptic AMPAR activity, remains largely un-

known. Because phosphorylation of GluA1 on S831 by

CaMKII is thought to contribute to LTP, at least under certain

conditions (Lisman and Hell, 2008), we evaluated the impact

of reduced CaMKII binding to the NMDAR on S831 phosphor-

ylation. Ca2þ influx through the NMDAR increased S831
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phosphorylation in WT but not GluN2B KI slices (Figure 5A

and B). Accordingly, the CaMKII–GluN2B interaction is cri-

tical for S831 phosphorylation by CaMKII upon Ca2þ influx,

perhaps secondarily to correct placement of the kinase.

Abrogation of this mechanism likely contributes to some,

but likely limited, degree to the reduction of LTP in GluN2B

KI mice.

Chemical LTP-induced autophosphorylation of

postsynaptic CaMKII on T286 lasts longer in WT

than GluN2B KI mice

LTP induction triggers persistent T286 autophosphorylation

and thereby activation of CaMKII, which likely contributes to

LTP (Fukunaga et al, 1995; Barria et al, 1997; Lee et al, 2000).

We thus monitored CaMKII T286 autophosphorylation in

acute hippocampal slices following chemically induced

LTP (cLTP) using forskolin-induced neuronal stimulation
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LTP induced by y burst stimulation (10 trains of 4 stimuli at 100 Hz; trains were 200 ms apart) in CA1 showed a significant difference (t-test:
Po0.05) between slices from WT (156±7%) and KI (131þ 7%) mice. (E) LTP induced by 10 Hz/15 s stimulation showed a 38±2% increase in
fEPSP in slices from WT mice and a 17±2 % increase in slices from KI mice (t-test: Po0.05). (F) LTD (1 Hz/15 min) stabilized at 76±5% (WT)
and 72±6% (KI) of baseline (±s.e.m.), revealing no difference between slices from WT and KI mice (t-test: P40.05). Inserts show fEPSPs
sample traces before (black) and 60 min after LTD induction (red) from WT (top) and KI (bottom) mice. Each individual panel shows data from
n slices obtained from 3 to 5 mice for each genotype.
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(Makhinson et al, 1999; Lu et al, 2007) (see also Kopec et al,

2006). GluN2B KI and WT mice showed the same relative

degree of CaMKII activation (i.e., phospho-T286) in PSD

fractions from forebrain slices following cLTP (Figure 6A).

However, T286 phosphorylation lasted for at least 30 min

only in WT but not in KI slices (Figure 6B). CaMKII content

within the PSD relative to PSD-95 increased transiently after

cLTP induction in WT slices (Figure 6C). The absence of a

similar transient increase in KI slices further supports the

above findings that activity-dependent postsynaptic recruit-

ment of CaMKII is impaired by the mutations (Figure 1).

Notably, our data do not exclude the possibility of a pro-

longed increase in total CaMKII within the PSD following LTP

in WT mice in parallel to an overall increase in PSD size. In

fact, CaMKII content persistently increases in parallel with

the size of dendritic spines following LTP (Otmakhov et al,

2004; Zhang et al, 2008; Lee et al, 2009). However, because

PSD yields vary substantially, we can only quantify levels of

CaMKII relative to a PSD marker protein such as PSD-95 and

not changes in total PSD protein content (Ehlers, 2003).

Accordingly, we would not be able to detect a more perma-

nent increase in CaMKII content of PSD fractions if PSD-95

content would increase in parallel, as would be expected for

stable potentiation.

To investigate alterations in long-term effects of the

GluN2B mutations in the KI mice in vivo on activation of

postsynaptic CaMKII, we evaluated whether phospho-T286

levels are different in GluN2B KI versus WT mice in pure PSD

fractions. In these samples, T286 phosphorylation reflects

postsynaptic activation of CaMKII due to the normal basal

brain activity. Whereas relative CaMKII protein levels were

unchanged in the highly enriched PSD fractions from KI mice

(Figure 6D; Supplementary Figure S1C and D), phospho-T286

levels were reduced by B40% (Figure 6D and E). Given that

acute CaMKII activation is not affected in KI mice as deter-

mined for the total CaMKII pool (Figure 1G and H), our

evidence suggests that persistent activation of CaMKII at

postsynaptic sites is impaired in KI mice in vivo. GluN2B
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ultracentrifugation. PSD-95, CaMKIIa pT286, CaMKIIa, and CaMKIIb were detected in PSD fractions by IB. (B) The ratio CaMKIIa pT286 to total
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CaMKIIa pT286 and CaMKIIa. (E) Phosphorylation of CaMKII T286 relative to total CaMKII is significantly reduced in highly purified PSDs
from KI mice compared with WT (mean values±s.e.m.; t-test: *Po0.05; n¼ 3). (F) Acute cortical slices were treated and crude PSD fractions
isolated as in (A) before IB for PSD-95 and TARPs (stg/g2, g3, g4, g8). (G) Accumulation of TARP g-8 (55 kDa) was increased in crude PSD
fractions from both WT and KI slices following cLTP treatment but, contrasting WT, did not persist in KI fractions (mean values±s.e.m.; two-
way ANOVA: *Po0.05; n¼ 3).
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association could prolong CaMKII activation through genera-

tion of autonomous kinase activity or protection from down-

regulation by phosphatase activity (Bayer et al, 2001; Lisman

and Hell, 2008). Collectively, these extensive molecular ana-

lyses demonstrate that long-lasting activation of CaMKII at

postsynaptic sites is impaired in GluN2B KI mice.

Lasting accumulation of TARPs following chemical LTP

is impaired in GluN2B KI mice

Increased postsynaptic accumulation of AMPAR–TARP com-

plexes contributes to the establishment of LTP. Despite strong

electrophysiological and cell biological evidence for such an

increase (Collingridge et al, 2004; Malenka and Bear, 2004;

Matsuzaki et al, 2004; Tomita et al, 2005; Kerchner and

Nicoll, 2008; Lisman and Hell, 2008), biochemical confirma-

tion of this model has proven impossible up to date. This lack

of biochemical evidence may be, in part, because PSD isola-

tion requires Triton X-100, which extracts AMPARs to a

substantial degree. This extraction is reflected in the reduced

enrichment of AMPAR as compared with NMDAR and PSD-95

in PSD preparations (e.g., Supplementary Figure S1C). Thus,

AMPAR content is not reliably quantifiable in PSD fractions

from forebrain slices. However, TARPs, which target AMPARs

to postsynaptic sites, are much more robustly enriched in

PSD fractions than AMPARs (Figure 6F), likely because Triton

X-100 does not extract them as readily as AMPARs. Also,

AMPARs and TARPs are not constitutively associated with

each other (Triton X-100 as well as glutamate weakens their

interactions (Morimoto-Tomita et al, 2009)). Furthermore,

CaMKII-mediated phosphorylations of stargazin (stg/g2)

and potentially other TARPs are important for LTP (Tomita

et al, 2005) possibly by increasing attachment sites for

AMPARs at the postsynaptic sites or by promoting AMPAR

opening (Collingridge et al, 2004; Malenka and Bear, 2004;

Kerchner and Nicoll, 2008; Lisman and Hell, 2008; Sumioka

et al, 2010). For these reasons, we monitored postsynaptic

accumulation of TARPs following cLTP in acute forebrain

slices from GluN2B WT and KI mice with an antibody that

recognizes all four of the closely related conventional TARPs

(stg/g2, g3, g4, g8; Figure 6F; Supplementary Figure S4). The

three bands immediately below the 40-kDa range correspond

to stg/g2, g3, and g4, which are similar in MR, and a

prominent band around 55 kDa corresponds to the larger g8

(see Supplementary Figure S4 legend). Immediately following

cLTP, relative g8 (50 kDa band) levels were increased by

450% in WT and KI slices. This increase persisted for at

least 30 min only in WT but not KI slices (Figure 6F and G),

similarly to the effects seen on cLTP-induced CaMKII activa-

tion. The same trend was observed for the other g isoforms but

differences between WT and KI did not reach statistical sig-

nificance (Figure 6F). This finding illustrates that postsynaptic

g8 targeting can be driven by heightened synaptic activity.

Normal learning but impaired recall of the MWM task by

GluN2B mice

As activity-driven postsynaptic CaMKII recruitment and LTP

were impaired in GluN2B KI mice, we conducted behavioural

analyses to define potential deficits in learning and memory

in these mice. KI mice displayed normal locomotion and

motivation as indicated by the absence of any differences in

means of ambulatory distance, overall average distance, and

jump counts in open field analysis (Figure 7A–C). Basal

anxiety levels of KI mice also appear normal as their centre

time and centre activity in the open field test were virtually

identical to those of WT mice (Figure 7D and E). Their innate

fear reactions to trimethyl-thiazoline (TMT; the anxiogenic

compound in fox urine) were also indistinguishable from that

of WT mice (Figure 7F). Their coordination skills on the

RotaRod were as for WT (Figure 7G).

We were surprised to find that the GluN2B KI mice showed

also no detectable deficits in spatial learning and short-term

memory in the MWM because most manipulations that

inhibit or enhance LTP in vivo impair or improve, respec-

tively, this type of learning (Martin et al, 2000; Neves et al,

2008; Lee and Silva, 2009). In detail, latencies for reaching

the hidden platform decreased over the 12 training blocks for

KI mice as fast as for WT mice (Figure 8A). KI and WT mice

spent comparable amounts of time in the target quadrant

during probe tests conducted 1 h after the last training session

on day 3 (Figure 8B) and day 5 (Figure 8C), further confirm-

ing that learning of this task was normal by KI mice. These

findings also indicate that short-term memory and its reten-

tion upon repetitive task performance is unaltered in KI mice.

Yet, when tested 3 days after the last training session on day

6, KI mice spent significantly less time in the target quadrant

compared with WT mice (Figure 8D). A second cohort of KI

mice also showed normal performance when tested 1 h after

the last training session on day 3 (Figure 8E) and day 5

(Figure 8F). However, when tested on day 7, 1 day after the

last training session on day 6, time spent in and number of

crossings of the target quadrant was significantly reduced in

KI versus WT (Figure 8G and H). These results show that

GluN2B KI mice learn quite normally but are impaired in

the early phases of contextual memory consolidation and

maintenance.

We used the delayed win shift radial arm maze task to

specifically test working memory in GluN2B KI mice. In this

learning paradigm, four of the eight arms of a radial maze are

open and provide reward pellets in phase A. In phase B, all

eight arms are open but only the four arms that were closed

in phase A now provide a reward. Learning as quantified by

the ratio of the number of correct arm entries versus total

number of arm entries during phase B over a 10-day training

period was unchanged in KI versus WT mice (Figure 8I).

Statistical analysis revealed an overall significant effect of

training days (repeated ANOVA, F(9,13)¼ 8.45, Po0.0001).

However, there was no significant difference between geno-

types in the percentage of total correct entries made on phase

B across training days (repeated ANOVA, F(1,13)¼ 0.009,

P40.05) or an interaction between genotype and training

days (repeated ANOVA, F(9,13)¼ 0.38, P40.05). After 10

days training, all groups reached criterion performance (all

four pellets were retrieved in five or fewer choices during

phase B for 2 consecutive days). At this point, the perfor-

mance with increased interphase intervals between phase

A and phase B was determined, again with no obvious

differences between genotypes (Figure 8J).

Discussion

Role of GluN2B in postsynaptic CaMKII targeting

Non-stimulated CaMKII binds to postsynaptically enriched

proteins including densin-180, a-actinin, SAP97, and F-actin

(Shen et al, 1998; Walikonis et al, 2001; Colbran, 2004;
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Robison et al, 2005; Strack and Hell, 2008; Nikandrova et al,

2010), which likely mediate postsynaptic CaMKII localization

under basal conditions. Accordingly, its postsynaptic target-

ing was normal under basal conditions in GluN2B KI mice. In

contrast, stimulation-induced postsynaptic CaMKII accumu-

lation is largely if not completely absent in KI mice (Figures 2

and 6A and C), which is surprising given that binding of

CaMKII to GluN1 is also activation-dependent (Leonard et al,

1999, 2002; Merrill et al, 2007) and to densin-180 binding is

enhanced by CaMKII activation (Strack et al, 2000b).

Stimulus-induced association of CaMKII with the NMDAR

complex as reflected by co-IP of GluN2B as well as GluN1

with CaMKII is also abrogated in KI mice (Figure 1E and F).

This latter finding is, once more, unexpected given the

activity-induced CaMKII binding to NR1 in vitro but indicates

that the NR1 interaction plays a modest if any role in

activation-induced recruiting CaMKII to the NMDAR complex

in vivo, including complexes consisting of GluN1/N2A. Given

the central role CaMKII plays in LTP and its remarkable

abundance (1–2% of total brain protein and 5–10% of post-

synaptic protein), it is likely that this GluN2B- and activity-

dependent postsynaptic CaMKII accumulation is key to the

synapse specificity of LTP. This synapse specificity is critical

for LTP to allow effective encoding of extensive memory and,

at the same time, for preventing neurons from adopting a

state of overexcitability during LTP induction.

Although postsynaptic CaMKII content was unaltered

under basal conditions, T286 autophosphorylation of CaMKII

in PSD fractions (Figure 6D) but not in the total CaMKII

fraction (Figure 1G) was reduced in KI mice. Accordingly,

the phosphosignal in PSD samples must constitute a rela-

tively small fraction of the phosphosignal in the total

CaMKII population, possibly because overall CaMKII pre-

sent in the PSD fraction constitutes only a relatively small

fraction of total CaMKII. Nevertheless, it reveals a decrease in

maintenance of T286 autophosphorylation of postsynaptic

CaMKII in KI mice. Such a decrease provides in vivo support

for our previous finding that binding to GluN2B fosters

autonomous activity of CaMKII (Bayer et al, 2001). GluN2B

mediates sustained CaMKII activity by binding to the T-site on

CaMKII subunits, which otherwise harbours T286 if this resi-

due is unphosphorylated and if Ca2þ/calmodulin is not bound

B20 residues downstream of T286. Either T286 phosphoryla-

tion, binding of Ca2þ/calmodulin downstream of T286, or

binding of GluN2B to the T-site lead to removal of the pseudo-

substrate site, which is straddled by T286 and the calmodulin-

binding site, from the catalytic S-site (Bayer et al, 2001;

Schulman, 2004; Chao et al, 2010, 2011; Rellos et al, 2010;

Hoffman et al, 2011). Although likely not all subunits of

dodecameric CaMKII complexes can simultaneously bind to

GluN2B, keeping these bound subunits in an active conforma-

tion through GluN2B binding to their T-sites allows these

subunits to re-phosphorylate neighbouring subunits when

dephosphorylated, thereby maintaining a high degree of au-

tophosphorylation of the whole GluN2B-associated CaMKII

complex (Lisman et al, 2002).
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Figure 7 Open field behaviour and RotaRod balancing is normal in GluN2B KI mice. (A) Open field mean ambulatory distances calculated
from averaged distances travelled within 1 min during a 20-min period by individual mice. (B) Open field mean vertical activities calculated
from averaged number of beam breaks in the ‘Z’ array (i.e., rearing or jumping) in 1 min during a 20-min period by individual mice. (C) Open
field mean jump counts calculated from averaged number of times individual mice left the photocell array (jumping) in 1 min during a 20-min
period by individual mice. (D) Mean ambulatory distances travelled within individual zones (the open field was divided into nine equally sized
squares; zones 1–4: individual squares in one of each of the four corners; zone 0: remaining area consisting of five squares, that is, centre
square plus the four side squares neighbouring the four sides of the centre square). (E) Ratio of mean ambulatory distance travelled within
centre (zone 0) to total ambulatory distance. (F) Freezing induced by TMT increased gradually within the first 4 min of mice being placed into
the chamber to the same degree for WTand KI mice (Dallapiazza and Hell, data not illustrated). As illustrated, overall freezing during the 6-min
observation periods did not differ for KI versus WT mice. (G) Mean latencies to fall from the RotaRod calculated from the averaged latencies of
three trials on each day for individual mice across 3 days. All data are mean±s.e.m. from n¼ 9 mice per genotype. None of the above
parameters showed any statistically significant difference (t-test).
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Repetitive glutamate uncaging causes rather short-lived

activation of the bulk of CaMKII in individual spines

(t1/2o1 min) as measured with a CaMKII-derived FRET sensor

(Lee et al, 2009). As the authors point out, GluN2B-associated

CaMKII constitutes only a subpopulation of the total spine

population, which could conceivably undergo much longer-

lasting activation that is too small for detection within the

bulk of CaMKII yet could account for most of the basal

activity level of CaMKII at postsynaptic sites under basal

condition. This notion is especially conceivable if GluN2B-

associated CaMKII is in a privileged position for promoting

LTP maintenance as indicated by a previous LTP study (Barria

and Malinow, 2005) and our work (Figure 4A, D, and E). In

addition, CaMKII might also act by playing a structural role

independent of or in addition to prolonged catalytic activity

(Okamoto et al, 2007; Pi et al, 2010).

Role of CaMKII binding to GluN2B in synaptic

transmission and plasticity

The membrane permeant peptide tatCN21 inhibits CaMKII at

5mM (Buard et al, 2010). It also displaces CaMKII from

GluN2B at 20 but not 5 mM in acute hippocampal slices

(Sanhueza et al, 2011). It blocks LTP induction at both

concentrations but reverses LTP during its maintenance

phase only at 20mM, consistent with our hypothesis that

CaMKII binding to GluN2B is important for LTP to last.

However, it also decreases basal synaptic transmission at 20

but not 5 mM (Sanhueza et al, 2011). Thus, we first tested

whether GluN2B KI mice have a defect in basal synaptic

transmission that could alter LTP by measuring a number of

parameters. PPF was normal for all interstimulus intervals.

As PPF is sensitive to changes in presynaptic excitation–

exocytosis coupling and Ca2þ cycling (Zalutsky and Nicoll,

1990; Schulz et al, 1994; Han et al, 2006; Pelkey et al, 2006),

in AMPAR lateral mobility or desensitization or in relief of

polyamine block of GluA2-lacking inwardly rectifying

AMPAR (Heine et al, 2008; Christie et al, 2010; Stubblefield

and Benke, 2010; Savtchouk and Liu, 2011), these parameters

appear to be all normal in the KI mice. Unaltered transmitter

release was further indicated by lack of changes in the readily

and totally releasable synaptic vesicle pools (Figure 3B and C)

and in mEPSC frequency (Figure 3D). The mEPSC amplitude

and decay t was also unaffected (Figure 3D), indicating that

AMPAR function and composition is not overtly affected.

Consistently, input–output relationships showed no changes

for AMPAR- and also NMDAR-mediated postsynaptic fEPSPs
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(Figure 3E and F). Finally, LTD, which does not depend on

CaMKII, was normal in KI mice (Figure 4F). Accordingly,

synapses in the KI mice are at a level within the dynamic

range that is comparable if not identical to WT mice and that

can be potentiated and depressed. The lack of defect in KI mice

in basal transmission contrasts the decrease in transmission by

20mM tatCN21 (see above) (Sanhueza et al, 2011), suggesting

that this tatCN21 effect might be via a target other than CaMKII

binding to GluN2B. In fact, our preliminary results suggest that

tatCN21 also disrupts the CaMKII–densin-180 interaction,

which can compensate for loss of NMDAR interaction with

respect to basal CaMKII targeting (Carlisle et al, 2011).

Nevertheless, several forms of LTP were reduced by half in

the KI mice, indicating that CaMKII binding to GluN2B is

important for maintenance of a portion of but not full LTP

(Figure 4A, D, and E).

Frequency of mEPSCs and spine density is reduced in

organotypic slice cultures by overexpression of GluN1 with

GluN2B with two point mutations that impair CaMKII bind-

ing similar to our KI mutations (Gambrill and Barria, 2011).

These findings contrast ours that mEPSC frequency and spine

density are normal in GluN2B KI mice (Figure 3D and data

not shown). The experiments by Gambrill and Barria that

implicate loss of CaMKII binding in reduced mEPSC fre-

quency are based on overexpression of combinations of

GluN1 with WT and mutant GluN2A and 2B constructs in

cultured slices, likely with substantial changes in total

NMDAR protein, which was not monitored. Our strictly

in vivo KI approach does not alter total NMDAR protein

(Figure 1A; Supplementary Figure S1) and appears more

specific and subtle than this recent in vitro work. In support

of this notion, earlier work with the above approach lead to

complete loss of LTP when CaMKII binding deficient GluN2B

was overexpressed together with GluN1 (Barria and Malinow,

2005) rather than the partial loss we observe in three different

forms of LTP (Figure 4) although it is also possible that the

pairing-induced LTP recorded by whole-cell patch clamping

in Barria and Malinow (2005) is more sensitive to loss of

CaMKII binding than our LTP protocols that are based on less

invasive fEPSP recordings. The more dramatic effects follow-

ing overexpression of NMDAR subunits are thus likely due to

the more severe molecular manipulations by Barria and

colleagues.

The lack of NMDA-induced phosphorylation of GluA1 on

S831 in KI mice (Figure 5) indicates that binding to GluN2B is

important for CaMKII to phosphorylate S831. S831 does not

constitute a CaMKII consensus site lacking any positively

charged residues upstream (and downstream). The exact

spatial alignment of S831 with GluN2B-anchored CaMKII

might be essential for its effective phosphorylation. S831 is

also not a consensus site for PKC but association of PKC with

GluA1 via AKAP150 (Tavalin et al, 2002), which is linked to

GluA1 through SAP97 (Leonard et al, 1998; Tavalin et al,

2002), strongly promotes S831 phosphorylation by PKC

(Tavalin, 2008). Accordingly, this rather unusual phosphor-

ylation site for CaMKII and PKC becomes a reasonably good

substrate for these two kinases if they are properly aligned

with it. Impaired phosphorylation of S831 by CaMKII in the KI

mice could contribute to the reduction in LTP in KI mice. This

phosphorylation increases the activity of homomeric GluA1

AMPAR (Oh and Derkach, 2005), which are involved in the

early maintenance phase of certain forms of LTP (Plant et al,

2006; Lu et al, 2007; Guire et al, 2008; but see Adesnik

and Nicoll, 2007), and the otherwise prevailing GluA1/A2

heteromeric, TARP-associated AMPAR (Kristensen et al,

2011).

CaMKII-mediated phosphorylation of the cytosolic C-ter-

minus of stg/g2 and potentially other TARPs contributes

substantially to standard LTP (Tomita et al, 2005). This

phosphorylation is likely promoted upon NMDAR-mediated

Ca2þ influx. Ca2þ potently affects electrostatic interactions

between membrane proteins and the plasma membrane (Zilly

et al, 2011). Accordingly, Ca2þ influx probably decreases the

association of the C-terminus of stg with the plasma mem-

brane, thereby rendering it available for phosphorylation by

CaMKII. The phosphorylation causes full and long-lasting

detachment of the C-terminus of stg from the plasma mem-

brane, thereby promoting its binding of PSD-95 (Sumioka

et al, 2010). This interaction is critical for postsynaptic

AMPAR targeting (Chen et al, 2000; Schnell et al, 2002).

Postsynaptic AMPAR targeting is at least in part mediated by

their diffusional trapping by stg binding to PSD-95 (Bats et al,

2007; Opazo et al, 2010) and this trapping depends on the

phosphorylation of stg by CaMKII (Opazo et al, 2010). CaMKII

can increase the postsynaptic anchoring sites for AMPARs

through this mechanism and an increase in postsynaptic

AMPARs is thought to underlie LTP (Collingridge et al,

2004; Malenka and Bear, 2004; Kerchner and Nicoll, 2008;

Lisman and Hell, 2008). In fact, we find that cLTP augments

the content of the prevalent hippocampal stg homologue g8

and likely of other TARPs in PSD preparations (Figure 6F and G).

The correlated loss of persistent CaMKII anchoring and activa-

tion with loss of persistent g8 accumulation upon cLTP in KI

mice supports the hypothesis that direct phosphorylation of

TARPs by CaMKII increases localization of AMPAR–TARP

complexes at the PSD during LTP or at least during its early

phases (Hayashi et al, 2000; Tomita et al, 2005; Sumioka

et al, 2010).

GluN2B KI mice are defective in recall of MWM during

the consolidation phase

Our studies reveal a highly specific impairment in hippocam-

pus-dependent contextual memory in the GluN2B KI mice

during the consolidation phase (Figure 8). At the same time,

they indicate that fully developed LTP is not required for

normal contextual learning, similar to data from GluA1 KO

mice and mice in which the two GluA1 phosphorylation sites

for CaMKII/PKC (S831) and PKA/PKG (S845) had been

mutated to alanine residues (Zamanillo et al, 1999; Lee

et al, 2003). Perhaps, a certain amount of LTP that is less

than that in WT mice is sufficient to allow apparently normal

contextual learning (see Neves et al, 2008 for further discus-

sion and references). Although we cannot exclude minor

learning deficits in the GluN2B KI mice that lie beneath the

detection threshold, given that KI and WT mice learned the

MWM tasks to the same level, it is clear that the main deficit

in the NR2B KI mice occurs during consolidation and not

initial learning.

These findings are fundamentally different from previous

work on CaMKII mutant mice and on mice with an inducible

fusion protein of the GluN2B C-terminus, as hippocampus-

dependent learning per se was already substantially affected

in all of these mice (Silva et al, 1992; Giese et al, 1998; Zhou

et al, 2007). The exceptions are heterozygous CaMKIIa
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knockout mice, which can learn normally (Frankland et al,

2001); however, they show impaired recall of the MWM task

10 days after training, whereas GluN2B KI mice show this

deficit much earlier after 1 day following the last day of

training. This comparison highlights the relevance of GluN2B

anchoring loss of which causes more sever memory deficits

than a reduction in overall CaMKIIa abundance. The different

behavioural phenotype seen in the GluN2B KI mice as

compared with the mice with inducible expression of the

GluN2B C-terminus (Zhou et al, 2007) must be due to effects

of the C-terminal fusion protein on protein interactions other

than that of the association of CaMKII with GluN2B as the

latter have clear and strong deficits already in the initial

learning phase and in recall immediately after an advanced

training session.

Classic studies of HM, who had undergone bilateral medial

temporal lobe resection to control epilepsy, demonstrated his

inability to acquire lasting declarative memory (Scoville and

Milner, 1957; Squire, 2009). Based on his case and many

subsequent studies, we now know that declarative learning

first occurs in the hippocampus but has to be transferred to

other brain regions for consolidation and long-term storage,

which takes up to 4 weeks with perhaps most of the transfer

occurring in the first week (Takehara-Nishiuchi et al, 2006;

Euston et al, 2007; Takehara-Nishiuchi and McNaughton,

2008). A role for NMDARs in this process has been observed

but its precise function or other molecular details are

unknown (Takehara-Nishiuchi et al, 2006). Our studies now

demonstrate a specific requirement for activity-driven bind-

ing of CaMKII to the NMDAR during the early phases of

hippocampus-dependent memory consolidation, indicating

that postsynaptic sites involved in this process must actively

recruit CaMKII for continued access (recall) or storage of

memories.

Materials and methods

Three point mutations were introduced into the GluN2B gene to
obtain the L1298A and R1300Q mutations and a BssHII site for
diagnostic purposes. Founder chimeras were backcrossed with EIIa/
Cre mice to excise the floxed Neo cassette and with nine generations
with C57BL/6J mice. All experiments were conducted with litter-

matched WT versus KI mice. Forebrain slices were prepared and
biochemically and electrophysiologically analysed as described (Lu
et al, 2007). Primary hippocampal cultures were prepared from
individual litter-matched WT and KI P0 pups, cultured in
Neurobasal medium (Invitrogen) supplemented with NS21, and
analysed by immunofluorescence microscopy using established
methods as described earlier (Chen et al, 2008). Colocalization of
CaMKII and GluN2B with synapsin and bassoon, respectively, was
determined using the Image J (Rasband, WS, ImageJ, US. National
Institutes of Health, Bethesda, MD, USA; http://imagej.nih.gov/ij/,
1997–2011) plugin JACoP (Bolte and Cordelieres, 2006) to deter-
mine colocalization coefficients (Pearson’s coefficient and Manders
coefficient) for 10 neurons per treatment condition. Pearson’s
coefficient is an estimate of the fit of the intensity correlation
between two channels to a straight line; a value of 0 describes no, 1
complete positive, and –1 complete negative correlation. Mander’s
coefficient (fraction of CaMKII or GluN2B signals colocalized with
synapsin signals) is similar to Pearson’s coefficient, but signal
intensity is not considered; it describes the fraction of one signal
that overlaps with the other.

All animal procedures were approved by the University of Iowa,
UC Davis and UCLA Animal Care and Use Committees and followed
NIH guidelines. Behavioural tests followed standard procedures.
See Supplementary data for more methodological details.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal. org).
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