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Genome-wide association studies have identified numerous loci demonstrating genome-wide significant
association with Crohn’s disease. However, when many single nucleotide polymorphisms (SNPs) have
weak-to-moderate disease risks, genetic risk prediction models based only on those markers that pass the
most stringent statistical significance testing threshold may be suboptimal. Haplotype-based predictive
models may provide advantages over single-SNP approaches by facilitating detection of associations
driven by cis-interactions among nearby SNPs. In addition, these approaches may be helpful in assaying
non-genotyped, rare causal variants. In this study, we investigated the use of two-marker haplotypes for
risk prediction in Crohn’s disease and show that it leads to improved prediction accuracy compared with
single-point analyses. With large numbers of predictors, traditional classification methods such as logistic
regression and support vector machine approaches may be suboptimal. An alternative approach is to
apply the risk-score method calculated as the number of risk haplotypes an individual carries, both within
and across loci. We used the area under the curve (AUC) of the receiver operating curve to assess the
performance of prediction models in large-scale genetic data, and observed that the prediction performance
in the validation cohort continues to improve as thousands of haplotypes are included in the model, with the
AUC reaching its plateau at 0.72 at ∼7000 haplotypes, and begins to gradually decline after that point. In
contrast, using the SNP as predictors, we only obtained maximum AUC of 0.65. Validation studies in indepen-
dent cohorts further support improved prediction capacity with multi-marker, as opposed to single marker
analyses.

INTRODUCTION

Crohn’s disease is one subtype of inflammatory bowel disease.
It affects as many as 630 000 people in North America, and
850 000 in Europe with similar incidence. Its incidence is
lower in Asia and Africa, and higher among Ashkenazi Jews
(1). Symptoms include abdominal pain, diarrhea, and among
children, growth failure is common (2).

The pathogenesis of Crohn’s disease is multifactorial and
includes a strong genetic component (2). Individuals with an
affected sibling are significantly more likely to develop the
disease than the control population. Two studies estimated
the ratio of the risk of siblings of patients to the reported

population prevalence in white populations resident in the
UK. In Oxford, UK, the relative risk for Crohn’s disease
was estimated at 36.5 (3). Multiple genome-wide association
studies (GWAS) have been performed to identify genetic var-
iants associated with Crohn’s disease in European ancestry
populations (4–10), and meta-analysis of GWAS has ident-
ified .30 distinct susceptibility loci for Crohn’s disease
(11). A number of loci were identified for which the power
to detect association was limited, suggesting that presently
identified loci represent only a fraction of contributing
genetic loci in Crohn’s disease. Despite the plethora of
genome-wide significant loci identified in Crohn’s disease
thus far, present association signals account for ,25% of
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the predicted heritability (11). In addition to common variation
of modest effects identified through single-point analysis of
the GWAS data, it is anticipated that uncommon variation at
distinct loci may contribute significantly to overall disease
risk (12,13). Taken together, the overall genetic architecture
and optimal development of risk models of Crohn’s disease
may be significantly more complex than previously antici-
pated.

Two prior papers have considered risk prediction for
Crohn’s disease. Jakobsdottir et al. (14) constructed a risk pre-
diction model using five single nucleotide polymorphisms
(SNPs). Based on the Lu and Elston method (15), they devel-
oped a model with an area under the curve (AUC) of 0.66.
However, validation of their model was based on theoretical
results instead of an independent validation cohort. In
another paper, Evans et al. (16) constructed a risk model for
Crohn’s disease using the disease susceptibility markers ident-
ified from the Crohn’s disease meta-analysis (11). Using a
10-fold cross-validation scheme, they observed an average
AUC of 0.769. However, because the validation cohort used
in their analysis was a subset of the discovery cohort that
identified the significant markers in the first place, there was
a substantial amount of overlap between the marker discovery
cohort and training/testing cohort. This is a well-documented
problem in the data-mining literature, and could severely
upwardly bias estimates of prediction performance (17–19).
In fact, in an unpublished work, we found that using the
same Crohn’s disease cohort for feature selection, model
development and testing, prediction accuracy can be inflated
by as much as 35%. Therefore, a key component of accurately
assessing genetic risk prediction models is the use of indepen-
dent training and testing cohorts.

When many SNPs have weak-to-moderate disease risks, a
genetic risk prediction model based only on those markers
that pass the most stringent statistical significance testing
threshold may be suboptimal. We found that the best predic-
tion accuracy was often achieved when hundreds or more
markers were included in the model, instead of including
only those few with highly statistically significant associations
(20). Given the enormous complexity of genetic contributions
in Crohn’s disease, we sought to develop improved prediction
risk models based on genome-wide approaches that more com-
prehensively capture potential contributing genetic variation.

Haplotype-based association testing may offer several
advantages over the standard ‘one-SNP-at-a-time’ approach.
First, haplotype methods facilitate detection of associations
driven by cis-interactions among nearby SNPs that might be
missed by methods that consider SNPs one at a time.
Several mutations on a haplotype may cause a series of
changes in amino acid coding and result in a larger joint
effect on the disease trait than the single amino acid changes
caused by single mutations. Examples include the lipoprotein
lipase-responsible gene in humans (21) and a gene influencing
initial lactase activity in humans (22). In this case, haplotypes
should reveal more information on disease mechanisms at a
candidate gene than single SNPs. Secondly, haplotype-based
analysis may be helpful in identifying rare causal variants.
Finally, haplotype approaches recognize that variation in
populations is inherently structured into genomic blocks and
exploit these correlations among SNPs. For all these reasons,

using haplotypes in association testing is expected to increase
power relative to single-SNP approaches, and studies based on
the human haplotype structure have provided support for this
(23,24).

In a recent paper by Shim et al. (23), the authors compared
the performance of single SNPs versus haplotypes using
association data from the North American Rheumatoid Arthri-
tis Consortium. They discovered that some associations were
only detected using haplotype-based tests perhaps resulting
from the factors cited above. They also found associations
using individual SNPs that were not seen in haplotype tests
because if there is only a single SNP exhibiting strong
linkage disequilibrium with a causal variant, having a long
haplotype block with several adjacent SNPs may dilute the
strength of the association. In addition, long haplotypes are
more difficult to be accurately phased, and the phasing error
may worsen the performance of haplotype-based association
testing (25,26). Based on these previous findings, analyses
based on short haplotype blocks may both provide advantages
and mitigate the disadvantages of longer haplotype-based
approaches. We hypothesized this because (i) given a reason-
ably large sample size, short haplotype blocks are easy to
phase with the standard expectation maximization algorithm,
and the results tend to be stable, and (ii) signal dilution will
be less severe in shorter haplotypes, if there is indeed only
one causal variant in the entire haplotype block. In this
article, we investigate the use of two-marker haplotypes for
risk prediction in Crohn’s disease, and show that it leads to
improved prediction accuracy compared with single-point
analyses.

RESULTS

Comparisons of different prediction methods

As described above, we considered three classification
methods to develop a risk prediction model using the com-
bined National Institute of Diabetes and Digestive and
Kidney Diseases (NIDDK) and Belgian cohorts as the training
data set (n ¼ 2223) and the pediatric data set as the validation
cohort (n ¼ 735). For each method, we evaluated the effect of
the number of haplotypes included in the risk prediction
model. For performance assessment, we calculated the
AUCs obtained from the validation cohort as a function of
the number of the 1000 most significantly associated haplo-
types. The results are summarized in Figure 1.

As the number of haplotypes included in the prediction
model increases to the range of hundreds or thousands, logistic
regression and support vector machine (SVM) methods
become more computationally intensive compared with the
risk-score method. Furthermore, because logistic regression
uses Newton–Raphson to obtain regression coefficients,
when the feature set becomes large, algorithm convergence
is often not met.

For both SVM and the risk-score methods, we observed the
general trend of improved prediction performance with more
haplotypes included in the model. The most substantial
increase in the AUC occurs when we included around 300
haplotypes in the model (Fig. 1). For the logistic regression
method, we notice a gradual decline in the AUC when we
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included .60 haplotypes in the model. This could be due to
the non-convergence of the Newton–Raphson algorithm
when the dimensions of the feature set increases.

Comparing the three classification methods’ performances
on the top 1000 haplotypes, we discovered that the risk-
score method not only has the advantage of a much
shorter computational time, but also outperformed the
other two methods in terms of prediction accuracy. There-
fore, in subsequent analyses, we focused on the risk-score
method.

The number of haplotypes used in prediction

In the next step, we explored whether including .1000 haplo-
types in the prediction model would further improve predic-
tion performance, and the results are summarized in
Figure 2. To better visualize the relationship between the
AUC and the number of haplotypes included in the model,
we smoothed the curve using the Loess smoothing technique.
The prediction performance in the validation cohort continues
to improve as thousands of haplotypes are included in the
model. The AUC reaches its plateau at 0.72 when �7000 hap-
lotypes are used for prediction, and begins to gradually decline
after that point.

We next examined the frequency distribution in the three
cohorts of the top 7000 most significantly associated
haplotypes used in the analysis. We found that the haplotype
frequencies are highly correlated in the three cohorts
(R2 . 0.99), as shown in Figure 3.

The risk score generated using the risk-score approach pro-
vides a proxy for the propensity that someone will develop the
disease. In Figure 4, we plot the distribution of the case/control
groups’ risk scores generated from the 7000 risk haplotypes
used in the prediction model in the validation cohort. We
find that in the validation cohort, the risk score is capable of
separating the cases from the controls, although the separation
is not quite profound.

Comparison with single-SNP-based prediction

We next investigated how much benefit is gained by using
haplotypes instead of single SNPs to construct the risk predic-
tion model for Crohn’s disease. Similar to Figure 2, we plotted
the AUC generated from the risk-score method as a function of
the number of SNPs included in the model in Figure 5. Using
directly genotyped SNP as predictors, we obtained a
maximum AUC of 0.647 when �2000 SNPs were included
in the model. When including imputed SNPs into the predic-
tion model, the maximum AUC was improved by ,0.01–
0.655, which remains significantly lower than the AUC
derived using a haplotype-based model.

Comparison with pruned haplotypes

The prediction performance worsened with the pruned set of
haplotypes, and the maximum AUC dropped to 0.695.

DISCUSSION

Currently, the main approach adopted by many companies
(e.g. 23 and ME, DecodeME, etc.) to carry out direct-
to-consumer genetic testing is to test individuals only at well-
established loci known to affect the risk of complex diseases.
However, for many diseases, the established loci could only
collectively explain a small portion of the genetic contribution,
which suggests that many more disease-associated genetic var-
iants (especially for those less common variants) are yet to be
discovered. Therefore, estimates of risk based upon the known
locus associations are likely to change dramatically in the next
few years, raising questions on the stability of the current risk
estimates. In fact, several papers demonstrate that updating
risk factor profile may generate contradictory information
about an individual’s risk status over time (27,28). In addition,
current methods only use single-marker information, whereas
haplotypes may offer additional information for risk
predictions.

Figure 2. AUC as a function of the number of haplotypes (up to 20 000)
included in the prediction model, using the risk-score method. The
Loess-smoothed curve is drawn.

Figure 1. AUC as a function of the number of haplotypes (up to 1000)
included using risk score, SVM and logistic regression prediction models.
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In the light of these issues, including a large number of pre-
dictors in the model (e.g. both nominally significant variants
and established risk loci) seems to be an attractive alternative
to using only the most highly associated loci. It has been
shown that the prediction performance can be improved
when there are a large number of weak predictors, each of
which is merely nominally significant, especially for diseases
such as bipolar disorder and coronary heart disease (16). In
this paper, we showed that the prediction model for Crohn’s
disease also follows this trend. In our Crohn’s disease predic-
tion model, the prediction performance steadily improves until
the number of predictors reaches the scale of thousands, and
this is observed for both haplotype and single-SNP predictors.
When there are far more predictors than sample size (n,,P),
traditional classification methods such as logistic regression
and SVM may become inadequate both in terms of algorithm
convergence and computational efficiency. An alternative way
that has been considered in the literature to summarize
large-scale genotype data is to use the risk-score method.
Although the risk-score approach procedure does not incorpor-
ate information about effect size of each individual predictor,

we found that it may outperform methods that do utilize this
information (e.g. logistic regression, SVM) when the power
of the study is low. This observation agrees with the results
from simulation studies conducted by Kang et al. (20), and
can probably be accounted for by the difficulties of accurate
effect-size estimates in the high-dimensional data setting.

The risk-score method has been adopted in a number of pre-
viously published studies for complex diseases, such as dia-
betes, bipolar disease and Crohn’s disease. In our analysis,
we constructed Crohn’s disease risk prediction model using
both SNPs and two-marker haplotypes as predictors. Although
the model evaluation criteria are different (e.g. external evalu-
ation versus cross-validation), the performance of the
single-SNP prediction model in our analysis seems to
closely match the results presented by Evans et al. (16), in
which they also used the risk-score method to perform
Crohn’s disease risk prediction. However, recognizing that
for some diseases, haplotypes might be a better unit of captur-
ing the genetic information, we also constructed our risk pre-
diction model for Crohn’s disease using haplotypes as
predictors. For Crohn’s disease, we observe that the risk

Figure 3. Correlation of the top 7000 associated haplotype frequencies in the three cohorts.
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model established with haplotypes has a better performance
models built with single-SNP information; compared to the
single-marker approach, the multi-marker approach increased
variance explained from 0.08 to 0.14. It is worthwhile
noting that although the risk-score method uses a summary
statistic to build the model and may not be sensitive to the
problem of correlated predictors, we compared the prediction
performance of the model with and without pruning (e.g. with
and without removing those highly correlated haplotypes from
the predictor set), and it appears that the prediction perform-
ance worsens with pruning.

MATERIALS AND METHODS

Cohort description

We included three European ancestry Crohn’s disease cohorts
in our analyses. The North American NIDDK IBD Genetics
Consortium cohorts were genotyped on the Illumina Human-
Hap300 platform. Only the non-Jewish NIDDK subjects
were included in the analysis. The Belgian–French cohort
was also genotyped on the Illumina HumanHap300 platform,
while the pediatric cohort was genotyped on the Illumina
HumanHap550 Genotyping BeadChip. More details about
the individual cohorts can be found in their original publi-
cations (6–8).

We combined the NIDDK and the Belgian–French cohorts
into one cohort as our discovery cohort, and use the pediatric
cohort as the validation cohort. Although the discovery cohort
was primarily ascertained through adult gastroenterology
practices, it is believed that there is very little difference
in the genetic component between the adult-onset and
pediatric-onset cohorts (9); therefore, the pediatric cohort is
a suitable independent replication cohort.

Data cleaning

Genotype data of each individual cohort were subjected to rig-
orous quality control (QC) measures to remove poor-quality
SNPs. First, we excluded any SNP in Hardy–Weinberg dise-
quilibrium (Chi-square test P-value ,0.0001 in cases or con-
trols), SNPs that have .5% missing data and any SNP with a
minor allele frequency ,2%. Using these filters, 3% of the
SNPs in the NIDDK Non Jewish cohort, 2% of the SNPs in
the Belgium–France cohort and 6.5% of the SNPs in the pedi-
atric cohort were removed. We then included an intersection

Figure 4. Risk-score distribution for the most optimal haplotype and SNP models in discovery and validation cohorts.

Figure 5. The AUC as a function of the number of SNPs (up to 20 000)
included in the prediction model, using the risk-score method. The
Loess-smoothed curve is drawn.
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of the post-QC genotypes from the three cohorts; 284 941
SNPs shared by all of the three cohorts. In the next step, we
aligned the strands of the three cohorts to the Hapmap CEU
population to facilitate subsequent merging.

At the subject level, individuals having .5% missing SNPs
were removed, and one, zero and four people were removed
from the NIDDK, the Belgian–French and the pediatric
cohorts, respectively.

Recognizing the potential confounding that may be created
from combining two samples into a single discovery cohort,
before combining the NIDDK and Belgian cohorts, SNPs
having significantly different minor allele frequencies
(Chi-square proportion test P-value ,0.01) between the
two cohorts were removed from the analysis (Table 1). A
total of 21 959 SNPs were removed following this scheme,
and 262 982 SNPs were retained in the proceeding analysis.
The genomic inflation factor of the post-QC discovery cohort
was 1.08. Note that there is no overlap between the discovery
and the validation cohorts in terms of their geographic
locations, therefore the false association signals resulting
from the population structure in the discovery cohort are
less likely to be replicated in the validation cohort. And
because our main goal for this work is to perform prediction
instead of association detection, we did not adjust for the
population structure in the subsequent analysis. Next, we
coded the individual cohort membership difference in the
merged cohort as a binary variable (e.g. 0 ¼ Belgian–
French, 1 ¼ NIDDK), and tested its significance by including
it in the logistic regression model of marker association
testing. In the discovery cohort, there were 35 markers
passing a lenient genome-wide threshold (5 × 1025), and
the membership variable is not significant (.0.05) for all
the top markers. Furthermore, because false association
signals resulting from the population structure are less
likely to be replicated in an independent validation cohort,
we think including false positives from the discovery
cohort will more likely hurt the prediction performance of
the prediction model instead of inflating it. Therefore, com-
bining all of the above findings, we believe that merging
the two data sets to form the discovery cohort does not
impose a serious problem in the risk prediction analysis.

Genotype imputation

Recognizing that prediction performance using single SNPs
may be improved using imputed instead of directly genotyped
markers, we utilize PLINK to perform the imputation, with the
HapMap III CEU population as the reference panel. The
required confidence threshold for making a genotype call
was set at 0.8. The same QC filters as described previously
for the directly genotyped markers were applied.

Haplotype construction

The entire genome was scanned with a sliding window of size
2, i.e. two SNPs were considered one at a time. Haplotypes
were phased using the standard EM algorithm implemented
in PLINK (29). Assuming an additive genetic model, each
possible two-SNP haplotype in the sliding window is rep-
resented as a three-level categorical variable, corresponding
to the number of copies each haplotype presents within each
study participant. Following this recoding scheme, haplotypes
can be treated in a similar way as their single-SNP counter-
parts, and methods developed for single-SNP association
testing can be applied to the haplotypes. To avoid spurious
association signals resulting from systematic missing patterns
between the case and the control groups, missing haplotypes
due to missing SNPs were imputed using the K-nearest neigh-
bor algorithm. Specifically, a block containing 1000 haplo-
types centered at the missing haplotype is extracted from the
genome, and the genotype of the missing haplotype is
imputed based on a vote of its K-nearest neighbor haplotypes
(Table 2). We chose k ¼ 3 in our imputation because it has
been shown to work well when the block size is small (30).

Haplotype selection

For each haplotype, a standard logistic regression is performed
to obtain its marginal association significance with the disease
phenotype. Haplotypes are then ranked by the significance of
their disease association, measured by P-values. Assuming
that those haplotypes most significantly associated with
disease are also good classifiers, a significance cut-off
threshold is applied, and features (i.e. haplotypes) with more
significant associations than the cut-off level are included in
the prediction model. As part of the QC, we removed those
haplotypes occurring at frequencies ,10%, and those haplo-
types having significantly different frequencies between the
discovery and the validation cohorts (Chi-square proportion
test P-value ,0.05). Following this QC scheme, among the

Table 1. Samples used in this study

NIDDK Belgian–French Pediatric

Cases 547 534 335
Controls 548 594 400

Table 2. Top significant haplotypes identified from the discovery cohort

Hap CHR P-value Gene

rs5743289|rs2076756 16 2.35E217 NOD2
rs2076756|rs5743291 16 2.70E217 NOD2
rs10521209|rs5743289 16 1.51E216 NOD2
rs2066843|rs10521209 16 2.40E215 NOD2
rs11647841|rs2066843 16 5.24E215 NOD2
rs8057341|rs11647841 16 4.56E214 NOD2
rs7194886|rs8057341 16 9.87E214
rs9302752|rs7194886 16 5.28E213
rs790631|rs7517847 1 1.47E210 IL23R
rs1004819|rs790631 1 1.78E210 IL23R
rs7143973|rs9285572 14 1.38E209
rs1343151|rs10889675 1 1.78E209 IL23R
rs7530511|rs10489629 1 4.75E209 IL23R
rs10889675|rs10889677 1 3.68E208 IL23R
rs10489629|rs2201841 1 4.51E208 IL23R
rs2241880|rs3792106 2 7.81E208 ATG16L1
rs2289476|rs2241880 2 7.81E208 ATG16L1
rs2201841|rs11804284 1 7.94E208 IL23R
rs3818562|rs4970779 1 1.08E207 EPS8L3
rs2302759|rs4785452 16 1.13E207 CYLD
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197 851 haplotypes we analyzed, 20.4% of them were
removed, and 157 490 haplotypes were kept in the following
analysis.

Classification algorithms

We considered three commonly used classification methods:
logistic regression, risk-score logistic regression and SVM.
For each haplotype selected, we standardize its direction of
risk by choosing the reference haplotype as the one that
gives an odds ratio ≥1 such that haplotype coding represents
the copies of risk haplotypes present. In the risk-score logistic
regression, the risk score is calculated as the number of risk
haplotypes an individual carries, both within and across loci:

N (risk) =
∑

xi

where xi is the number of the two-SNP risk haplotypes (0, 1, 2)
at ith selected haplotype window. The overall risk score serves
as a proxy for the risk of a subject developing disease, and it is
then treated as the single predictor in the logistic regression
framework for model training and validation. It is worth
noting that this method essentially assumes that all risk haplo-
types contribute equally to disease risk.

For both the SVM regression and logistic regression
methods, the binary disease trait (or the logit of the binary
trait) is constructed as a linear combination of the predictor
haplotypes. Note that these two procedures incorporate infor-
mation about effect-size estimates of each individual haplo-
type.

Model evaluation

Janssens et al. (31) advocated that the AUC of the receiver
operating characteristic (ROC) curve should be used to
assess the performance of prediction models in the large-scale
genetic data. And for the published genetic prediction models
of many diseases, it has become a standard practice to report
the AUC as the measurement of the prediction quality (32–
34). Briefly, the ROC curve represents the combination of sen-
sitivity and specificity for each possible cut-off value of the
continuous test result that can be considered to define positive
and negative test outcomes. It is the probability that given a
random pair of individuals, between whom one will develop
the disease and the other will not; the classifier will assign
the former a positive test result and the latter a negative
result. Theoretically, the AUC can take values between 0
and 1, where a perfect classifier will take the value of
1. However, the practical lower bound for random classifi-
cation is 0.5, and classifiers with an AUC significantly .0.5
have at least some ability to discriminate between cases and
controls. Here, we evaluated our prediction model for
Crohn’s disease using the AUC obtained from the independent
validation cohort.

Haplotype pruning

Pruning was achieved via a sliding window approach, with
window size of 50, and the number of haplotypes to shift

the window at each step is 5. Haplotypes within each sliding
window are pruned at the pair-wise correlation threshold
of 0.7.

Conflict of Interest statement. Neither this manuscript nor any
similar manuscript, in whole or in part, other than an abstract,
has been or will be submitted to or published in any other
scientific journal by the named authors. All authors are
aware of and agree to the content of the paper and their
being listed as authors on the paper. There are no financial
or other interests with regard to the submitted manuscript
that might be construed as a conflict of interest.

FUNDING

This work was supported by the National Institutes of Diabetes
and Digestive and Kidney Diseases (NIDDK) Grants (U01
DK062429, U01 DK062422 to J.H.C.), the National Institute
of General Medical Sciences (NIGMS) Grant (R01
GM059507 to H.Z.) and the Bohmfalk Foundation at Yale
University (to J.H.C.).

REFERENCES

1. Loftus, E.V. Jr. (2004) Clinical epidemiology of inflammatory bowel
disease: incidence, prevalence, and environmental influences.
Gastroenterology, 126, 1504–1517.

2. Abraham, C. and Cho, J.H. (2009) Inflammatory bowel disease.
N. Engl. J. Med., 361, 2066–2078.

3. Satsangi, J., Jewell, D.P. and Bell, J.I. (1997) The genetics of
inflammatory bowel disease. Gut, 40, 572–574.

4. (2007) Genome-wide association study of 14,000 cases of seven common
diseases and 3,000 shared controls. Nature, 447, 661–678.

5. Hampe, J., Franke, A., Rosenstiel, P., Till, A., Teuber, M., Huse, K.,
Albrecht, M., Mayr, G., De La Vega, F.M., Briggs, J. et al. (2007) A
genome-wide association scan of nonsynonymous SNPs identifies a
susceptibility variant for Crohn disease in ATG16L1. Nat. Genet., 39,
207–211.

6. Libioulle, C., Louis, E., Hansoul, S., Sandor, C., Farnir, F., Franchimont, D.,
Vermeire, S., Dewit, O., de Vos, M., Dixon, A. et al. (2007) A novel
susceptibility locus for Crohn’s disease identified by whole genome
association maps to a gene desert on chromosome 5p13.1 and modulates the
level of expression of the prostaglandin receptor EP4. PLoS Genet., 3, e58.

7. Rioux, J.D., Xavier, R.J., Taylor, K.D., Silverberg, M.S., Goyette, P.,
Huett, A., Green, T., Kuballa, P., Barmada, M.M., Datta, L.W. et al.
(2007) Genome-wide association study identifies new susceptibility loci
for Crohn disease and implicates autophagy in disease pathogenesis. Nat.
Genet., 39, 596–604.

8. Kugathasan, S., Baldassano, R.N., Bradfield, J.P., Sleiman, P.M.,
Imielinski, M., Guthery, S.L., Cucchiara, S., Kim, C.E., Frackelton, E.C.,
Annaiah, K. et al. (2008) Loci on 20q13 and 21q22 are associated with
pediatric-onset inflammatory bowel disease. Nat. Genet., 40, 1211–1215.

9. Imielinski, M., Baldassano, R.N., Griffiths, A., Russell, R.K., Annese, V.,
Dubinsky, M., Kugathasan, S., Bradfield, J.P., Walters, T.D., Sleiman, P.
et al. (2009) Common variants at five new loci associated with early-onset
inflammatory bowel disease. Nat. Genet., 41, 1335–1340.

10. Raelson, J.V., Little, R.D., Ruether, A., Fournier, H., Paquin, B., Van
Eerdewegh, P., Bradley, W.E., Croteau, P., Nguyen-Huu, Q., Segal, J.
et al. (2007) Genome-wide association study for Crohn’s disease in the
Quebec Founder Population identifies multiple validated disease loci.
Proc. Natl Acad. Sci. USA, 104, 14747–14752.

11. Barrett, J.C., Hansoul, S., Nicolae, D.L., Cho, J.H., Duerr, R.H., Rioux,
J.D., Brant, S.R., Silverberg, M.S., Taylor, K.D., Barmada, M.M. et al.
(2008) Genome-wide association defines more than 30 distinct
susceptibility loci for Crohn’s disease. Nat. Genet., 40, 955–962.

Human Molecular Genetics, 2011, Vol. 20, No. 12 2441



12. Johansen, C.T., Wang, , J., Lanktree, M.B., Cao, H., McIntyre, A.D., Ban,
M.R., Martins, R.A., Kennedy, B.A., Hassell, R.G., Visser, M.E. et al.
(2010) Excess of rare variants in genes identified by genome-wide
association study of hypertriglyceridemia. Nat. Genet., 42, 684–687.

13. Azzopardi, D., Dallosso, A.R., Eliason, K., Hendrickson, B.C., Jones, N.,
Rawstorne, E., Colley, J., Mokvina, V., Frye, C., Sampson, J.R. et al.
(2008) Multiple rare nonsynonymous variants in the adenomatous
polyposis coli gene predispose to colorectal adenomas. Cancer Res., 68,
358–363.

14. Jakobsdottir, J., Gorin, M.B., Conley, Y.P., Ferrell, R.E. and Weeks, D.E.
(2009) Interpretation of genetic association studies: markers with
replicated highly significant odds ratios may be poor classifiers. PLoS
Genet., 5, e1000337.

15. Lu, Q. and Elston, R.C. (2008) Using the optimal receiver operating
characteristic curve to design a predictive genetic test, exemplified with
type 2 diabetes. Am. J. Hum. Genet., 82, 641–651.

16. Evans, D.M., Visscher, P.M. and Wray, N.R. (2009) Harnessing the
information contained within genome-wide association studies to improve
individual prediction of complex disease risk. Hum. Mol. Genet., 18,
3525–3531.

17. Ambroise, C. and McLachlan, G.J. (2002) Selection bias in gene
extraction on the basis of microarray gene-expression data. Proc. Natl
Acad. Sci. USA, 99, 6562–6566.

18. Simon, R., Radmacher, M.D., Dobbin, K. and McShane, L.M. (2003)
Pitfalls in the use of DNA microarray data for diagnostic and prognostic
classification. J. Natl Cancer Inst., 95, 14–18.

19. Reunanen, J. (2003) Overfitting in making comparisons between variable
selection methods. J. Mach. Learn. Res., 3, 1371–1382.

20. Kang, J., Cho, J. and Zhao, H. (2010) Practical issues in building
risk-predicting models for complex diseases. J. Biopharm. Stat., 20,
415–440.

21. Clark, A.G., Weiss, K., Nickerson, D.A., Taylor, S.L., Buchanan, A.,
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