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The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date,
genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at
CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We per-
formed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of
COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study
(NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene
study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000
Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-
wide significant locus on chromosome 19q13 (rs7937, OR 5 0.74, P 5 2.9 3 1029). Genotyping this single
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nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 sub-
jects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evi-
dence for association for COPD (P 5 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV1 (P 5
0.08 and 0.04) and severe (GOLD 3&4) COPD (P 5 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA
and CYP2A6, and has previously been identified in association with cigarette smoking behavior.

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is defined
as airflow limitation that is not fully reversible and is
usually caused by exposure to noxious particles or gases—
predominantly cigarette smoking, though other exposures
such as biomass fuels are an important cause worldwide (1).
COPD does not reverse with smoking cessation, and despite
efforts to curtail cigarette smoking, COPD is a leading and in-
creasing cause of morbidity and mortality. Worldwide, it is
projected to rise to rank fifth in disease burden by 2020 (1),
and in the USA, it now ranks as the third leading cause of
death (2). The development of COPD among smokers is not
uniform; a minority of smokers develops the disease (3), and
lung function response to similar levels of cigarette smoke ex-
posure varies greatly (4). Numerous studies have demonstrated
a genetic component to COPD and smoking-related changes in
lung function (5–8). However, the results of many small can-
didate gene studies have been inconsistent (9,10). Genome-
wide association studies (GWASs) of COPD (11–13) have,
to date, identified three susceptibility loci that have been
well replicated (14–21). We report the results of a follow-up
GWAS in four cohorts that identifiy a new COPD susceptibil-
ity locus.

RESULTS

Baseline characteristics for subjects from the four cohorts: the
Evaluation of COPD Longitudinally to Identify Predictive
Surrogate Endpoints (ECLIPSE); Normative Aging Study
(NAS) and National Emphysema Treatment Trial (NETT);
Bergen, Norway COPD Cohort (GenKOLS); and the COPD-
Gene study (first 1000 subjects) are shown in Table 1.
Fixed-effects meta-analysis across the four cohorts for case–
control status showed no evidence of substantial deviation
from the null (lambda ¼ 1.01, Fig. 1). The most significantly
associated single nucleotide polymorphisms (SNPs) were in
the previously identified locus on chromosome 4 in FAM13A
(Table 2). However, a new genome-wide significant locus
was identified on chromosome 19q13. The top P-value was
at rs7937 (OR ¼ 0.74, P-value ¼ 2.88 × 1029). There was
some evidence of heterogeneity (P-value ¼ 0.15 for
Cochrane’s Q, I2 ¼ 43.8); however, similar results were
found using a modified random-effects model (22) (P ¼
3.36 × 1029).

We genotyped rs7937 and another nearby genome-wide sig-
nificant SNP in linkage disequilibrium (LD) (rs2604894, r2 ¼
0.74) in 983 probands and 1876 siblings from the family-based
International COPD Genetics Network study (ICGN).
P-values for the COPD affection status for the same risk

allele were 0.28 and 0.11 for rs7937 and rs2604894, respect-
ively. More significant associations were demonstrated for
pre-bronchodilator FEV1 (P ¼ 0.08 and 0.04, respectively)
and after limiting cases to Global Initiative for Chronic
Obstructive Lung Disease (GOLD) severity classifications 3
and 4 COPD (P ¼ 0.09 and 0.017, respectively).

The 19q13 locus includes the genes RAB4B, EGLN2 and
CYP2A6, and SNPs in this locus have recently been identified
in a large GWAS of smoking behavior (23,24) as associated
with average number of cigarettes smoked per day; rs7937
was the second-ranked association to cigarettes per day at
this locus in the study by Thorgeirsson et al. (23), with a com-
bined P-value of 2.4 × 1029. To explore whether our findings
were due to associations with cigarette smoking behavior, we
examined the relationship of rs7937 and rs2604894 with both
pack-years and average number of cigarettes smoked per day
separately in the case and control groups. In none of these ana-
lyses were any significant associations found; the strongest as-
sociation (P ¼ 0.27) was with pack-years of smoking in
controls. These results are consistent with the results reported
for rs7937 in the Bergen, Norway GenKOLS cohort, as this
cohort was included in the GWAS by Thorgeirsson
et al. (23). While these main effects were not significant, we
also examined whether there was any evidence of a
gene-by-cigarettes per day or pack-years interaction; none of
these analyses were significant (P . 0.1).

At chromosome 19q13, and at the three previously demon-
strated genome-wide associated loci (11–13) (4q22—
FAM13A; 4q31—HHIP; and 15q25—CHRNA3/CHRNA5/
IREB2), we used the imputed marker data from the 1000
Genomes study to attempt to further refine previously deter-
mined association signals (Table 2 and Fig 2). At 4q22 and
4q31, imputed SNPs in high LD (r2 of 1.0 and 0.9, respective-
ly) with the most significant genotyped association had only
marginally smaller P-values. At 15q25, the top hit was
rs11858836; this SNP is in strong LD with the previously
reported rs8034191 and rs1051730 (r2 of �0.75–0.8), both
part of locus 1 of Saccone et al. (25), but also in moderate
LD (r2 �0.4) with rs13180, our previously reported most sig-
nificant SNP in this region. We also attempted to assess
whether any known non-synonymous SNPs could account
for these association signals. At only one locus, 15q25, was
there any non-synonymous SNP at an r2 of .0.5 with the
most significant SNP in the region; this was the CHRNA5
SNP rs16969968, which has been described as part of locus
1 above. To evaluate the potential effect of rarer SNPs—
those with low r2 but high D′—we additionally evaluated
SNPs with D′ . 0.8 within 500 kb of the top four loci. Two
other imputed SNPs had D′ � 1 with rs7937 at 19q13 and
nominal associations with COPD: rs1801272 in CYP2A6
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[P ¼ 0.03, minor allele frequency (MAF) ¼ 0.04, imputation
r2 0.3–0.4 using HapMap2 data] previously described in this
cohort as associated with lifetime average cigarettes per day
(26), and rs36012476 in ADCK4 (P ¼ 0.02, MAF ¼ 0.07,
and imputation r2 0.6–0.7). Inclusion of these SNPs only
modestly attenuated the signal for rs7937 (P after
adjustment ¼ 8.3 × 1028). In addition to single SNP analyses,
we also performed analyses conditioning on the top SNP in
each of the four GWAS regions, using markers 250 kb on
either side and a threshold of P , �5 × 1024 to reflect an ap-
proximate adjustment for a 500 kb interval flanking the most
significant SNP. None of the loci demonstrated evidence of
other independent SNP effects.

Finally, we attempted to estimate the relative contribution
of these four risk loci to the sibling relative risk of COPD.
We used odds ratios aggregated over the four cohorts and
assumed independence of the four loci under a standard multi-
plicative model; acknowledging that the resulting estimates
using the discovery cohorts are likely to be inflated. These
four loci accounted for �5% of the total variance explained
using either pseudo-R2 or a liability threshold model.
Alternatively, using estimates of sibling relative risk from
family-based studies of 2–3 (5,6), these four loci account
for �8–15% of the sibling relative risk.

DISCUSSION

While a familial component to COPD has been recognized
for at least the last 40 years (27)—aside from the nearly- con-
temporaneous identification of alpha-1 antitrypsin deficiency
(28)—the genetic determinants of COPD have been generally
elusive. Our analysis adds an additional cohort to three prior
GWASs and identifies a new genome-wide significant locus
associated with COPD susceptibility at chromosome 19q13.

The 19q13 locus has demonstrated clear associations with
smoking behavior, and has been shown to be associated with
cigarettes per day in two large meta-analytic GWASs
(23,24). An association operating through cigarette smoking
is clearly the most parsimonious and most likely explanation.
However, we cannot rule out the possibility that other mechan-
isms may also be responsible for the association to COPD that
we observed. At 15q25, mediation approaches suggest that
pack-years explain only �1/4 of the association between
these SNPs and COPD (29). Another gene at this locus,
IREB2, was identified independently in part through gene
expression and genetic association (30) as a candidate gene
for COPD. In our data set, we were unable to show a signifi-
cant association between rs7937 and cigarettes per day or
pack-years in any of our study populations, and our finding
persisted after inclusion of a non-synonymous SNP associated
with cigarettes per day in this cohort. The 19q13 locus
includes several other genes of potential interest expressed
in developing animal or human lung: RAB4B (31), MIA (32)
and EGLN2 (33). LTBP4 is �150 kb away, and variants in
this gene have been associated with functional outcomes in
subjects with emphysema (34), and disruption of this gene
leads to emphysema in mice (35) and in humans, as part of
the Urban-Rifkin-Davis Syndrome (OMIM #613177) (36).

While future studies (both statistical analyses, such as causal
modeling and mediation analysis, and functional studies) may
help determine whether other genes at this locus play a role
in the 19q13 association, it is highly likely that this association
occurs through cigarette smoking. CYP2A6 variants have add-
itionally been associated with another major smoking-related
disease, lung cancer (37). CYP2A6 and, to a lesser extent,
CYP2B6 are involved in nicotine metabolism (38,39); the
most significant associations in these studies are in LD with
sequence variants that have been shown to reduce CYP2A6
enzyme activity, and rs7937 was associated with the levels of
the major nicotine metabolite cotinine in a subset of subjects
from the European Network for Genetic and Genomic
Epidemiology (23). While we were able to identify a nominally
significant association of cigarettes per day with a non-

Table 1. Baseline characteristics (mean+SD or percentage)

COPDGene ECLIPSE NETT/NAS GenKOLS
Cases Controls Cases Controls Cases Controls Cases Controls

n 499 501 1764 178 373 435 863 808
Age 64.77 (8.12) 60.2 (8.66) 63.63 (7.1) 57.48 (9.44) 67.47 (5.78) 69.8 (7.49) 65.53 (10.03) 55.62 (9.71)
Pack-years 54.76 (26.69) 38.87 (21.07) 50.29 (27.42) 32.11 (24.84) 66.43 (30.68) 40.66 (27.85) 31.98 (18.46) 19.66 (13.58)
Average cigarettes per day 27.58 (11.76) 24.89 (11.18) 25.54 (12.39) 21.87 (11.35) 32.55 (13.47) 29.27 (14.33) 15.6 (7.71) 13.82 (7.44)
FEV1, % predicted 48.73 (18.41) 97.98 (11.32) 47.63 (15.62) 107.83 (13.56) 28.12 (7.38) 99.97 (13.2) 50.63 (17.44) 94.91 (9.24)
Sex (% male) 49.5 50.1 67.0 57.9 63.8 100 60.1 50.1

Figure 1. The Quantile–quantile plot for the four-cohort meta-analysis includ-
ing 1000 Genomes project imputed data, after adjustment for genetic ancestry
using principal components.
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synonymous SNP in CYP2A6 in our COPD cohorts (26),
CYPA26 activity is affected by a number of other demonstrated
functional variants—both common and rare (40–43). While we
failed to demonstrate an association with cigarette smoking
behavior and rs7937 within our case or control groups, both
the 15q25 and 19q13 loci have been associated with cotinine
levels in other studies that did not find an association with
cigarettes per day (44,45), suggesting that standard measures
of smoking behavior are incomplete. Issues with measuring
the complexity of cigarette smoke exposure such as recall
bias (46), as well as differential intensity of smoking per
cigarette and effects of cigarette metabolism, may be respon-
sible for the lack of association with pack-years or cigarettes
per day in our case and control groups.

The identification of this 19q13 COPD locus, in conjunction
with 15q25, highlights the critical contribution of variants
affecting the major behavioral risk factor for COPD, cigarette
smoking. This is in contrast to coronary artery disease, where
despite the fact that cigarette smoking is a major risk factor
(47), none of the identified genome-wide association loci to
date has identified variants known to affect smoking, and a
minority of the identified loci have been associated with trad-
itional risk factors (48). Ongoing cigarette smoking causes
accelerated lung function decline; conversely, smoking cessa-
tion attenuates this decline, improves respiratory symptoms
and reduces overall mortality (49–52). Decreasing cigarette
consumption is essential to reducing the risk of COPD, and
though a subset of our subjects carry lower risk alleles, our
data do not suggest that there are smokers unlikely to benefit
from smoking cessation. Whether genetic testing may aid a
subset of more susceptible individuals in smoking cessation
efforts is unclear (53,54).

While our GWAS is the largest reported to date for COPD, our
sample size is still substantially smaller—by a factor of 10 or
more—than some other complex diseases; a recent coronary
artery disease GWAS included 22 233 cases (48). Thus, if the
genetic architecture of COPD is similar to other complex
common diseases, our study is underpowered to detect many of
the likely other common variants contributing to COPD suscepti-
bility. This lack of power may also explain why we were unable to
discern independent associations at the 15q25 locus, as others have
demonstrated (25); our family-based replication results may have
also suffered from power limitations, or, less likely, reflect subtle
stratification in our original case–control analysis (55,56). Our
study also did not directly assess for rare genetic variation,
which may be an important contributor to COPD susceptibility
(57), nor did we assess for copy number variation. Finally, we
did not attempt to address issues of COPD heterogeneity, for
example, through radiographic phenotypes (58).

Our GWAS increases the number of genome-wide signifi-
cant loci associated with COPD to four. Our analysis at
these risk loci, using publicly available dense sequencing
data and imputation, helps refines these signals for further
study and replication. These loci account for only a small frac-
tion of the observed effect of all genetic variants in COPD
risk, and we anticipate analysis of other types of genetic vari-
ation (rare variants, copy number variants) and perhaps more
importantly—future collaborations to increase the available
sample size (59)—will expand this list of genetic loci and
improve our understanding of COPD susceptibility.T
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MATERIALS AND METHODS

Genotyping methods and study descriptions for three data sets:
the ECLIPSE; NAS and NETT; and GenKOLS have been

described previously (11,13,60–64). All cohorts were of self-
described European white ancestry and genotyped on Illumina
platforms (Human Hap550 or Quad610). Quality-control pro-
cedures included tests for subject missingness, discordances,

Figure 2. Association plots at genome-wide significant loci. R2 values are given in relation to the most significant, labeled and highlighted SNP. Plots created
using LocusZoom (83).
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relatedness and sex; and marker missingness, discordances,
singletons and Hardy-Weinberg equilibrium.

The study protocol for COPDGene (NCT00608764) has been
described previously (65). Briefly, COPDGene is a multi-center

genetic and epidemiologic investigation to study COPD and
other smoking-related lung diseases. Participants completed a
detailed protocol, including questionnaires, pre-and post-
bronchodilator spirometry, high-resolution CT scanning of the

Figure 2. Continued
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chest and blood samples for genotyping. Samples from self-
described European whites were genotyped at the Center for
Inherited Disease Research (CIDR) at Johns Hopkins University
using the Illumina Omni1 Quad platform. COPDGene genotyp-
ing underwent a similar quality-control procedure: subjects
were screened for missing call rates . 1%, relatedness by esti-
mated identity-by-descent . 0.125, sex discrepancies, and
inbreeding coefficients . 0.2. Markers were screened for
missingness . 2%, minor allele frequency , 1%, and devi-
ation of Hardy–Weinberg at P , 1 × 1025. Out of an initial
set of 1006 COPDGene subjects, only one was unable to be gen-
otyped successfully; none of the others failed on quality-control
criteria. Five additional subjects were excluded based on the
presence of lung parenchymal abnormalities other than
emphysema after chest CT scan review. The average per-subject
genotype missing rate was 0.05%, with a maximum missing rate
of 0.96%. Details on the COPDGene subjects, as well as the
subjects from the other three cohorts passing initial quality-
control before removal of principal component outliers are
shown in Table 1.

Of the 986 763 autosomal markers in the COPDGene study
successfully genotyped, 797 983 markers remained after
quality-control, with .95% of these exclusions on the basis
of low minor allele frequency (,1%). Combining these
markers with those from the other three cohorts (ECLIPSE,
NETT/NAS and GenKOLS), a total of 296 201 markers
were shared among all cohorts. After imputation from the
1000 Genomes study, this number increased to �6.1 million
SNPs. Analysis for and control of population stratification
were also performed via principal components using EIGEN-
SOFT2.0 (66) as previously described (13) for the ECLIPSE,
NETT, NAS and GenKOLS cohorts. For COPDGene, pruned
markers with a LD cutoff of 0.12 were chosen from those with
a MAF . 0.05, Illumina GC scores of .0.8 and present in
HapMap CEU subjects. Outliers were removed over five itera-
tions with deviations beyond 6 standard deviations, along the
top 10 principal components. Significant principal components
were defined using the Tracy–Widom statistic (67) as previ-
ously described (13). After removal of additional subjects
with cryptic relatedness between cohorts and outliers by
genetic ancestry based on principal components, 3456 cases
and 1908 controls (99% of subjects) remained in the analysis.
Ten ECLIPSE subjects were found to have borderline FEV1/
FVC ratios but were retained in the analysis.

Genotype imputation within each study was performed
using MaCH 1.0.16 (68) using 100 rounds of iterations to
estimate model parameters and CEU samples from
HapMap2 (69) and the 1000 Genomes Project (70) (phased
CEU data, March 2010) as reference populations. Markers
with an imputation r2 ≤ 0.3 were dropped from further ana-
lysis. Association analysis of SNPs with case–control status
was performed in each cohort using logistic regression, adjust-
ing for age, pack-years of cigarette smoking and genetic an-
cestry as summarized in the principal components. Imputed
genotypes were analyzed in a similar manner, using SNP
dosage data in PLINK 1.07 (71). Results were analyzed
among the four cohorts using fixed-effect meta-analyses (72)
using METAL (73) and in R 2.12 (www.r-project.org) with
the meta-package. Genomic inflation factors (74) were calcu-
lated using GenABEL (75). I2 and Cochran’s Q were

calculated to assess for heterogeneity; a secondary analysis
using a modified random-effects model was also performed
(22).

Replication genotyping was performed using the SEQUE-
NOM MassARRAY MALDI-TOF mass spectrometer (Seque-
nom, San Diego, CA, USA). Details of the ICGN cohort used
for replication have been previously described (13,58). Asso-
ciation analysis in ICGN was performed using PBAT 3.61
(76) using one-sided P-values for the same risk allele, adjust-
ing for age and pack-years of smoking in the COPD affection
status analysis, and age, pack-years, sex and height in the ana-
lysis of FEV1.

Analyses conditional on other SNPs were performed by
extracting genotype dosage data (for imputed SNPs) or
actual genotypes; logistic regression adjusting for significantly
associated SNPs was performed in R 2.12. Calculation of the
contribution of loci to sibling relative risk was obtained using
overall odds ratios and minor allele frequencies (77,78). Esti-
mation of the fraction of variance explained was calculated
using logistic regression and Nagelkerke’s pseudo-R2 (79) as
implemented in R Design package, and alternatively using
the estimates based on a liability threshold model by So
et al. (80) using a prevalence of COPD in smokers of
�10% (81).

LD was calculated for HapMap2 and 1000 Genomes CEU
data using SNAP (82). Regional association plots were
created using LocusZoom (83). All positions are given in ref-
erence to the Human March 2006 (NCBI36/hg18) assembly.
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