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Abstract
In this paper, a novel approach is proposed for perceptual grouping and localization of ill-defined
curvilinear structures. Our approach builds upon the tensor voting and the iterative voting
frameworks. Its efficacy lies on iterative refinements of curvilinear structures by gradually shifting
from an exploratory to an exploitative mode. Such a mode shifting is achieved by reducing the
aperture of the tensor voting fields, which is shown to improve curve grouping and inference by
enhancing the concentration of the votes over promising, salient structures. The proposed
technique is applied to delineation of adherens junctions imaged through fluorescence microscopy.
This class of membrane-bound macromolecules maintains tissue structural integrity and cell-cell
interactions. Visually, it exhibits fibrous patterns that may be diffused, punctate and frequently
perceptual. Besides the application to real data, the proposed method is compared to prior methods
on synthetic and annotated real data, showing high precision rates.

Index Terms
Adherens junctions; curvilinear structures; perceptual grouping; iterative tensor voting

I. Introduction
Nearly one third of the human genome is involved in the regulation of membrane-bound
macromolecules. Adherens junctions (e.g., E-cadherin) form an important subclass that
maintains tissue architecture and cell-cell interactions on a multicellular model system. For
example, it is well-known that the loss of E-cadherin increases motility and contributes to
cancer progression. However, signals associated with the adherens junctions can be
sequestered along neighboring cells and form perceptual curvilinear structures.

It is well known that perceptual grouping is present in the human vision system as bottom-
up preattentive processes that aid in object-level delineation and recognition [1]. From when
it was initially conceived by the Gestalt psychologists [2] to now, perceptual grouping has
evolved from the passive observation of human behavior to its inclusion in a wide-range of
computer vision applications [3]–[6]. Perceptual grouping mainly appeals to image
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segmentation because of its preattentive use of local cues, which reduces its complexity as
well as reduces the necessity for prior knowledge when inferring structures from images. On
the negative side, by relying on computed local cues from images, perceptual grouping
approaches can be susceptible to scale variations and noisy measurements.

In this paper, we propose a grouping approach that explores purely preattentive cues, such as
proximity, good continuity of image primitives, and minimization of the measurements’
sensitivity to scale and noise by employing an iterative voting strategy to structural
inference. The method proposed here is able to infer curvilinear structures from ill-defined,
noisy, often incomplete signals, such as those found in the adherens junctions shown in Fig.
1.

A. Previous Work
In order to illustrate applications of perceptual grouping in the context of image structure
inference and segmentation, we begin by citing the basilar works from [7]–[9], [11], [12],
[18]. Marr [7] was one of the first researchers to publish the importance of preattentive cues
for image understanding. Ullman [9], in a milestone for image completion, addressed the
problem of image edge grouping with an optimizing cost function based on smoothness of
the contour curvature. Hérault and Horaud [12] also used an optimization approach to
segment oriented edges into figure and background. They utilized simulated annealing to
maximize a cost function based on proximity, contrast and co-circularity. However, Lowes
[8] was one of the first researchers to document utilization of perceptual grouping as part of
the solution of a computer vision problem. In that context, perceptual cues such as
proximity, collinearity and parallelism were used to produce structural hypotheses for a
model based matching algorithm, thereby permitting spatial correspondences between 2D
images and 3D object models and, consequently, the recognition of real-world objects.
Alternatively, Parent and Zucker [11] proposed an iterative, graph-based labeling scheme
that utilized local kernels, whose topography incorporated the good continuity aspect of the
Gestalt philosophy to detect local organization and infer curves from images. But it was
Sarkar and Boyer [18] who combined proximity, good continuity, parallelism, and
perpendicularity to establish pairwise relationships between image primitives and to
populate a compatibility graph whose spectra (eigenvalues and eigenvectors) revealed
curvilinear structures in an image. From all these approaches, it is important to highlight the
researchers’ common pursuit of the ideal set of Gestalt principles for perceptual grouping.
Also, the set of perceptual cues was generally combined into a cost function that is presently
called saliency. The terms less salient or more salient are, therefore, applied according to a
structure’s weaker or stronger response to the saliency function.

In the context of voting as a precursor for perceptual grouping, many methods have been
developed. For example, Hough [25] introduced the notion of parametric clustering in terms
of well-defined geometry, which was later extended to the generalized Hough transform
[30]. Sarkar and Boyer [15] introduced a technique that infers structures in an image after
voting for the most promising ones from a pool of structural hypotheses. Parvin et al. [26]
developed an iterative voting system that employs funneling kernels to refine paths along
low curvature regions in images. Guy and Medioni [23] proposed a general purpose
approach (later revisited and formalized as the tensor voting framework [24]) that uses
deformable unities to reveal perceptual structures. Tong and Tang [35] proposed an adaptive
tensor voting for improved gap filling and contour closure. Their three-pass tensor voting
approach promoted improvements in gap filling over the classical tensor voting. An iterative
version of the tensor voting framework is described by Fischer et al. [32], who demonstrated
how re-voting improves the orientation estimation at the input primitives and, therefore, the
overall curve inference result. Loss et al. [33] described a scheme for figure-ground
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segmentation based on tensor voting that gradually eliminates background elements after
multiscale voting iterations. They demonstrated the improvements caused by re-voting for
figure characterization in cluttered scenarios.

In general, voting operates as a function of continuity and proximity, which can occur at
multiple scales (e.g., points, lines, parallel lines, etc). One of the main advantages of voting
frameworks is their reliance on relative simple models, which considerably reduce the
number of free parameters and the overall complexity.

B. Motivation
Inference of curvilinear structures from image primitives is particularly relevant to
biomedical image analysis. In this field, many detection and recognition methods rely on
good markers delineating the objects of interest (e.g., [20]–[22]). However, inherent
technical and biological variations affect signal quality in different ways. For example,
adherens macromolecules, responsible for tissue architecture, can provide morphological
indices that quantify the loss of tissue organization and cellular morphology as a result of
stress conditions.

From the point of view of image segmentation, traditional perceptual grouping of curvilinear
structures strongly relies on (i) good contrast between lines and background, (ii) well
behaved structural definition of the lines, and (iii) a good assumption of the lines’ scale.
However, with optical resolution, adherens junctions can be ill-defined and, therefore,
inconsistent with all the above assumptions. For example, they may have non-uniform
intensity, be punctate (e.g., perceptual with gaps), be diffused at certain locations, and have
distinct widths and lengths (Fig. 1). This significant amount of heterogeneity can happen as
a result of the natural variation of chemical binding between the molecules and the staining
reagent, or other technical and biological variables.

For these very reasons, a requirement for grouping ill-defined curvilinear structures should
not assume (i) rigid models (e.g., [25], [30]), or (ii) a pre-computed set of image primitives
(e.g., [9], [31], [32]), or (iii) segments solely extracted from boundaries (e.g., [15], [33],
[36]). In addition, due to the continuous refinement required to better detect heterogeneous,
low signal-to-noise contours, non-iterative approaches are mostly unsuitable (e.g., [24],
[35]).

C. Approach
Our work builds upon Guy and Medioni’s Tensor Voting Framework [24] and the Iterative
Voting Framework by Parvin et al. [26] in order to produce an efficient method to enhance
and infer perceptually interesting curvilinear structures in images. By coupling tensor and
iterative voting fundamentals, we leverage advantages of both methods to produce better
results than those achieved by them individually. The main novelty of our method lies in the
extension of the tensor voting framework to gradually refine curvilinear structures at
different scales. Iterative funneling of tensor fields is shown to achieve better definition of
pixel orientation and connectivity. This funneling operation gradually increases the
concentration of the votes’ energy over promising areas, eventually improving the inference
of curvilinear structures.

In one classical tensor voting approach, thresholding is applied to the resulting saliency map,
thus removing tensors with low saliency. The remaining tensors are then assumed to be part
of the salient structures [29]. When voting is performed on a sparse basis (i.e., image
primitives are extracted prior to tensor voting), a second pass of dense tensor voting, called
densification, is sometimes used [24]. However, in the method proposed here, we impose a
set of consecutive tensor voting passes, all in a dense fashion, after thresholding out tensors
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with low saliency in a conservative manner. Instead of densification, each iteration of the
proposed approach aims at refining the previous one, where magnitude and orientation
might have been disturbed by frequent low-saliency background noise. These steps resemble
the ones performed in [19], where a second pass of the Hough transform voting pass is
introduced to fix or refine the elements’ orientation, and in [11], where a relaxation-like
iterative process seeks convergence and consistence of the inferred structures. Note that the
benefits of conservative elimination of tensors with low saliency from the tensor voting
application were investigated and explored in [33].

In order to assess the improvements yielded by the iterative tuning of tensor voting, we
performed experiments involving synthetic configurations and real microscopic images.
Synthetic data were used to help us analyze and predict the behavior of the method on
structures with different degrees of punctation, width, curvature and junctions. Experiments
on microscopic images aim at evaluating the method on real scenarios, providing proof of its
actual potential and effectiveness.

Components of this paper have already appeared in two other versions as conference papers
by the same authors: an introduction to an earlier version of the method, along with some
preliminary results focusing particularly on its application from a biological point of view, is
in [16]; and a slightly longer version appeared in [17]. In this paper, however, we provide a
deeper and more detailed description of the improved technique, besides quantitative
analysis on synthetic data, and comparisons with other approaches to the same problem.

The remaining of this paper is organized as follows: Section II describes the tensor voting
and the iterative voting frameworks, along with their applications to perceptual grouping of
linear structures. Section III introduces our method, extending the concepts of the tensor and
the iterative voting frameworks. Experimental results are shown in Section IV, and
conclusions are presented in Section V.

II. Voting Frameworks
A. The Tensor Voting Framework

In the framework proposed in [24]1, perceptual grouping is achieved by vote casting
between primitives of an image. Such primitives are represented by tensors, mathematical
entities whose capability for encoding magnitude and orientation make tensor voting
particularly efficient for detection of perceptually organized structures, such as edges, lines
and regions. In 2D, tensors are represented analytically as second order nonnegative definite
matrices, or geometrically as ellipses, shaped by the tensors eigenvalues’ magnitude and
eigenvectors’ directions. Initialized with an arbitrary size, shape and orientation, input
tensors are deformed due to the accumulation of votes cast by other neighboring tensors.

Votes are tensors composed of magnitude and orientation, which encode the Gestalt
principles of proximity, smoothness and good continuation. The tensor’s size and shape are
given by its eigenvalues (λ1, λ2; λ1 ≥ λ2 ≥ 0), while its orientation is given by the
respective eigenvectors (e⃗1, e⃗2). For example, consider two tensors, positioned at (x, y) and
(u, v), in the (x′, y′) coordinate system, as shown in Fig. 2. How can the vote from (x, y) be
cast onto (u, v) subject to smoothness and proximity as stated before? The simplest way is to
model smoothness and proximity as curvature and arc length, respectively. Let l be the
distance between the two positions, and θ be the angle between the tangent of the osculating
circle at (x, y) and a line that connects (x, y) to (u, v). The arc length and curvature are given
by s = θl/sin(θ) and κ = 2sin(θ)/l, respectively. Without any prior knowledge, the path

1Tensor voting is a patented framework.
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defined by an osculating circle provides the minimum energy since its curvature is kept
constant. The vote at position (u, v) is thus given by Equation 1 [24].

(1)

Here, N⃗ is the vector normal to the tangent of the same osculating circle at (u, v), which
points to the center C of the circle. It can be calculated by [−sin(2θ) cos(2θ)]T. The scale
factor σ is the only free parameter in this expression and determines the extension of the
voting neighborhood. The parameter c is a function of the scale and has been optimized at c
= −16ln(0.1) × (σ − 1) × π−2 to control the decay at high curvature areas (for instance,
where two orthogonal lines meet to form a rounded corner) [24].

Depending on the nature of the input primitives, prior information about their orientation
can also be used when available. The tensor voting framework was designed to offer two
possible voting configurations: one that concentrates the votes according to the input
orientation (Fig. 3(a) - stick field), and another one that casts votes radially (Fig. 3(b) - ball
field), respectively. The voting fields are the composition of all votes that can be cast from a
tensor located in the center of the field to its neighboring tensors. Their extension is
controlled by σ and, for practical reasons, the fields are usually truncated past 99% decay. In
addition, the stick field is limited to exist only at |θ| ≤ 45°, as beyond this angle the
osculating circle ceases to represent the smoothest path between the tensors. A somewhat
similar kernel topography is also found in [9], [13].

The tensor deformation imposed by accumulating the strength and orientation of the votes
eventually reveals behavioral coherence among image primitives. The vote accumulation is
simply tensor addition (e.g., summation of matrices), which can be algebraically represented
by Tuv = ΣTxyV (u, v), where Tuv is the resulting tensor at location (u, v), after receiving the
votes V (u, v) from its neighboring tensors Txy at locations (x, y). Each kind of structure is
expected to produce tensors of a particular shape: for example, very elongated tensors (high
λ1 − λ2) for lines, and more rounded ones (low λ1 − λ2) for regions. Fig. 4 exemplifies how
a set of input primitives are encoded as tensors, whose deformations resulting from
accumulated votes reveal an underlying salient linear structure.

The voting process can also be either sparse or dense. Sparse voting restricts tensors to cast
votes only on other encoded input tensors, while dense voting extrapolates the input
configuration allowing tensors to cast votes everywhere within their neighborhood. Tensor
voting has been shown to be robust to considerable amounts of noise and does not depend
on critical thresholds.

B. The Iterative Voting
The framework proposed in [26], [38] also uses spatial voting to detect radial symmetry and
to group curvilinear patterns. Similar to the tensor voting framework, each pixel propagates
its structural likelihood within its neighbors by vote casting. Here, however, the propagated
information is based on either spatial curvature or gradient features and a set of precomputed
Gaussian kernels with a preferred topography to elucidate desirable saliency. The kernels’
topography was devised to incorporate the Gestalt principles of proximity and continuity.
The iterative voting includes a funneling modification of the kernels as iterations progress.
The funneling process is aimed at concentrating the voting energy over emerging promising
areas by gradually reducing the kernel’s aperture. For each pixel at position (x, y), its vote
casts to the neighboring pixels (u, v) by Equation 2:
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(2)

where , and σ is a scale parameter that regulates the
extent and decay of the function’s influence. A(σ, θ) is the limiting cone that extends
longitudinally up to a radius which is a function of σ, and transversally of an angle θ. At
each iteration, θ is reduced by Δθ. Fig. 5 illustrates V (u, v) at consecutive iterations (i.e.,
with different θ) bound by A(σ, θ), in red.

Iterative voting is as follows: at iteration i, the kernel V, with θi = θi−1 − Δθ, is placed over
a voting pixel (x, y), and oriented along the pixel’s direction. Each neighboring pixel (u, v)
receives the corresponding vote Vx,y(u, v), and accumulates its magnitude. At the first
iteration, gradient or curvature is used to estimate the direction at (x, y). At any consecutive
iteration i + 1, the orientation at (x, y) is recomputed so that it points at its adjacent neighbor
with the maximum magnitude (i.e., accumulated votes). Since a better estimation of the
structural localization and local orientation are produced after each iteration, the kernels
have their energy gradually funneled from initially diffused to eventually very focused. Note
that θ changes linearly with i.

III. Iterative Tensor Voting
We build upon the Tensor Voting and the Iterative Voting frameworks in order to leverage
advantages from both methods, and produce a robust method to group perceptually punctate
patterns (e.g., sequestered macromolecules between neighboring cells). The approach is
based on progressive funneling of the stick tensor voting field (Fig. 3), which enhances the
concentration of the votes over salient features, as observed in [26] for the Iterative Voting.
The input to our method is the image itself (i.e., an intensity map), and the output is the
inferred salient curvilinear structures. This approach is compared with two prior methods to
demonstrate superior performance on images whose structures (i) may be highly punctate,
(ii) are surrounded by clutter, and (iii) have nonuniform and diffused intensities.

A. Image encoding
The first step is the construction of a voting space. We start by encoding every pixel in the
image as an unoriented tensor. In tensor voting, an unoriented tensor has a perfect circular
shape or, analytically speaking, has λ1 = λ2. This dense encoding enables the method to be
completely independent of pre-computations of any sort, such as curvature or gradient,
which would force the method to rely on the quality of the image’s sparse representation and
potentially impair the solution from the beginning. Assuming that the signal of interest has
brighter intensity than its counterpart background, a tensor at location (x, y) in the image is
encoded to have a size proportional to the pixel intensity Ixy (e.g., λ1 = λ2 = Ixy). If this
assumption does not correspond with the images under analysis, adjustments must be made
in this encoding in order to guarantee that the signal of interest is input as a larger tensor.
For instance, λ1 = λ2 = Iwhite/Ixy, where Iwhite is the intensity of the color white in the image
(usually 1 or 255), for a dark signal on bright background. The tensor direction e⃗1 and e⃗2 can
be chosen arbitrarily, as it does not influence the ball tensor voting in any sense. An input
tensor Txy at location (x, y) is thus:
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B. Voting iterations
After the voting space is constructed, a tensor voting pass is executed using the ball field
(Fig. 3(b)). The ball field is the only option here because no initial tensor orientation is
known. Note, though, that disregarding the initial uncertainty about each pixel orientation,
the ball field casts a vote with magnitude and orientation, which allows the tensors to start
their characteristic structural deformation. Moreover, it should be noted that since all the
pixels in the image were encoded, the voting cast is dense by nature (e.g., all tensors cast
and receive votes). The deformation caused by locally accumulating all votes from the ball
field tensor voting pass reveals, although still inaccurately, the presence of perceptual
structures in the image, or lack thereof. The resulting tensor’s magnitude (λ1, λ2) and
direction (e⃗1, e⃗2) are obtained by recomputing its eigen-decomposition. From the vote
casting perspective, curvilinear structures are characterized by an unbalanced distribution of
elements along one main direction. For this reason, in contrast to other structures, whose
tensors tend to deform more evenly due to the influence from different directions,
curvilinear structures produce elongated tensors. Therefore, tensors from curvilinear
structures are likely to be evidenced within the stick saliency map (e.g., image formed by
computing λ1 − λ2 at each location (x, y)). Following the same reasoning, one can note that
junctions (a spot in the curve where two or more curves intersect) receive votes from
possibly multiple directions, deforming more evenly than curvilinear structures. In order to
assure completeness of the grouped curvilinear structures, the ball saliency map (e.g., image
formed by computing λ2 at each location (x, y)) is summed to the resulting saliency map.

Our protocol then proceeds with iterative dense tensor voting, which aims at gradual
refinement of the previous iterations. A thresholding step is introduced prior to each
iteration so that the tensors that did not deform as expected for curvilinear structures (e.g.,
high λ1 − λ2) are removed. This thresholding is very conservative and aims at removing
elements with extremely low saliency to enhance the processing speed. Therefore, only
tensors whose saliency λ1 − λ2 is higher than a threshold value are encoded. Since the
tensors are guaranteed to have a more or less accurate orientation (unoriented tensors are
thresholded), consecutive iterations are performed with stick fields (Fig. 3(a)). Note that the
voting employed is still dense, so every site receives a vote, even if not initially inputted.
Each iteration refines the previous one, where the tensors’ magnitude and orientation seem
to have been disturbed by the low-saliency but frequent background noise, as well as the
often noisy properties found in ill-defined signals.

An interesting observation, inspired by the funneling progression of kernels proposed in
[26], [38], is that the stick fields are gradually modified (e.g., the field aperture is reduced)
as the voting iterations proceed and the orientation estimations become continuously more
accurate. This funneling process is a key aspect of our algorithm. It gradually reduces the
diffusion of votes and concentrates the votes only over promising lines, producing better,
enhanced results. Fig. 6 illustrates their topography for five exemplar iterations. Given a
voting scale σ and field aperture θ, the iterative tensor vote from a pixel (x, y) at a
neighboring location (u, v) can then be computed by Equation 3.

Again, from Fig. 2 OP’s distance l and angle θ, s is the arc length and κ is the curvature. N⃗
is the vote direction and A(σ, θ) is the limiting cone that, as in the Iterative Voting, extends
longitudinally up to a radius which is a function of σ, and transversally of the angle θ. c is
the same as in the tensor voting framework.

(3)
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The iterations can be stopped after (i) a pre-determined number of times, (ii) the quantized
aperture of the voting field is small enough, producing the same field as in a previous
iteration, or (iii) θ ≤ 0.

C. Curve inference
Iterative voting produces a saliency map where curvilinear structures are highly enhanced.
Lines can be segmented from the saliency maps using any standard morphological thinning
or non-maxima suppression technique, exploring magnitude and direction of the resulting
saliency map. The outcome of this process is an image whose curvilinear structures are
inferred. Fig. 7 depicts the entire process.

D. Application to segmentation of adherens junctions
Fig. 8 shows an example of the adherens junctions imaged at 40× magnification and the
intermediate results of tensor voting. It is clear that the proposed method regularizes and
enhances punctate signals iteratively. In this context, the funneling process groups pixels
belonging to the cellular structure with improved precision. The first iteration, produced by
the ball voting, results in a diffused pattern. However, this is the initial condition where
oriented stick tensor fields brings focus to the promising parts of the signal.

Fig. 9 and 10 show in more detail the nature of the imaged cell adherens junctions and
sample results from the Iterative Tensor Voting iterations.

IV. Evaluation
In this section, we demonstrate the performance of the Iterative Tensor Voting (ITV) for
grouping of perceptual curvilinear structures, where validation has been performed on
synthetic and annotated real data. The annotated data correspond to samples that have been
imaged through fluorescence microscopy.

A. Synthetic Data
1) Experimental design—In order to test ITV’s applicability and limitations, a set of
synthetic configurations were created. The synthetic data (top row) were generated to
emulate a variety of spatially distributed signals, which are found in real data. Such a variety
corresponds to the geometry of signal formation, density of punctation, signal width, and
signal intensity. Figures 11 and 12 show samples of synthetic data that have been used for
this study. The first column of Figure 11 shows the prototype geometry and signal
composition through a (i) straight line, (ii) circle, (iii) figure eight-shaped object with an X-
junction, in addition to a (iv) figure B-shaped object with a T-junction and a Y-junction. The
data set has 48 images: 4 figures × 3 widths × 4 punctation densities. All images are 256-
by-256 pixels with the intensity in the range of [0,1]. The processing parameters are σball =
10, Thresholdball = 40%, σstick = 3, T hresholdstick = 5%, Δθ = 5°.2

2) Qualitative analysis—Fig. 13 shows the performance of ITV on three synthetic
configurations. The first and last rows show the original configuration and the inferred
curvilinear structure, respectively. The intermediate rows demonstrate stages of ITV. Rows
2 to 5 show saliency maps at different iterations, namely, ball voting and stick voting at θ =
45°, θ = 30° and θ = 15°. The results combine highly salient pixels from ITV’s stick or ball
saliency maps. This is important for better preservation of junctions, whose conflicting
orientations locally reduce the stick saliency (i.e., λ1 − λ2) and increase the ball saliency

2Threshold values are computed from the maximum saliency at each iteration to remove tensors with lower saliency.
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(i.e., λ2), as mentioned in Section III. It is clear that ITV can evolve from a punctate pattern
to a strong filament. In this context, the dense voting allows pixels to be interpolated, thus,
playing an important role in gap filling.

The synthetic data also allowed us to analyze ITV’s sensitivity to punctation. Figure 14
shows ITV’s inferred structure as a function of the punctation density. In general, one can
observe that ITV performs fairly well in all cases where the punctate density is higher or
equal to 0.05 points/pixel2 (14(b–d)). The highly punctate patterns of 14(a) can cause noisy
inference of contours with potential gaps.

3) Quantitative analysis—We compared ITV’s performance quantitatively on the
synthetic data set and compared it with its two precursory approaches: Tensor Voting (TV)
and Iterative Voting (IV). For TV, σ = 10 and Threshold = 40%. For IV, σ = 10, δinitial =
30°, Δθ = 10°, Threshold = 1%; All parameters, including ITV’s, were defined by visual
inspection of sample results, and used across all images in the data set and throughout the
experiments in this paper. The percentage of mismatches between the methods’ inferred
structure and the prototype signal at the correspondent width is used for quality assessment
of the results.

Figure 15 provides comparative results of each method on a dataset. Our analysis indicates
that ITV provides more consistent results than its precursory approaches. A more detailed
analysis of the visual results indicate that TV was incapable of closing big gaps along the
contour. Although increasing the scale σ for tensor voting could potentially facilitate gap
closure, it would also compromise the high frequency features, such as sharp corners and
junctions. On the other hand, each iteration of ITV allows the curve to grow progressively
and eventually close the gap. Furthermore, due to the highly punctate aspect of the signals,
IV seems to fail to update the kernel’s orientation, producing misaligned fragments along
the figure’s contour. Whereas, ITV’s iterations allow the pixels’ orientation to converge
slowly (i.e., with low Δθ) and robustly towards the correct solution, producing smoother
curves. Table I summarizes the results obtained by each method according to the signal
width and punctation density.

B. Annotated Images
In this section, we evaluated the performance of ITV against manually annotated images. In
this context, samples were stained for their adherens junctions, and then imaged with a 40×
magnification objective. 3 The data set consisted of 274 1344 × 1024 images, 14 of which
were annotated by two cell biologists. These images were selected for annotation for their
diversity and not their similarity, in order to capture important biological and technical
heterogeneity. 4,5 The annotations served as representatives in human performance and as a
baseline for algorithmic comparisons. Subsequently, the remainder of this section is
dedicated to the evaluation of the performance of ITV, both qualitatively and quantitatively.

From a qualitative perspective, ITV generates contours with high agreement with human
annotations. However, it does not properly represent nor detect junctions. Fig. 17 illustrates
a sample of results, where the left and right columns respectively show the original images
and human annotations that are overlaid with computed representation. The red and green
contours represent the two annotations, while the white contours are the ITV results. Fig. 18

3Detailed information about the experimental design and imaging protocol can be found in [38].
4Statistically speaking, each image consists of over 150 cells, and every cell can be considered as an independent test tube.
5The only instruction given to the biologists was to trace adherens junctions they could perceive from the image. No constraints
regarding closed contours or any other higher level inference was imposed.
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shows substandard performance of ITV at junctions. The rationale is that tensors, at the
junction, do not deform in an elongated fashion.

Next, a quantitative analysis is performed where precision and recall rates are computed
from the (mis)matches between human annotations and automatic detected contours. In this
context, precision measures the probability of a detected contour to determine a true
adherens junction. Recall measures the probability of an adherens junction to be correctly
detected. In order to account for digital displacement of the contours, matches were
evaluated at different versions of the annotation, with each of them being dilated by a factor
that varied between 1 to 20 pixels 6. Fig. 19 shows the precision and recall rates obtained
from averaging matching rates between the two annotations. In this section, HA refers to the
Human Annotation, the performance achieved by the specialists, which was computed by
averaging reciprocal (mis)matches between the annotations. Additionally, NC indicates the
performance for negative curvature maxima (i.e., negative value of the maximum principal
curvature). NCIV stands for iterative voting initialized with NC, and NCTV for tensor
voting initialized with NC. Lastly, TV refers to tensor voting (ball voting only).

An analysis of the matching rates in Fig. 19 revealed that ITV developed the closest recall-
precision curve to HA. It also showed that ITV had similar improvement rates to those
produced by the specialists, presenting similar decay across the dilation factor. Furthermore,
comparing the rate of agreement (RA) between the methods and HA, we can conclude that
ITV had the highest agreement with the specialists, showing 91% precision and 94% recall
rates of agreement (Table II). RA was obtained from averaging the sum of differences of
results - precision (P) or recall (R) - from each dilated version (P (i) or R(i), where i is the
dilation factor) of the annotation and the method being evaluated. Equation 4 shows how RA
is computed for P. For its counterpart R, P (i) is replaced by R(i). N is the maximum dilation
factor 20. A detailed analysis of these performances shows that any post-processing of NC
and TV improved their results (compare, for instance, NCIV and NCTV with NC, and ITV
with TV). However, one can notice that the initialization played an important role in all
methods. TV had a better recall rate than NC, meaning it better resembled the human
annotation. Therefore, another conclusion is that TV served as better input than NC.

(4)

V. Conclusions and Future Work
In this paper, we introduced the iterative tensor voting method to group ill-defined visual
signals along a curvilinear structure. This method coupled the tensor and iterative voting
frameworks to leverage advantages from both methods. As a result, complex patterns along
a curvilinear path could be perceptually grouped and delineated. Results on inference of
adherens junctions (i.e., membrane-bound macromolecules) were validated through
comparison with synthetic and annotated real data by expert cell biologists. Quantitatively,
the method was shown to produce (i) superior results when compared with prior techniques,
and (ii) delineations comparable to annotations produced by specialists. In particular, our
method achieved precision and recall rates of 91% and 94%, respectively. One limitation is
that junctions (e.g., T-junctions, X-junctions) are not well characterized, which will be the
subject of future efforts. An ad hoc junction detector, for example, can be feasibly added

620 pixels served as the upper bound for being the actual average width observed for the signals analyzed.
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through the analysis of the ball saliency map produced by tensor voting. In addition, we plan
to extend our method to confocal microscopy to infer this class of signals in 3D.
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Fig. 1.
Adherens junctions exhibit complex patterns. The signal is frequently diffused and
sequestered along the cell membranes.
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Fig. 2.
Two tensors and their geometrical relationship to produce the vote V (u, v) expressed by
Equation 1 (figure redrawn from [34]).
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Fig. 3.
Tensor voting fields. (a) Stick field - when an estimate of the initial orientation is known,
and (b) Ball field - when orientation information is unknown.
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Fig. 4.
Example of perceptual grouping through tensor voting. A set of (a) input primitives are (b)
encoded as tensors, whose (c) resulting deformations reveal a curve.
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Fig. 5.
The iterative voting kernel’s topography (only one side is shown) as a function of θ. The
voting energy is funneled as iterations progress.
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Fig. 6.
The iterative tensor voting kernel’s topography (only one side is shown) as a function of θ.
The magnitude and orientation of votes vary within the kernel, while the kernel’s energy
funnels as iterations progress.
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Fig. 7.
Inference of curvilinear structures by Iterative Tensor Voting. The primary theme is the
feedback loop for refinement of the voting aperture.
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Fig. 8.
Grouping of adherens junctions through Iterative Tensor Voting. (a) Original signal; (b)
result of first iteration; (c) and (d) examples of intermediate iterations; (e) grouped
curvilinear structures; (f) inferred structures (red).
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Fig. 9.
Close view of grouping through Iterative Tensor Voting. (a) Original signal; (b) first
iteration (ball voting); (c) final iteration (at θ = 5°).
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Fig. 10.
Progressive refinement of the voting landscape (tensors’ largest components) by Iterative
Tensor Voting. (a) original image; (b) first iteration (ball voting); (c) four iterations (at θ =
30°); (d) final iteration (at θ = 5°).
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Fig. 11.
Synthetic data with fixed punctate density (0.09 points/pixel2) changing as a function of line
width. (a) prototype signal; (b) 3 pixel-wide punctate signal; (c) 5 pixel-wide punctate
signal; (d) 7 pixel-wide punctate signal.
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Fig. 12.
Synthetic data with fixed width (5 pixels) changing as a function of punctation density. (a)
0.03 points/pixel2; (b) 0.05 points/pixel2; (c) 0.07 points/pixel2; (d) 0.09 points/pixel2.
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Fig. 13.
Progressive refinement and final delineation of the synthetic data by ITV. First row:
punctate signals; second row: ball voting results; third to fifth rows: intermediate results
with stick fields; last row: inferred structures over initial signal.
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Fig. 14.
Qualitative analysis of ITV’s sensitivity to signal punctation. (a) 0.03 points/pixel2; (b) 0.05
points/pixel2; (c) 0.07 points/pixel2; (d) 0.09 points/pixel2. ITV performs fairly well at 0.05
points/pixel2 and above (b–d).

Loss et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 March 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 15.
Qualitative comparisons between methods. Sample results produced by (a) IV, (b) TV, and
(c) ITV. ITV produces smoother and more consistent curves than its precursory methods.
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Fig. 16.
Grouping and delineation of adherens junctions by ITV. Left: original signal; center:
grouped signal; right: inferred adherens junctions.
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Fig. 17.
Human delineation of adherens junctions versus ITV. Left: patches of the original images.
Right: delineation by ITV (white) and the specialists (red/green).
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Fig. 18.
Contour junctions are the main sources for misdetection. Left: location near junctions
evidenced; right: delineation by ITV (white) and the specialists (red/green).
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Fig. 19.
Recall vs. precision plot of the overall performance as a function of the dilation factor.
Comparison between human annotation (HA), negative curvature maxima (NC), iterative
voting initialized with NC (NCIV), tensor voting initialized with NC (NCTV), tensor voting
(TV), and the Iterative Tensor Voting (ITV) are shown. ITV not only performs better than
the other methods but also produces a 91% rate of agreement with HA in precision and 94%
in recall.

Loss et al. Page 31

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 March 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Loss et al. Page 32

TA
B

LE
 I

Q
ua

nt
ita

tiv
e 

re
su

lts
 f

or
 s

yn
th

et
ic

 d
at

a.

M
et

ho
d

L
in

e 
W

id
th

 (
pi

xe
ls

)
P

un
ct

at
io

n 
D

en
si

ty
 (

po
in

ts
/p

ix
el

2 )

0.
03

0.
05

0.
07

0.
09

IV
3

54
%

65
%

78
%

82
%

5
59

%
68

%
79

%
83

%

7
61

%
73

%
81

%
86

%

T
V

3
64

%
70

%
82

%
90

%

5
64

%
73

%
88

%
90

%

7
65

%
78

%
89

%
91

%

IT
V

3
91

%
97

%
99

%
10

0%

5
93

%
98

%
10

0%
10

0%

7
93

%
98

%
10

0%
10

0%

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 March 09.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Loss et al. Page 33

TABLE II

Rate of agreement for precision (RAP ) and recall (RAR) between the methods and the human annotation.

RAP RAR

NC 75% 88%

NCIV 80% 78%

NCTV 81% 84%

TV 86% 95%

ITV 91% 94%
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