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Mycobacterium marinum is a waterborne mycobacterial pathogen. Due to their common niche, protozoa likely represent natu-
ral hosts for M. marinum. We demonstrate that the ESX-1 secretion system is required for M. marinum pathogenesis and that
M. marinum utilizes actin-based motility in amoebae. Therefore, at least two virulence pathways used by M. marinum in macro-
phages are conserved during M. marinum infection of amoebae.

Mycobacterial pathogens are responsible for some of the leading
causes of death by infectious disease. The majority of these

deaths are caused by mycobacterial species within the Mycobacterium
tuberculosis complex (MTC) (3). However, mycobacterial species in
the environment, including atypical or nontuberculous mycobacte-
ria (NTM), pose an emerging disease threat (19). Little is understood
about the basic molecular virulence mechanisms employed by envi-
ronmental mycobacterial pathogens.

Mycobacterium marinum is a waterborne pathogen that causes
a tuberculosis (TB)-like infection in ectotherms and is an occa-
sional opportunistic human pathogen (21). M. marinum is related
to M. tuberculosis and is used to model aspects of MTC pathogen-
esis (4, 7, 21, 23, 27). Free-living amoebae (FLA), including Acan-
thamoeba castellanii, are professional phagocytes (12). Pathogenic
bacteria, including M. marinum and other NTM, have been recov-
ered from samples of water colonized by free-living amoebae (8,
26). Several mycobacterial species are established amoeba-
resistant bacteria (ARB) and resist destruction by FLA (1, 6, 12, 17,
18). It has been posited that protozoa serve as a reservoir for my-
cobacteria in the environment (17).

It is probable that M. marinum naturally interacts with proto-
zoa, including A. castellanii, that share an environmental niche. It
was demonstrated that M. marinum are pathogenic to A. castella-
nii (6, 17, 20, 28). The molecular mechanisms underlying this
interaction have not been well established.

We hypothesized that virulence mechanisms required for in-
fection of macrophages by M. marinum would also be required for
pathogenesis of A. castellanii. The ESX-1 protein secretion system
is required by mycobacteria and other Gram-positive pathogens
to cause disease (2, 11, 13, 16, 24). Amoebae were infected (mul-
tiplicity of infection [MOI] of 1) with either the wild-type (WT)
strain or an attenuated RD1 deletion (�RD1) strain of M. mari-
num, which bears a deletion in components and substrates of the
ESX-1 system (Fig. 1A) (27). M. marinum replicated roughly three
logs in A. castellanii over the 72-h experiment, with an average
generation time of 7 h. The �RD1 strain replicated approximately
two logs in A. castellanii over the 72-h experiment, with an average
generation time of 12 h. Following an early rapid growth phase for
both strains, the bacteria were maintained at relatively constant
levels throughout the experiment. However, the �RD1 strain
failed to reach the levels of growth achieved by the wild-type strain
(Fig. 1A). Significant differences in growth between the WT and

�RD1 strains were observed at 48 (P � 0.035) and 72 (P � 0.002)
hours postinfection (hpi) (Fig. 1A).

Next, we infected A. castellanii with WT or �RD1 M. marinum
expressing DsRed at an MOI of 1, 5, and 10 and monitored bac-
terial uptake and survival. We performed fluorescence micros-
copy and determined the percentage of amoebae infected with M.
marinum. At each time point, the numbers of infected amoebae
were counted and compared to the total number of amoebae in
that field (see Fig. S1 in the supplemental material). Five fields of
approximately 100 amoebae were counted at each time point. We
found that with increasing MOI, the fraction of infected amoebae
increased (Fig. 1B; see also Fig. S2 in the supplemental material).
At 4 hpi, an MOI of 1 resulted in 20 to 25% of A. castellanii cells
becoming M. marinum infected (see Fig S2). At MOIs of 5 and 10,
roughly 60% and 80% of A. castellanii cells became infected, re-
spectively (Fig. 1B; see also Fig S2). Importantly, our data indicate
that once M. marinum is phagocytosed by amoebae, the propor-
tion of A. castellanii cells infected remains constant for at least 48
h (Fig. 1B). In contrast, although the �RD1 strain is not defective
for uptake relative to the wild-type strain (Fig. 1B, 4 hpi), the
population of infected amoebae significantly decreased over time
at all MOIs tested relative to the wild-type infection (Fig. 1B; 12
hpi, P � 0.005; 24 hpi, P � 0.010; 48 hpi, P � 6.547 � 10�5).

It was previously reported that Legionella pneumophila infec-
tion of A. castellanii results in amoeba lysis and reduced viability
(5, 9, 28). To determine if we observed a similar decrease in
amoeba viability, we counted amoebae during infection with
wild-type M. marinum at an MOI of 10 and normalized the total
number of amoebae each day to the number plated at time zero.
The total number of amoebae remained constant when infected
with wild-type M. marinum (Fig. 1C; see also Fig. S3 in the sup-
plemental material). In contrast, infection with �RD1 M. mari-
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num resulted in amoeba replication over time (Fig. 1C; see also
Fig. S3). Because the amoebae infected with the attenuated strain
continue to replicate during the course of the infection, growth
arrest is likely due to infection with wild-type M. marinum rather
than nutrient exhaustion. To confirm that we were observing
amoeba death, we performed a lactate dehydrogenase (LDH) re-
lease assay at various MOIs 72 hpi. Infection with increasing MOI
of wild-type M. marinum resulted in significantly increased amoe-
bal lysis as measured by LDH release (Fig. 1D; MOI of 5, P �
0.009; MOI of 10, P � 0.001). Importantly, we did not observe
detectable lysis during infection by the �RD1 deletion strain of M.
marinum at any MOI tested or of uninfected amoebae.

One of the features of M. marinum pathogenesis is the ability of
the bacteria to access the macrophage cytosol and utilize host actin
for motility (22). Interestingly, M. marinum fails to exhibit actin-
based motility in the soil amoeba Dictyostelium discoideum and
instead escapes via nonlytic ejection (14, 15). To determine if M.
marinum forms actin tails in A. castellanii, we infected amoebae at
an MOI of 5 and visualized actin tail formation using immunoflu-
orescence microscopy. We observed actin tail formation by wild-
type M. marinum at approximately 22 hpi (Fig. 2). As was reported
in macrophages, we observed that only a subset of mycobacteria
form actin tails (22). Similarly, a single amoeba cell infected with
multiple bacteria harbors bacteria with and without tails. We were
unable to visualize actin tails in bacteria lacking the ESX-1 system
(data not shown).

In conclusion, we demonstrate that two virulence mechanisms
used by M. marinum to infect macrophages are also required for
pathogenesis of the amoeba A. castellanii under laboratory condi-

tions. The M. marinum strain lacking the ESX-1 secretion system
was attenuated for growth in amoebae, as previously shown in
macrophages and zebrafish (7, 10, 25, 27). Moreover, infection by
M. marinum resulted in lysis of the amoeba host in an ESX-1-
dependent manner. We observed actin tail formation by M. ma-
rinum but were unable to observe actin tail formation in the ESX-
1-deficient strains (data not shown), consistent with the
requirement of ESX-1 for phagosomal escape by M. marinum (22,
23). Our findings contribute to the basic molecular understanding
of the interaction between A. castellanii and M. marinum.
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