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Abstract
Statistical image reconstruction using penalized weighted least-squares (PWLS) criteria can
improve image-quality in X-ray CT. However, the huge dynamic range of the statistical weights
leads to a highly shift-variant inverse problem making it difficult to precondition and accelerate
existing iterative algorithms that attack the statistical model directly. We propose to alleviate the
problem by using a variable-splitting scheme that separates the shift-variant and (“nearly”)
invariant components of the statistical data model and also decouples the regularization term. This
leads to an equivalent constrained problem that we tackle using the classical method-of-multipliers
framework with alternating minimization. The specific form of our splitting yields an alternating
direction method of multipliers (ADMM) algorithm with an inner-step involving a “nearly” shift-
invariant linear system that is suitable for FFT-based preconditioning using cone-type filters. The
proposed method can efficiently handle a variety of convex regularization criteria including
smooth edge-preserving regularizers and nonsmooth sparsity-promoting ones based on the ℓ1-norm
and total variation. Numerical experiments with synthetic and real in vivo human data illustrate
that cone-filter preconditioners accelerate the proposed ADMM resulting in fast convergence of
ADMM compared to conventional (nonlinear conjugate gradient, ordered subsets) and state-of-
the-art (MFISTA, split-Bregman) algorithms that are applicable for CT.

Index Terms
Statistical Image Reconstruction; Regularization; Iterative Algorithm; Method of Multipliers;
Alternating Minimization

I. Introduction
Statistical image reconstruction methods in X-ray CT minimize a cost function consisting of
a data-fidelity term that accommodates the measurement statistics and the geometry of the
data-acquisition process, and a regularization term that reduces noise. For example, PWLS
cost functions for X-ray CT use a (statistically) weighted quadratic data-fidelity term [1], [2]
and can provide improved image-quality compared to filtered back-projection (FBP) [1], [2].
However, computation-intensive iterative methods are needed to minimize such cost
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functions. This paper describes a new minimization algorithm that uses variable splitting to
provide accelerated convergence.

Several types of iterative algorithms have been proposed for statistical image reconstruction
in X-ray CT, including iterative coordinate descent (ICD) methods [1], block-based
coordinate descent [3], ordered subsets (OS) algorithms based on separable quadratic
surrogates (SQS) [4], [5] and (preconditioned) nonlinear conjugate gradient (NCG) methods
[6]. For fast computation on multiprocessor computers, (P)NCG-type methods appear to be
particularly amenable to efficient parallelization because they update all voxels
simultaneously using all measurements.

Developing suitable preconditioners for (P)NCG is challenging for X-ray CT because the
enormous dynamic range of the transmission data causes the Hessian of the statistical data-
fidelity term to be highly shift-variant [6]. Clinthorne et al. [7] showed that for unweighted
least-squares reconstruction, one can precondition the problem effectively using FFTs with a
kind of cone filter. This cone filter amplifies high spatial frequencies, helping to accelerate
convergence. But that cone filter is ineffective for (P)NCG in the PWLS case [6]. Delaney et
al. [8] considered a very special type of shift-invariant weighting and also demonstrated
accelerated convergence, but for low-dose X-ray CT the appropriate statistical weighting
does not satisfy the assumptions in [8]. Shift-variant pre-conditioners based on multiple
FFTs were proposed in [6] for 2D transmission tomography, but never became popular due
to their complexity and were never investigated for 3D problems. Another way to introduce
a cone filter is the iterative FBP approach [9], [10]. Initially these algorithms “converge”
rapidly compared to (P)NCG methods, but typically they do not have any theoretical
convergence properties and “too many” iterations lead to undesirably noisy images.
Furthermore, it is unclear how to include regularization while ensuring convergence.

The challenges described above apply regardless of the form of the regularizer. Additional
difficulties arise when one uses nonsmooth regularizers such as total variation (TV) [11] and
sparsity-promoting ones based on the ℓ1-norm [12]. These regularizers are not differentiable
everywhere precluding optimization by conventional gradient-descent methods (e.g., NCG).
Differentiable approximations (e.g., using “corner-rounding” [12, Sec. VI.A], [13, App. A])
can be employed, but even with such modifications the Hessian of the regularizer can have
very high curvature leading to slow convergence of conventional gradient-descent methods
[14]. While some state-of-the-art algorithms such as (M)FISTA [15], [16] and split-
Bregman-type schemes (that split only the regularization term) [17], [18] are able to handle
nonsmooth regularizers exactly (i.e., without corner rounding), when applied to X-ray CT,
they must minimize a cost function that involves the original statistical data-fidelity term
and are in turn hindered by the shift-variance of its Hessian (see Sections II-B, IV).

In this work, we propose to use a variable-splitting technique that not only decouples the
regularization term in the spirit of [17], but also dissociates the statistical and geometrical
components in the data-fidelity term. This forms the key feature of our approach that enables
us to “isolate” the shift-variant element in the statistical data-fidelity term thereby alleviating
the problem. Our splitting procedure uses auxiliary constraint variables to transform the
original PWLS problem into an equivalent constrained optimization task that we solve using
the classical method-of-multipliers [19], [20] and alternating direction optimization [21]–
[23] frameworks. This leads to an alternating direction method of multipliers (ADMM)
algorithm for solving the original PWLS problem that, apart from requiring simple
operations (such as inverting a diagonal matrix, solving 1D denoising problems), involves
the solving of a “nearly” shift-invariant linear system, which is amenable to FFT-based
preconditioning using cone-type filters [7]. Experimental results with synthetic and real in
vivo human data indicate that the proposed ADMM converges faster than conventional
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(NCG and ordered subsets) and state-of-the-art (MFISTA and split-Bregman) methods,
illustrating the efficacy of our splitting scheme and the potential of cone-filter
preconditioners for accelerating the proposed ADMM. The proposed ADMM can also be
used with a variety of convex regularization criteria (see Section VI-A) including smooth
edge-preserving regularizers and nonsmooth ones such as TV and ℓ1-regularization.

The paper is organized as follows. In Section II, we mathematically formulate X-ray CT
reconstruction as a PWLS problem and briefly discuss drawbacks of some existing
algorithms for X-ray CT. Section III discusses the proposed splitting strategy and the
development of the ADMM algorithm in detail. In Section IV, we compare our ADMM
algorithm with the split-Bregman technique applied for CT, schematically. Section V is
dedicated to numerical experiments and results, while Section VI discusses possible
extensions of this work to 3D CT and other statistical models. Finally, we draw our
conclusions in Section VII.

II. Statistical X-ray CT Reconstruction
A. Problem Formulation

For CT, an accurate statistical model for the data is quite complicated [24], [25] and is often
replaced by a Gaussian approximation [1], [2] with a suitable diagonal weighting term W
whose components {wi} are inversely proportional to the measurement variances [1], [2].
We consider a penalized weighted least-squares (PWLS) formulation of statistical CT
reconstruction [1]:

(1)

(2)

where y is the M × 1 data vector (log of transmission data), A is the M × N system matrix,
Ax represents the forward projection operation (e.g., line integrals), W = diag{wi} is a M ×

M diagonal matrix consisting of statistical weights,1 and . We use a general
family of regularizers of the form [12]

(3)

where λ > 0 is the regularization parameter, κr > 0 ∀r are user-provided weights that govern
the spatial resolution in the reconstructed output [26], Φr are potential functions, the R × N
matrix R ≜ [R1

⊤ ··· RP
⊤]⊤ constitutes regularization operators Rp (e.g., finite differences,

frames, etc) of size L × N, where R = PL. We concentrate on values of m and instances of Φ
that result in a convex regularizer Ψ in (3).

The above general regularizer is in the “analysis” form [27], i.e., Ψ is specified as a function
of the reconstructed image x. The method proposed in this paper can also be easily extended
to handle “synthesis” forms [27], e.g., by writing x = Sθ and considering J(θ) = Jdata(y,
ASθ) + Φ(θ) in P0, for some potential function Φ and synthesis operator S. We focus on the

1For simplicity we used wi = e−yi in our experiments.
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analysis form (3) as it includes popular nonsmooth criteria such as TV (for  and m
= 2), analysis ℓ1-wavelets (for Φr(x) = x, m = 1) and a variety of smooth convex edge-
preserving regularizers (e.g., Huber [28], [29], Fair [6], [30] etc).

B. Previous Approaches
Conventional gradient-descent methods, e.g., NCG, for P0 depend on the Hessian of Jdata:
Hdata = A⊤WA, which is highly shift-variant in CT particularly due to the large dynamic
range of W. As a result, it becomes difficult to precondition and accelerate such methods
[6]. Fessler et al. [6] directly attacked P0 using NCG and proposed a shift-variant
preconditioner to tackle Hdata. But their preconditioner is data-dependent and requires at
least one pair of FFT-iFFT operations per NCG-iteration.

Iterative shrinkage-thresholding (IST) [31] and its variants ((M)FISTA [15], [16], and
(M)TWIST [32]) that are applicable to P0 depend on the Lipschitz constant Ldata of Jdata(y,
Ax):

(4)

where σmax represents the maximum eigenvalue. The convergence speed of these algorithms
is primarily determined by (4): A large value of Ldata results in small gradient steps [15, Sec.
1.1] leading to slow convergence. Since W has a large dynamic range and due to the
(approximately) 1/r-type decay of the elements of A⊤A, Ldata can be large for CT decreasing
convergence speed of IST-type algorithms. Optimization transfer-based methods (e.g., [33,
Sec. IV-B.1]) face a similar issue in that the surrogate functions end up having high
curvature [5] due to W, which again leads to small update-steps and slow convergence.

In summary, the weighting term W, although crucial for improving reconstruction quality,
poses a challenge for optimization. Compared to A⊤WA, the term A⊤A is “more” shift-
invariant and is appropriate for preconditioning using cone filters. This property has been
used to accelerate un-weighted least-squares reconstruction for tomographic image
reconstruction [7]. Therefore, our idea to mitigate the shift-variance of Hdata is to untangle
W from Hdata thereby making the resulting problem “more” shift-invariant and suitable to
circulant preconditioning. To do so, we adopt a variable-splitting strategy.

Variable splitting (VS) refers to the process of introducing auxiliary constraint variables to
separate coupled components in the cost function [12], [17], [18], [34]–[42]. This procedure
transforms the original minimization problem into an equivalent constrained optimization
problem that can be effectively solved using classical constrained optimization schemes
[19], [20]. The VS approach is appealing as it renders the resulting constrained problem
tractable to alternating minimization schemes that decouple it in terms of the auxiliary
variables and simplify optimization [12], [17], [18], [34], [36], [37], [39]–[42].

The VS approach has become popular recently for solving reconstruction problems in image
processing [17], [34]–[37], MRI [12], [39], [40] and CT [18], [41], [42]. Many authors have
focussed on splitting the regularization term [17], [18], [34], [37], [39]–[41] as it is hard to
tackle in inverse problems (especially nonsmooth ones such as TV and ℓ1-regularization).
Splitting the regularization term enables one to handle it exactly (i.e., without the need for
“corner-rounding” [12, Sec. VI.A], [13, App. A] for nonsmooth criteria) via simple
denoising problems [12], [17], [37], [42]. However, in PWLS problems for CT, the data-
term adds to the complexity (as it leads to a shift-variant hessian Hdata) and therefore
demands attention. So in this work, besides splitting the regularization term, we also split the
data-term.
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III. Proposed Method
A. Equivalent Constrained Optimization Problem

We introduce auxiliary constraint variables u ∈ ℝM and v ∈ ℝR and write P0 as the
following equivalent constrained problem:

(5)

where u separates the effect of W on Ax and v splits the regularization term as in [17].
Afonso et al. [36] and Figueiredo et al. [38] have utilized data-term-splitting in the context
of image restoration [36], [38] and reconstruction from partial Fourier observations [36].
However, our emphasis here is on CT reconstruction where u plays an important role: It
leads to a sub-problem that is “nearly” shift-invariant and suitable to preconditioning using
cone filters [42] as explained in Section III-C.

In general, the proposed splitting strategy (5) can be applied to any PWLS problem of the
form P0 so as to exploit shift-invariant features in the data-model, e.g., deconvolution of
blurred images corrupted with non-stationary noise.

Before proceeding, we rewrite (5) concisely as

(6)

where

(7)

Since P1 is equivalent to P0, solving P1 for x yields the desired reconstruction in (1).

B. Method of Multipliers
To solve P1, we use the classical framework of the method of multipliers [19], [20] and
construct an augmented Lagrangian (AL) function [12], [19], [20], [42]

(8)

that combines a multiplier term γ⊤(z − Cx) with Lagrange multiplier

 and a quadratic penalty term , where μ > 0 is the AL
penalty parameter and Λ ≻ 0 is a symmetric weighting matrix. The multiplier term can be
absorbed into the penalty term in (8) (by completing the square) for ease of manipulation
leading to

(9)

where  and  is a constant independent of x and z.
Unlike standard approaches [36], [38] that set Λ = IM+R, we propose to use
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(10)

where ν > 0. This is crucial in CT because the elements of A and R can differ by several
orders of magnitude and it is imperative to balance them to avoid numerical instabilities in
the resulting algorithm and to achieve faster convergence [42].

The classical AL scheme for solving P1 alternates between a joint-minimization step and an
update step [12, Sec. III]:

(11)

(12)

respectively. Unlike pure penalty methods, remarkably, the AL formalism does not require
increasing μ → ∞ to ensure convergence of (11)–(12) to a solution of P1 [19].

C. Alternating Direction Minimization
It is numerically appealing to replace the more difficult joint-minimization step (11) by
alternating direction optimization that decouples (11) as [21]–[23]

(13)

(14)

Thus, at the jth iteration, instead of (11)–(12), we perform (ignoring constant terms)

(15)

(16)

(17)

where we write  to mean that ||x − x★||2 ≤ ε, i.e., we allow for inexact updates in (15)–
(16) in the spirit of [43]. Although (15)–(16) is an approximation to (11), the following
theorem adapted from [43, Theorem 8] to P1 guarantees convergence of (15)–(17) to a
solution of (5) (and P0).

Theorem 1—Consider P1 in (6) where f is closed, proper, convex2 and C has full column-
rank. Let η(0) ∞ ℝM+R, μ > 0,

2A convex function h is closed if and only if it is lower semi-continuous (LSC) [44, pp. 51–52] and is proper if h(x) < +∞ for at least
one x and h(x) > −∞ ∀ x [44, p. 24]. It can be shown that the convex functions Jdata, Ψ (for a variety of regularizers such as TV and
ℓ1-regularization), and their sum, f (5), are LSC and proper [38].
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(18)

If P1 has a solution (x★, z★), then the sequence of updates {(x(j), z(j))}j generated by (15)–
(17) converges to (x★, z★). If P1 has no solution, then at least one of the sequences {(x(j),
z(j))}j or {η(j)}j diverges.

The result of Eckstein et al. [43, Theorem 8] uses an AL function with Λ = I, so we apply
[43, Theorem 8] to (9) with Λ in (10) through a simple change of variables.3 For CT, it can
be readily ensured that C has full column-rank for a variety of regularization operators R. In
the sequel, we explain how to perform the minimizations in (15)–(16).

Firstly, we see that due to the structure of f(z) and C, (16) further dissociates into the
following:

(19)

(20)

These sub-problems are independent of each other and can therefore be solved

simultaneously, where . Sub-problem (19) is quadratic and has a
closed form solution:

(21)

where Dμ ≜ (W + μIM). Since W is diagonal, Dμ can be inverted exactly, so that  in
(19) ∀ j.

Minimization w.r.t. v (20) corresponds to a denoising problem that can be solved efficiently
and/or exactly for a variety of instances of (3) including TV: This has been elucidated by
many authors [12], [17], [36]–[40], [45], e.g., the techniques developed in [12, Sec. IV.A-2
– IV.A-6] can be directly applied to (20). For brevity, we concentrate on two particular

instances of (3) and solve (20) exactly so that  in (20) ∀ j.

• Analysis ℓ1-regularization [m = 1, Φr(x) = x ∀ r in (3)]:

(22)

with the shift-invariant Haar wavelet transform (excluding the approximation level)
for R, which is a sparsity-promoting criterion [12], [27], [36], [38].

• Smooth edge-preserving regularization [P = 1, m = 1, Φr = ΦFP ∀ r in (3)]:

3Writing , and , it is easy to see that (15)–(17) solve the constrained problem 

s.t. z0 = Mx that is equivalent to P0 using the AL function  with an unweighted
penalty term.
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(23)

using the Fair potential ΦFP(x) = x/δ−log(1+x/δ) with δ > 0 [30] (also the
smoothed Laplace function in [45, Eq. 4.11]) and finite-differences for R. This
regularizer ensures a unique solution to P0 as ΦFP is strictly convex. It has also
been successfully applied to PWLS problems in tomography [6].

For these regularizers, (20) separates into R 1D minimization problems in terms of the

components  of v:

(24)

where  is the rth component of . For (22), the solution of (24) is given
by the shrinkage rule4 [46]

(25)

For (23), (24) leads to a quadratic equation in vr [45, Eq. 4.13] that yields

(26)

where .

Having addressed (16), we now consider (15) which can be easily solved analytically:

(27)

where x(j+1)★ represents the exact solution to (15) and

(28)

is non-singular because Λ ≻ 0 and R is chosen so that C has full column-rank. Although
(27) is an exact analytical solution, the enormous size of Gν for CT makes it impossible to
store and “invert” Gν exactly. So we propose to use the conjugate gradient (CG) method for

(27) and obtain an approximate update . Since Gν is non-singular, we have
that

(29)

4An analytical update formula similar to (25) is available for the TV regularizer that is based on a vector shrinkage-rule, see e.g., [12,
Sec. IV.A-6].
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where  is the corresponding residue and σmin{Gν} > 0 is the minimum eigenvalue of Gν
that depends only on A and R and can be precomputed e.g., using stochastic techniques [47]

or the Power method.5 Therefore, using (29), one can monitor  in the CG-loop and design
a suitable stopping rule to satisfy (18).

D. Preconditioning Using Cone Filter
We see that Gν contains A⊤A, which is “nearly” shift-invariant, so for shift-invariant6

R⊤R, Gν is amenable to preconditioning using suitable cone filters [6], [7]. We constructed
a circulant matrix G̃ν from the central column of Gν:

(30)

and used its inverse, , as the preconditioner, where ec is a standard basis vector of ℝN

corresponding to the center pixel of the image and circ{α} represents the construction of a

circulant matrix from a vector α. The proposed preconditioner  corresponds to a cone-
type filter that amplifies high spatial frequencies and accelerates convergence of both the
CG-loop for (27) and the overall ADMM scheme as demonstrated in Section V.

Implementing  requires only one FFT-iFFT per CG iteration and its construction7 uses a
product with R⊤R and only one forward-backward projection that can be performed offline
as G̃ν is independent of W. In our experiments, we applied at most two preconditioned CG

(PCG) iterations with warm starting [12] and found that  decreased sufficiently rapidly.
Based on (15)–(29), we present our algorithm in Fig. 1 for solving P1 (and thus P0). In
principle, Steps 4 and 5 of ADMM may be executed in parallel as they are independent of
each other, but in our implementation, we chose to execute all the steps sequentially for
simplicity.

E. Selection of μ and ν
The parameters μ and ν do not affect the solution of P1, but only regulate the convergence
speed of the proposed ADMM [12], [35, Sec. 4.4]. In general, choosing appropriate values
for AL penalty parameters (such as μ and ν) is a nontrivial and application-dependent task.
Several empirical rules have been put forth by many authors for setting AL penalty
parameters (to obtain good convergence speeds for AL-based iterative reconstruction
schemes) in many applications, see e.g., [37], [38] for image restoration, [17] for denoising
and compressed-sensing MRI, and [12], [39] for parallel MRI reconstruction.

In this paper, Step 3 is the only inexact step of the proposed ADMM. So the computational
speed of ADMM is primarily determined by how efficiently (27) is solved, which in turn is
governed by ν. We use an empirical rule for selecting ν that is based on [17]: Since ν
balances A⊤A and R⊤R in Gν that have disjoint non-trivial null-spaces, the condition
number κ(Gν) of Gν exhibits a minimum for some νmin > 0: νmin = arg minν κ(Gν). It was
suggested in [17] to use this property to choose AL penalty parameters to ensure quick
convergence of the CG-algorithm for solving a linear system such as (27). For A
implemented using the distance-driven (DD) projector [49] and R in (22)–(23), νmin ≈ 105,

5Since the Power method (PM) iteratively estimates the maximum eigenvalue (in absolute magnitude) of a matrix [48, p. 488], an
estimate σ̂max{Gν} of σmax{Gν} is first computed by applying PM on Gν. Next, applying PM on K ≜ Gν − σ̂max{Gν}IN yields |
σ̂min{Gν} − σ̂max{Gν}| (as σmin{Gν} − σ̂max{Gν} is the largest eigenvalue of K in absolute magnitude) from which σ̂min{Gν}
can be easily obtained.
6The matrix R⊤R is circulant when periodic boundary conditions are used for R in (22)–(23).

7We only store the frequency response corresponding to  to save memory.
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which yielded a very small (λ/μν) in (20) and subsequently resulted in slow convergence of
ADMM in our experiments. On the other extreme, setting ν = 1 (corresponding to the
standard case of Λ = IM+R) yields a poorly conditioned Gν that was not favorable either.

Based on our experience with 2D CT experiments, we found the empirical rule8

 to yield good overall convergence speeds for ADMM, where G̃ν is
the circulant matrix in (30). We also observed that ADMM was slightly more robust to the
choice of μ than ν. We selected μ = median{wi} to avoid outliers in W; this yielded a well-
conditioned Dμ (with κ{Dμ} ∈ [10, 40]) that improved the numerical stability of ADMM.

IV. Comparison with the Split-Bregman Approach
The split-Bregman (SB) method [17] uses constraint variables to split the regularization
term alone. For (1), this corresponds to using only v = Rx which leads to following
equivalent constrained problem

(31)

(32)

This type of splitting has been investigated for CT reconstruction in [18], [41]. Applying the
Bregman iterations [17, Eq. 3.7–3.8] with alternating minimization [17, Sec. 3.1] to (31)
yields the following SB scheme:9

(33)

(34)

(35)

The minimization in (34) is same as that in (20), so the techniques described for (20) apply
to (34) as well. The main difference between the proposed method (15)–(17) and the SB
scheme (33)–(35) is in the way x is updated. The minimization in (33) leads to

(36)

where x(j+1)★ represents the exact solution to (36) and

(37)

8It would be ideal to consider κ(Gν) instead of κ(G̃ν) for selecting νemp, but estimating κ(Gν) (e.g., using the Power method) for a
given ν for CT is computationally expensive (ignoring the fact that it is independent of W and could be computed offline). But as Gν
is approximately shift-invariant, κ(G̃ν) ≈ κ(Gν), which leads to νemp.
9Theorem 1 may not be applicable to the SB scheme (33)–(35) as the constraint matrix, which is simply R in this case, usually does
not have full column-rank. Convergence of SB-type schemes are studied in [17].

Ramani and Fessler Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The matrix Bμ contains the shift-variant component W that makes standard preconditioners
(including cone filters) less effective for CG-based solving of (36). Nevertheless, we used

PCG for (36) with a circulant preconditioner  (obtained by setting μ ≡ ν in (30)) in our
implementation of the SB scheme and found that it improved upon the standard CG method
for (36). We selected10 μ = Ldata/(100 σmax{R⊤R}) for SB11 (see (4) for definitions of
Ldata and σmax). This choice is motivated by the discussion pertaining to ν in Section III-E.

In principle, it is possible to construct a shift-variant preconditioner for Bμ in the spirit of
[6], but such a preconditioner would invariably be data-dependent and may be
computationally involved. Our approach (15)–(17) provides a simple and effective
alternative using an extra constraint variable u in (5): Compared to the SB scheme (33)-(35),
our method requires only an extra trivial operation of inverting a diagonal matrix Dμ in (21).

V. Experimental Results
We present numerical results for 2D CT reconstruction from simulated NCAT phantom data
and in vivo human head data. The proposed ADMM is also applicable, in principle, to 3D
CT reconstruction (see Section VI-A). We implemented the following algorithms in Matlab
and conducted the experiments on a quad-core PC with 3.07 GHz Intel Xeon processors and
12 GB RAM.

• NCG-n: unpreconditioned nonlinear conjugate gradient algorithm with n line-
search iterations that monotonically decrease the cost function J [6],

• MFISTA-n: Monotone Fast Iterative Shrinkage-Thresholding Algorithm [16] with
n iterations for solving auxiliary denoising sub-problems similar to [16, Eq. 3.13],

• OS-n: Ordered subsets algorithm [5] with n blocks,

• SB-(P)CG-n: Split-Bregman scheme from Section IV with n (P)CG iterations for
solving (36),

• ADMM-(P)CG-n: Proposed ADMM with n (P)CG iterations for solving (27).

MFISTA is a state-of-the-art method developed by Beck et al. [16] for image restoration that
is readily applicable to P0 with the Lipschitz constant Ldata in (4). Beck et al. [15] also
proposed a back-tracking strategy that does not require explicit computation of Ldata, but we
chose to estimate and use11 Ldata both for ease of implementation and because it is the
smallest possible value [15, Ex. 2.2] that yields the fastest convergence for MFISTA. We
applied the Chambolle-type method [50] for the inner-step (i.e., computing the proximal
map [16, Eq. 3.13]) of MFISTA as that does not require smoothing of (“corners” of) ℓ1-
regularizers such as (22).

Since our task is to solve P0, we fixed the cost function J (that led to a visually appealing
reconstruction) and focussed on the convergence speed of the algorithms. We quantified the
convergence rate using the normalized ℓ2-distance between x(j) and x★:

(38)

10Similar to νmin, one could consider  for SB, but estimating κ(Bμ) is impractical mainly due to its
dependence on W. We chose to use the above rational-form for μ, which yields a rough estimate of μmin.
11We estimated Ldata using the Power method applied to A⊤WA. Since Ldata is W-dependent, its use is less appealing for practical
applications in CT.
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where x★ is a solution to P0 obtained numerically by running one of the above algorithms as
described next. Since the algorithms have different computation load per (outer) iteration,
we evaluated ξ(j) as a function of algorithm run-time12 tj, i.e., the time elapsed from start
until iteration j. We also plot ξ(j) as a function of the iteration index j for completeness. We
used the DD-projector [49] (with 8 threads) for implementing matrix-vector products such
as Ax, A⊤u and initialized all the algorithms with the image reconstructed using FBP (with
the ramp filter) in all experiments.

Products with A and A⊤ (corresponding to forward- and back-projections, respectively) are
computation intensive in CT reconstruction problems and dominate the overall computation
load of a reconstruction algorithm.13 NCG and MFISTA both require only one product with
A and A⊤, respectively, per iteration. The OS method breaks products with A and A⊤ in
terms of block-rows of A and block-columns of A⊤, respectively, and cycles through each
block once per every iteration, so effectively, OS also requires only one product with A and
A⊤, respectively, per iteration. However, for each block, the OS method demands the
evaluation of the gradient of the regularization term that increases computation time per
iteration as indicated in Table I. For the SB scheme, we employ (P)CG for “inverting” Bμ
(that depends on A⊤WA) in (36), so SB-(P)CG-n requires n products with A and A⊤,
respectively, per iteration of (33)-(35). In the case of ADMM, we apply (P)CG at Step 3 (see
Fig.1) for “inverting” Gν in (27), but that step also requires a product with A⊤ in the RHS of
(27), so overall ADMM-(P)CG-n uses n products with A and n + 1 products with A⊤ per
iteration of Steps 3–7 in Fig.1. Table I summarizes this discussion and also shows the mean
computation time per iteration (averaged over 10 iterations) of the above algorithms.
Although the proposed ADMM(-PCG) requires more forward- and back-projections per
iteration (and accordingly exhibits higher computation time per iteration) compared to other
algorithms (with the exception of the OS method) in Table I, we demonstrate in the sequel
that it converges faster in terms of algorithm runtime.

A. Simulation with the NCAT Phantom
We used a 1024 × 1024 2D slice of the NCAT phantom [51] and numerically generated a
888 × 984-view noisy sinogram with GE LightSpeed fan-beam geometry [52] corresponding
to a monoenergetic source with 2.5 × 104 incident photons per ray and no background
events. We used the ℓ1-regularization in (22) with κr = ω(r mod N), where

 is based on [26]. We reconstructed 512 × 512 images over a FOV
of 65 cm; we obtained x★ by running 5000 iterations of MFISTA-25 as it does not require
“corner-rounding” and is therefore guaranteed to converge to a solution of P0. NCG cannot
directly handle nonsmooth criteria such as (22) without smoothing it [13, App. A], so we
used a smoothing value of 10−6 cm−1. The FBP reconstructions in Figs. 2b, 2c
corresponding to the ramp and Hanning filters, respectively, are either noisy or blurred and
streaked with artifacts. The ℓ1-regularized reconstruction x★ in Fig. 2d preserves image
features and has lower RMSE than both FBP outputs.

We plot ξ(j) for various algorithms as a function of time in Fig. 3a. The SB-CG scheme
appears to converge the slowest, while SB-PCG is faster indicating that the circulant

preconditioner  provides a moderate acceleration of CG for (36). MFISTA is slower than
most of the algorithms for the reason explained in Section II. The CG-version of the
proposed method, ADMM-CG, is slightly faster than MFISTA and SB-(P)CG but slower

12We excluded the computation time spent on estimating Ldata for MFISTA in the plots. Even with this “unfair advantage” the
ADMM method was much faster than MFISTA.
13NCG, MFISTA, OS and SB require the evaluation of A⊤Wy (e.g., see RHS of (36) for the SB scheme), but this quantity needs to
be computed only once, so we ignore this computation need for these schemes.
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than NCG. The preconditioned version ADMM-PCG is the fastest among all algorithms

illustrating that the cone-filter preconditioner  is very effective in accelerating
convergence of CG applied to (27) and ADMM-PCG. This is also corroborated by Fig. 3c
where for a given number of iterations, ADMM-PCG produces a reconstruction that is
closest to x★ in terms of ξ(j). Figs. 3b, 3d further substantiate the reconstruction speed-up of
ADMM-PCG over other methods, where (both in terms of algorithm run-time and number
of iterations) it rapidly leads to a RMSE-value close to RMSE(x★).

B. Experiments with a in vivo Human Head Data-set
In this experiment, we used a in vivo human head data-set acquired with a GE scanner using
120 kVp source potential and 585 mA tube current with 0.6 s rotation. We reconstructed a
1024 × 1024 2D slice with 50 cm FOV and 0.625 mm thickness from a 888 × 984-view
sinogram. For Ψ in (1), we used the strictly convex regularizer (23) (with δ = 10 HU) that
guarantees a unique solution x★ to P0. As NCG generally had faster convergence than
MFISTA in our experiments, we obtained x★ by running 5000 iterations of NCG-10. Fig. 4
shows the reconstruction results for this experiment. The regularized solution x★ in Fig. 4c
has reduced noise and better preserves the anatomical features compared to the FBP
reconstructions in Figs. 4a, 4b obtained using the ramp and Hanning filters, respectively.

Figs. 5a–d plot ξ(j) as a function of tj and iteration index j for all algorithms considered in
this work. Here, we additionally compare the standard OS algorithm (that is not guaranteed
to converge) in Figs. 5b, 5d, where we used the implementation from [53] available
currently for regularization criteria such as (23). The OS algorithm is faster than all
algorithms (including ADMM-PCG) for the first few iterations but it does not converge to
the minimizer as expected. In practice, it may be advantageous to run a few iterations of OS
and use its output to initialize a more sophisticated iterative algorithm. Figs. 5a, 5b indicate
that the convergence trends for MFISTA, NCG, SB-(P)CG and ADMM-CG are generally
similar to those in Figs. 3a, 3b. ADMM-PCG again provides notable reconstruction speed-
up compared to all algorithms. This substantiates the potential of the cone-filter
preconditioner (30) for the proposed ADMM and also demonstrates the benefit of our
splitting scheme (5).

VI. Discussion
A. Memory Requirements

Splitting-based algorithms simplify optimization at the expense of manipulating and storing
auxiliary constraint variables (and corresponding Lagrange multipliers in the AL formalism)
and therefore have additional memory requirements compared to conventional algorithms
such as NCG. Although this does not pose much concern for 2D reconstruction problems, it
can represent a significant memory overhead for 3D problems. Specifically, the SB (Section
IV) and the proposed ADMM14 (in Fig. 1) schemes use the constraint v = Rx that requires
the storage of 2P vectors (v and ηv) of size L × 1. For instance, typically, the size of an
image-volume in 3D CT is N = 512 × 512 × 512 (≈ 1 GB of memory when stored in double-
precision format in Matlab). Then, for finite-differences with P = 13 (there are 13 nearest-
neighbors on one side of any voxel), this corresponds to storing at least 26 image-volumes
(≈ 26 GB of memory) that might set a practical limitation on these methods from an
implementation perspective.

14For ADMM, we have to additionally store two M × 1 vectors, u and the associated multiplier ηu. This additional memory
requirement is moderate for 2D CT and can be high for 3D CT depending on the size of the data.
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A quick remedy is to consider the TV regularizer with finite-differences only along the three
orthogonal directions (P = 3 corresponds to 6 image-volumes) which considerably reduces
the memory load. Alternatively, one could also consider using an orthonormal transform
(such as orthonormal wavelets15) for R, so P = 1 and L = N. The SB and ADMM14 schemes
would then require storing only 2 image-volumes (corresponding to v and ηv). Moreover, an
orthonormal R satisfies R⊤R = IN that facilitates ADMM: Gν in (28) becomes Gν = (A⊤A
+ νIN) that is still “nearly” shift-invariant and can be effectively preconditioned using
circulant preconditioners. With orthonormal wavelets, one also has the option of excluding
the approximation coefficients from the regularization (as they are not sparse) by using scale
dependent regularization parameters [50] and setting those parameters corresponding to the
approximation level to zero.

B. Inclusion of Nonnegativity Constraint
In CT, a nonnegativity constraint is often imposed [1, Eq. 18], [11, Sec. 2.2] to model the
positivity of the attenuation coefficient that is being reconstructed. Although we have not
considered such a constraint in P0, it can be easily accommodated [38] as follows. We start
with

(39)

where g is an indicator function

(40)

that imposes the nonnegativity constraint, x ≥ 0, taken component-wise in (40). We then
consider the following equivalent constrained version [38] that has an additional constraint
compared to (5):

(41)

Writing  and using Λ = diag{IM, ν1IR, ν2IN}
in (9), we can design an ADMM-type algorithm similar to (15)–(17) for solving (41). It can
be shown that the updates for u and v in this algorithm will be similar to (19) and (20),
respectively, while the update of x would involve the “inversion” of Gν1ν2 = (A⊤A+
ν1R⊤R+ν2IN) and that of w would require a simple projection onto the positive orthant [38,
Eq. 32]. Since Gν1ν2 is also “nearly” shift-invariant, a cone-filter-type preconditioner

similar to  [see (30)] can be used for effective preconditioning of . Moreover, the
above C has full column-rank, so this algorithm also satisfies Theorem 1 and is guaranteed
to converge to a solution of (41) and (39).

C. Poisson-Likelihood Model for X-ray CT Reconstruction
The proposed strategy of splitting the data-term [i.e., the use of u in (5) and (41)] is also
applicable for X-ray CT reconstruction using the Poisson-likelihood (PL) statistical model

15Quality-wise, shift-invariant wavelets are preferable to orthonormal ones [54], but due to their over-complete nature, they require
significantly more memory (similar to finite differences) than orthonormal wavelets.
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[5, Eq. 1] that may be more suitable for low-dose acquisitions. It can be shown that splitting

the PL data-term yields separable 1D problems in  that can be solved simultaneously
similar to [38, Eq. 30]. However, the PL model for X-ray CT may preclude exact updates
like (21) for {ui}. Moreover, the general PL model [5, Eq. 1] includes background events
and can be (“mildly”) nonconvex, so Theorem 1 cannot be directly applied to an ADMM-
type algorithm developed for this problem. We plan to explore cost functions involving the
PL model [5, Eq. 1] for transmission tomography reconstruction as part of future extensions
to this work.

VII. Summary and Conclusions
Statistical X-ray CT reconstruction using penalized weighted least-squares (PWLS) criteria
involve a diagonal weighting matrix W that poses a hindrance to several optimization
methods due to its huge dynamic range and highly shift-variant nature. In this work, we
employed a variable-splitting technique that, in addition to separating the regularization term
like [17], also dissociates the statistical (W) and the system (A) components in the data term
to decouple and mitigate the effect of W. We applied the method of multipliers [19] with
alternating minimization [21]–[23] for the resulting equivalent constrained problem and
developed an alternating direction method of multipliers (ADMM) algorithm that chiefly
involves three simple operations at each iteration: (i) inverting a diagonal matrix that
depends on W, (ii) minimizing a set of 1D auxiliary denoising-cost-functions that can be
performed efficiently and/or exactly for a variety of regularizers, and (iii) solving a “nearly”
shift-invariant linear system (involving A⊤A) using FFT-based preconditioning with cone-
type filters [7].

The proposed ADMM algorithm is guaranteed to converge to a solution of the original
PWLS problem under a mild condition on the accuracy of operation (iii) above. We
demonstrated using simulations and experiments with real in vivo human data that cone-
filter-type preconditioners are very effective for solving the linear system in (iii) and that the
preconditioned version of the proposed ADMM converges faster than conventional (NCG
and ordered subsets) and state-of-the-art (MFISTA and split-Bregman) algorithms for CT.
The proposed ADMM can handle a variety of regularization criteria for 2D CT
reconstruction and is also applicable to 3D CT reconstruction, perhaps by using certain
memory-conserving regularizers.
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Fig. 1.
ADMM for statistical X-ray CT reconstruction.

Ramani and Fessler Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Simulation with the NCAT phantom: (a) Noisefree NCAT phantom (in cm−1), (b) FBP
reconstruction with ramp filter, also the initial guess x(0) for all iterative algorithms, (c) FBP
reconstruction with Hanning filter, and (d) ℓ1-regularized reconstruction, also the solution x★

to P0. Images in (a)–(d) have been normalized to the same color scale [as that of (a)]
indicated beside (d). The ℓ1-regularized reconstruction (d) is less noisy and has almost no
streaky-artifacts compared to both FBP results.
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Fig. 3.
Simulation with the NCAT phantom: (a), (b) Plot of ξ(j) and RMSE(x(j)), respectively, as a
function of time tj and (c), (d) Plot of ξ(j) and RMSE(x(j)), respectively, with respect to
iterations, for various algorithms considered in this work. The unpreconditioned version of
the proposed method, ADMM-CG, converges slightly faster than MFISTA and the split-
Bregman scheme SB-(P)CG but is slower than NCG as seen in (a) and (b). But the
preconditioned version, ADMM-PCG, converges rapidly both in terms of ξ(j) and RMSE

indicating that the cone-filter-preconditioner (  in Section III-E) greatly accelerates
convergence of the proposed ADMM.
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Fig. 4.
Experiment with the in vivo human head data-set: (a) FBP reconstruction with the ramp
filter, also the initial guess x(0) for all iterative algorithms, (b) RBP reconstruction with
Hanning filter, and (c) PWLS reconstruction with the strictly convex regularizer (23), also
the unique solution x★ to P0. Images in (a)–(c) are displayed in Hounsfield units indicated
beside (c). The regularized reconstruction (c) is less noisy and preserves anatomical features
compared to both FBP results.
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Fig. 5.
Experiment with the in vivo human head data-set: (a), (b) Plot of ξ(j) as a function of time tj
and (c), (d) Plot of ξ(j) with respect to iterations, for various algorithms considered in this
work. MFISTA and SB-CG appear to be the slowest. The proposed ADMM-(P)CG is
generally faster than the split-Bregman scheme SB-(P)CG as seen in (a). Although ADMM-
CG converges slower than NCG as seen in (b), the preconditioned version ADMM-PCG is
the fastest among the considered algorithms, illustrating the benefit of the cone-filter-based
preconditioner (G̃ν in Section III-E) for the proposed ADMM.
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TABLE I

Computation Time and Number of Projections required per Iteration of Algorithms Compared in Section V

Algorithm

Time/Iteration (in seconds) Projection operations/Iteration

Section V-A Section V-B Forward (A) Backward (A⊤)

NCG-5 1.56 4.85 1 1

NCG-10 - 8.83 1 1

MFISTA-5 2.49 8.87 1 1

MFISTA-25 5.23 - 1 1

OS-4 - 10.19 1 (effective) 1 (effective)

OS-41 - 61.84 1 (effective) 1 (effective)

SB-CG-1 2.29 6.22 1 1

SB-CG-2 3.29 8.93 2 2

SB-PCG-1 2.29 6.25 1 1

SB-PCG-2 3.30 9.07 2 2

ADMM-CG-1 3.29 8.91 1 2

ADMM-CG-2 4.31 11.61 2 3

ADMM-PCG-1 3.32 8.94 1 2

ADMM-PCG-2 4.34 11.70 2 3
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