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Abstract
In longitudinal biomedical studies, there is often interest in the rate functions, which describe the
functional rates of change of biomarker profiles. This paper proposes a semiparametric approach
to model these functions as the realizations of stochastic processes defined by stochastic
differential equations. These processes are dependent on the covariates of interest and vary around
a specified parametric function. An efficient Markov chain Monte Carlo algorithm is developed
for inference. The proposed method is compared with several existing methods in terms of
goodness-of-fit and more importantly the ability to forecast future functional data in a simulation
study. The proposed methodology is applied to prostate-specific antigen profiles for illustration.
Supplementary materials for this paper are available online.
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1 Introduction
This paper focuses on semiparametric stochastic modeling of rate functions for functional
data in a multi-subject setting, where the data consists of a set of subjects, and for each
subject, the observations are discrete samples from a curve with additive measurement
errors. The rate function describes the functional rate of change or slope with respect to
time, and has been of recent interest in longitudinal biomedical studies (Mungas et al., 2005;
Lloyd-Jones et al., 2007; Strasak et al., 2008; Kariyanna et al., 2010). For example, from
subject-matter knowledge it may be the rate of change, rather than the level of some
biomarker, that can explain and predict the disease outcomes. One challenge in this research
is to model the rate function without making a strong parametric assumption. Further
challenges include modeling the rate functions across the subjects and allowing it to depend
on the covariates of interest.

Our development has been largely motivated by a longitudinal study in prostate cancer
patients (Proust-Lima et al., 2008), where prostate-specific antigen (PSA) profiles were
collected for patients who received external beam radiation therapy (EBRT). PSA is roughly
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proportional to the prostate tumor size, and its rate of change has been shown to be
associated with the recurrence of prostate cancer (Sartor et al., 1997). Figure 1(a) shows the
log-transformed PSA level over time after EBRT treatment for 50 selected patients, and
Figure 1(b) illustrates individual empirical rates of change, one for each subject. Figure 1(b)
suggests that the individual rate of change of PSA roughly follows a common pattern. That
is, it begins with a negative value caused by the EBRT, decreases over time in magnitude as
the rate of tumor shrinkage gets lower, and eventually reaches a certain stable level. It is also
apparent that rates of change vary considerably from this common pattern. For example, for
the subject highlighted in black in Figure 1(b), his empirical rate of change fluctuates around
zero and his PSA level appears very different from the others. Hence it is desirable to model
the rate of change semiparametrically by incorporating empirical evidence or prior
knowledge through a parametric function of time while accounting for deviation from the
common pattern nonparametrically. Additionally, it is clear that for some subjects the long
term stable rates of change are near zero, while for others they are positive. It is thus
appealing not only to model a common stable rate of change across the subjects but also to
let it follow a distribution, say a normal distribution with its mean depending on some
baseline covariates. This flexibility will benefit the forecasts of future observations.

A number of methods have been used to study the rate of change in longitudinal studies. A
popular approach is through a parametric linear mixed model (Laird and Ware, 1982; Diggle
et al., 2002; Verbeke and Molenberghs, 2009), for example the random intercept and slope
mixed model for disease progression (Zhang et al., 2008). This model assumes the subject's
mean function follows a straight line with constant rate of change, which in turn is
dependent on the covariates. In contrast to parametric models, the mean function have been
modeled nonparametrically (Rice and Silverman, 1991; Wang and Taylor, 1995; Zeger and
Diggle, 1994; Zhang et al., 1998; Verbyla et al., 1999). For these approaches, the rate
function, as the first order derivative of the mean function, does not have any parametric
form, and usually is not dependent on covariates. For other relevant literature that considers
population dynamic models with multiple subjects see Wang et al. (2008), Paul et al. (2009)
and Müller and Yao (2010). Additionally, in a time-varying coefficient model (Hastie and
Tibshirani, 1993; Hoover et al., 1998) or functional mixed model (Guo, 2002; Morris and
Carroll, 2006), the mean function Ui(t) of the ith subject is specified as .
Hence, Ui(t) is a linear combination of several arbitrary smooth functions βk(t) with
covariates Xik as the weights and depends on covariates linearly. Thus there seems to be a
need for a model that allows flexible relationships between the rate function and covariates.
Moreover, note that except for few approaches (Qin and Guo, 2006; Welham et al., 2006),
nonparametric approaches seldom incorporate any prior knowledge from the subject-matter
science, if available, in the modeling of the shape of the rate function.

Our goal is to develop a semiparametric stochastic model for the analysis of the rate
function, which is called in this paper a semiparametric stochastic velocity model (SSVM).
A key feature of SSVM is to utilize a stochastic process as a prior for the rate function, in a
similar spirit to the work of Wahba (1978) and Zhu et al. (2011) for functional data in a
single-subject setting. Formally, for each rate function  for subject i ε N = {1, 2,
…, n} and time , its prior is assumed to be a Gaussian process, conditional on
xi = (xi0, xi1, …, xip)′, the vector of covariates for the ith subject. As an important special
case of the proposed SSVM, we consider , where fxi(t) has a pre-
specified parametric functional form dependent on covariates xi and  is a scaled
standard Wiener process. Hence, E{Vxi(t)} = fxi(t) implies that Vxi(t), the rate function of the
ith subject, is expected to be centered about fxi(t), while the second term  allows
deviations from the parametric functional expectation fxi(t).
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The remainder of the paper is organized as follows. Section 2 first presents the model and
then is devoted to an important special case with the Ornstein-Uhlenbeck process as the
prior for the rate function. Section 3 develops MCMC based methods for posterior inference
and forecasting. Section 4 applies the methods to analyze the data of PSA profiles. Section 5
presents simulation results to evaluate and compare the performance of the proposed method
with other existing methods. The paper concludes with a discussion in Section 6. Some
supplementary materials related to the technical details of the proof of Theorem 1 are
available online.

2 Semiparametric Stochastic Velocity Model
2.1 Model Specification

Suppose that Yi(tij), j = 1, 2, …, mi, i = 1, 2, …, n, is the response of the ith subject at time tij
and satisfies the following hierarchical model, SSVM:

(1)

(2)

(3)

where Uxi(t) is the mean function for the ith subject's outcome curve, Vxi(t) is the
corresponding rate function and Wi(t) denotes the standard Wiener process. Note that in this
specification, although the mean function is defined at continuous time , it is observed at
discrete times  only and is subject to measurement error. Equation (3) may be regarded as
a prior for the rate function Vxi(t), in which the behavior of Vxi(t) is governed by a stochastic
differential equation (SDE), with drift term a{Vxi(t); xi, ϕi} and diffusion term b{Vxi(t); xi,
ϕi}, where xi and ϕi are the covariate vector and subject-specific parameter vector. We

assume that the initial values  with large value of variance

 to make it non-informative, and that the measurement error . Here Ik is
the k×k identity matrix and  denotes the k-dimensional normal distribution with
mean vector m and covariance matrix Σ. Furthermore, [Uxi(t0), Vxi(t0)]′, εi(t) and Wi(t) are
assumed mutually independent.

The SDE in equation (3) gives rise to a general class of Markovian Gaussian processes
(Feller, 1970; Grimmett and Stirzaker, 2001). In our model, this stochastic process is
considered as the prior for the rate function Vxi(t). According to the specific research interest
or context of a given study, we can choose different forms for a{Vxi(t); xi, ϕi}, which
measures the instantaneous mean or the expected conditional acceleration, and for b2{Vxi(t);
xi, ϕi}, which reflects the instantaneous variance of the rate process. In particular, we have
the SSVM-W, when a{Vxi(t); xi, ϕi} = 0 and b{Vxi(t); xi, ϕi} = σξ, and the prior for Vxi(t) is
the Wiener process. The resulting mean function takes the form

, which is the partially integrated Wiener
process leading to a smoothing spline (Wahba, 1978; Wecker and Ansley, 1983; Ansley and
Kohn, 1986) for a given subject. Note that this prior is independent of covariates.

For the PSA data analysis given in Section 4, we specify

 and b{Vxi(t); xi, ϕi} = σξ. This specification
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corresponds to an Ornstein-Uhlenbeck (OU) process for Vxi(t), and the resulting rate

function is given by .
More details and properties of the OU process can be found in Section 2.2 below. We refer
to this specification as SSVM-OU. For the PSA data analysis, it is of interest to estimate the
stable rate , since Vxi(t) will eventually stabilize and fluctuate around the level given
by , which describes the long term rate of tumor growth after radiation treatment. In
addition, to address the relationship between the long term tumor growth rate  and
the patients' baseline characteristics, we propose a linear model , where β =

(β0, β1, …, βp)′ is the vector of fixed effect parameters and  are random
effects. This subject-specific SSVM-OU is very useful to understand the dynamics of tumor
growth, to assess the effect of covariates, and to predict a patient's future PSA values using
the baseline covariate information.

2.2 The OU and IOU Processes
The OU process was first proposed as a physical model for the velocity of a particle
suspended in a fluid (Uhlenbeck and Ornstein, 1930). It describes a homeostasis system that
fluctuates around some stable level and has been applied in biology (Trost et al., 2010),
finance (Nicolato and Venardos, 2003) and engineering (Kulkarni and Rolski, 2009), among
many others. In the statistics literature, Aalen and Gjessing (2004) studied the first-passage
time of an OU process, and Taylor and Law (1998) modeled the serial correlation in a linear
mixed model by an integrated OU (IOU) process with mean zero. The OU process is
particularly suitable for the PSA profiles considered in this paper, where the rate function of
tumor growth reaches a stable level that potentially depends on baseline covariates.

Now we present some properties for both the OU and IOU processes. For ease of exposition,
we suppress the subject index i in the discussion. Let Uj := U(tj) and Vj := V(tj). The IOU
and OU processes are given by, respectively,

(4)

(5)

Theorem 1 For IOU and OU processes at time tj, conditional on the values at time tj−1and
parameters , ρ, σξ, the transition distribution is given by

δj = tj − tj−1, with conditional mean and covariance matrix given, respectively, by,
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The proof is included in the supplementary materials.

Corollary 1 For δj → ∞ and fixed ρ > 0, such that exp(−ρδj) = o(1), then the conditional
mean and variance in Theorem 1 can be approximated by,

where the errors in the approximation are  and

. The proof is straightforward by noting that ρδj → ∞ as δj satisfies
exp (−ρδj) = o(1).

Corollary 2 For OU and IOU processes with ρ > 0 and δj = o(1), the approximate transition
density denoted by  is given by,

where  is the normal density with mean  and variance

, and δ(·) is the Dirac Delta function.

This corollary can be proved by taking the component-wise first-order Taylor approximation
of mj and Σj in Theorem 1 with respect to δj.

3 Inference and Forecasting
3.1 Posterior Distribution Approximation

In this section, we present Bayesian estimation for the mean function Uxi(t), the rate function
Vxi(t) and parameters ϕi and σε for i = 1,2, –, n. Let [· | ·] denote the exact conditional

density,  the approximate conditional density and  where
. Similar notation is used for V, Y and x. For the model specified by

equations (1), (2) and (3), we first consider the posterior density [ϕ | U, V, Y, x] for ϕ, where

. The posterior distribution is given by
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(6)

where [Uij, Vij | Ui;j−1M, Vi;j−1, ϕi, xi] is the exact transition density derived from the SDE in
equation (3) and [U0, V0] and [ϕi] are non-informative prior densities. Unfortunately, except
for a very few specific forms for the drift and diffusion terms in equation (3), [Uij, Vij |
Ui;j−1, Vi;j−1, ϕi, xi] is usually analytically intractable. Even when the exact transition
density does have a closed form, as is the case for the OU and IOU processes, for which the
exact transition density is given in Theorem 1, the posterior density for ϕ still does not have
an explicit form. Hence, we will use the Euler approximation to approximate the exact
transition density, while applying the method of data augmentation (Tanner and Wong,
1987) to minimize the error in this approximation.

The strategy of combining data augmentation and Euler approximation to approximate the
exact transition density has been discussed by Elerian et al. (2001), Eraker (2001), Roberts
and Stramer (2001) and Durham and Gallant (2002), in the context of estimating parameters
in the SDE for a single diffusion process observed at discrete times without measurement
errors. Our approach is related to theirs, but with an important distinction that instead of
being partially observed, both processes Vxi(t) and Uxi(t) are completely unobserved, and
will be sampled as part of an MCMC algorithm. In this manner, we will estimate the
processes Vxi(t), Uxi(t) and the parameters ϕ. It is worth pointing out that although
augmentation only needs to take place for the latent process, augmenting the data
themselves will facilitate the operation of the simulation smoother, as this algorithm requires
observations (either observed or augmented) available at each corresponding time. In
addition, the data augmentation allows us to create augmented longitudinal data with a
common set of time points, and consequently this method enables us to handle longitudinal
data with irregularly spaced times which may vary across the subjects.

To carry out the data augmentation and the Euler approximation, we first specify time points
at which data would be augmented. Let

denotes the set of augmentation times for the ith subject. Consequently, the time interval τij
between adjacent data points, either observed or augmented, is less than τc. In addition, let

 denote the set of all possible time points of the
observed and augmented data across subjects. With further data augmentation at times

, each subject would have either observed or augmented
data  at the common time set . The Euler approximation to equations
(2) and (3) for  leads to the following difference equations:

(7)

(8)

where  and j = 1, 2, …, m. Thus, the conditional posterior density for
ϕ is approximated by,

Zhu et al. Page 6

J Am Stat Assoc. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(9)

where  with  and similarly for  and . Note
that the approximate transition density ≺ Uij, Vij | Ui,j−1, Vi,j−1, ϕi, xi ≻ in equation (9) is
given by,

(10)

which is derived from equations (7) and (8). This implies that it is feasible to directly sample
from the posterior distribution of ϕ, if the conjugate priors for ϕ are chosen.

With regard to the posterior samples of Uxi(t) and Vxi(t) for , we follow equations (7)

and (8) to come up with their approximations, denoted by (t) and (t), with linear
interpolation for t between tj−1 and tj for j = 1, 2, …, m. Bouleau and Lepingle (1992)
showed that under some regularity conditions, with constant Ci, the Lp-norm of the

approximation error for Vxi(t) is bounded at the rate of ; that is,

where ∥f∥p = {∫Ω |f(z)|pdμ(z)}1/p for a real function f on the space (Ω, ) with measure μ on

random variable z. This indicates that if m is sufficiently large, then (t) will approach to

its continuous counterpart Vxi(t) with arbitrary precision. Similar arguments hold for (t).

Note that we will sample m instead of mi data points for (t) and (t) with possibly m
≫ mi. Hence, the benefit of introducing augmented data is two fold: (i) it reduces the error

of approximation, when (t) or (t), instead of (t) or (t), is used to replace
Uxi(t) or Vxi(t); (ii) it gives a more accurate approximation to the exact transition density, as
shown by Pedersen (1995), which benefits estimation of model parameters ϕ. Under the
assumption that m is large enough such that the approximation error is small, for the ease of

exposition, we still use Vxi(t) instead of (t) throughout the rest of the paper. Uxi(t) is
treated similarly.

In the MCMC algorithm to update the values of Uxi(t) and Vxi(t) for , we draw
samples from

(11)

where , ≺ Uij, Vij | Ui,j−1, ϕi, xi ≻ is given in equation (10) and [U0,
V0] is a non-informative prior. Equivalently, the posterior density (11) may be derived from
a state space model representation (Durbin and Koopman, 2001), which is a useful
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reformulation of the SSVM in equations (1), (2) and (3) when it is discretized using the
Euler approximation and data augmentation.

Consider an example where Vxi(t) follows the OU process and ≺ Uij, Vij | Ui,j−1, ϕi, xi ≻ is

given in Corollary 2. Let  denote the observed or augmented data for

n subjects at time tj, and let  be the latent states with

. The corresponding SSVM can be expressed as a state space
model, given as follows:

where Fj = InI ⊗ Fij, Gj = In ⊗ Gij, Fij = [1, 0, 0]′ with ⊗ denoting Kronecker product,

Likewise, when Vxi(t) follows a Wiener process, the corresponding reformulation as a state
space model can be obtained in a similar manner.

In this paper we have adopted the MCMC method for Bayesian inference. In the literature
other likelihood-based or sampling-based methods have also been developed for nonlinear
and/or non-Gaussian state space models, including Kitagawa's (1987) numeric algorithm
using piecewise linear approximation, Durbin and Koopman's (1997) simulated maximum
likelihood estimation, Jørgensen et al.'s (1999) Kalman estimating equations and some
recent work on sequential Monte Carlo methods using particulate filtering (Gordon et al.,
1993; Pitt and Shephard, 1999; Liu, 2008; Andrieu et al., 2010), among others.

3.2 MCMC Algorithm
Under the state space model formulation, Gibbs sampler was first developed to sample one
latent state θj at a time, this was later improved by various algorithms that use simultaneous
block-based sampling schemes (e.g. Frühwirth-Schnatter 1994; Carter and Kohn 1994). The
simulation smoother proposed first by de Jong and Shephard (1995) and later improved by
Durbin and Koopman (1997) provides a remarkably efficient sampling tool. It draws
samples of θj through sampling independent innovations ξj, rather than realizations of a
Markov process, so the entire sampling is based on very low dimensional distributions and
free of autocorrelation. Thus, the rate of mixing and moreover burn-in can be achieved
quickly. We will use the simulation smoother in our implementation.

The proposed MCMC algorithm iterates through the following steps.

1.
Draw augmented data according to  at times 
for the ith subject, i = 1, 2, …, n.
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2.
Update latent states Uxi(t) and Vxi(t) for  from the posterior density (11)
by using the simulation smoother.

3. Update ϕ by sampling from the posterior density (9). In particular, when Vxi(t)
follows an OU process and is discretized through the Euler approximation, the
collection of equations (8) can be equivalently reformulated as a linear mixed
model,

where , ,  with Vj = [V1j, V2j,

…, Vnj and . Further, β* = [ρβ′, −ρ]′, b* = ρν, ν = [ν1, ν2, …,

νn]′, , . As a result, the set of model

parameters is , can be sampled straightforwardly by using
the standard Gibbs sampler in the linear mixed model (Ruppert et al., 2003, Chap.

16) with non-informative conjugate priors, ,

, and . Here  denotes the inverse
gamma distribution with shape parameter a and scale parameter b.

4. Update  by sampling from the following posterior distribution

where the prior distribution for  is .

3.3 Bayesian Posterior Forecasting
The proposed model is useful to forecast processes of interest, including Uxi(t), Vxi(t) and
Yi(t), for . With the availability of posterior samples for Uxi(t), Vxi(t), ϕi and
σε with i = 1, 2, …, n and , it is straightforward to derive Bayesian posterior
forecasting. Note that the posterior forecasting distributions are,

and

Thus, we draw ,  and  from  and

 for r = 1,2, …, where , ,  and  are the rth posterior
samples from the MCMC algorithm. If [Uxi(t), Vxi(t) | Uxi(tm), Vxi(tm), ϕi, x] does not have a
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closed form, the approximate transition density ≺ Uxi(t), Vxi(t) | Uxi(tm), Vxi(tm), ϕi, x ≻
could be used instead along with data augmentation.

4 Application to the PSA Data
We apply the proposed SSVM-OU to analyze the PSA data discussed in Section 1. The prior
of the rate function Vxi(t) is assumed to be the OU process with

 and b{Vxi(t); xi, ϕi} = σξ in equation (3). A total of
739 observations are obtained for 50 subjects. The number of observations for each subject
varies from 13 to 24. The initial observation for all subjects is at one month (0.083 years)
after EBRT treatment, and the time for the last observation ranges from 3.833 to 8.083
years, with the average of 6.050 years. To reduce the approximation error discussed in
Section 3.1, we further augment the data to let the time interval between adjacent data
points, either observed or augmented, be less than 0.0208 years. The appropriateness of this
choice of time interval is confirmed using the simulation studies in Section 5. We investigate
the association of the pretreatment covariates (i.e. baseline PSA, Gleason score and T-stage)
with the stable PSA rate via the model , where

 is a random effect; XPi denotes the log-transformed baseline PSA for the ith
subject, centered around the mean of 2.3; XGi is equal to 1 if Gleason score is above or equal
to level 7, and is 0 otherwise; XTi takes the value of 1 if T-stage is at level 2 or higher, and is
0 otherwise. We leave out the last observation for each subject as well as the observations
after year 5 as validation data to assess the forecasting ability of the model.

The posterior draws are obtained from the proposed MCMC algorithm with 20,000
iterations, discarding the first 10,000 as the burn-in stage and subsequently saving every
10th draws. The trace plots suggest the algorithm converges fast and mixes well. Table 1
presents the posterior summary statistics for the parameters. Baseline PSA and T-stage are
found to have significant effect on the PSA stable rate. This result suggests that Baseline
PSA and T-stage are predictive of the long term rate of change for PSA, which is in
agreement with the finding by Lieberfarb et al. (2002). Figure 2 displays E[Vxi(t) | Y], the
posterior means of the rate function for each subject (shown as dashed lines), and E[V (t) | Y]
= E[E[Vxi(t) | Y]], the posterior mean of the rate function in the population (shown as a solid
line). It is clear that although the rate function for the population is smooth and may be
specified by a parametric form, the individual rate functions are much more wiggly, vary
significantly across subjects and would be difficult to model parametrically. Figure 3 shows
the posterior means and credible intervals of Uxi(t) for six randomly selected subjects,
including the forecasted Uxi(t) after year 5. Note that the width of the forecasted credible
intervals is comparable to the theoretical results given in Corollary 1.

For comparison, we also analyze the PSA data using smoothing splines and a parametric
linear mixed-effects model(LMM). The model fits are evaluated by the Deviance

Information Criterion (DIC, Speigelhalter et al., 2003). Note that , where the
posterior mean deviance  measures the goodness of fit and the “effective number of
parameters” pD measures the model complexity. According to Speigelhalter et al. (2003),
DIC may be regarded asymptotically as a generalization of the Akaike information criterion
(AIC). Similar to AIC, a smaller value of DIC indicates a better trade-off between the fit to
the data and the complexity of model. We further compare the forecasting ability of these
three models on the validation data points. For the smoothing spline approach, we obtain the
estimates of Vxi(t) from the SSVM-W with a Wiener process as the prior for Vxi(t), where
a{Vxi(t); xi,ϕi} = 0 and b{Vxi(t); xi,ϕi} = σξ in equation (3). As mentioned in Section 2.1, the
estimation of Vxi(t) from this model, is equivalent to estimation by a smoothing spline with a
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common smoothing parameter . The exact transition density in this SSVM-W, is given
by Wecker and Ansley (1983) as

with

and is used in the proposed MCMC algorithm. The forecasting of future observations is
outlined in Section 3.3 for the SSVM-OU and SSVM-Ws. The parametric linear mixed
model is similar to the one given by Proust-Lima et al. (2008),

(12)

where the mean function Uxi(t) consists of three parts: (i) post-therapy level , (ii) short-

term evolution , and (iii) long-term evolution . In addition, f1(t) = (1 + t)−1.5 − 1
and f2(t) = t; the fixed effects

 a non-informative prior

with large value of ; the random effects  where Σν,lmm is

a diagonal matrix with its main diagonal entries ;

measurement error . We further assume noninformative prior

distributions  with small values of a and b for , , , , and 
respectively. The MCMC algorithm for the linear mixed model (Ruppert et al., 2003, Chap.
16) is applied to draw the posterior samples with the same burn-in stage and thinning
scheme as for the MCMC algorithm for the SSVM-OU. Table 1 presents the posterior
summary of the parameters β20, β21, β22, and β23, which are involved in the long-term

evolution  in equation (12). Note that these parameters in the LMM are designed to
measure the association between the long term stable level and the covariates of the interest,
similar to the parameter β0, β1,β2, and β3 in the SSVM-OU. Given the rth samples , 

and , the forecasts of PSA at time t for the ith subject can be drawn from

, where

.
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The values of DIC for SSVM-OU and SSVM-W are 71.809 and 119.400 respectively, both
of which are significantly lower than that of LMM (151.048). Thus, SSVM-OU fits the data
best among these three models. This implies that the parametric LMM is less able to capture
longitudinal dynamics of subject's trajectories than the other two SSVMs. Next, to compare
the prediction capability among these three models, we predict the 164 validation data points
and evaluate their posterior predictive ability. Table 2 presents relative bias and mean
squared error (MSE) of the point forecast based on the posterior mean, as well as
corresponding coverage rate and averaged length of credible interval. For the 69 validation
data points within 1 year distance from the last training data points, the SSVM-OU performs
best, with the smallest MSE. For the remaining validation data points at later times, the
SSVM-W outperforms the other two in terms of relative bias and MSE. However, for the
coverage rate, the SSVM-OU intervals are closest to the nominal 95% level, whereas those
from the SSVM-W are too wide to be clinically useful. This may be due to the nonstationary
variance of the latent process of SSVM-W.

Besides evaluation of the point forecasts and the corresponding credible intervals, we further
use the probability integral transform (PIT, Dawid, 1984; Gneiting et al., 2007) value to
assess the predictive performance of the probabilistic forecasts. This forecast can be
expressed as the posterior predictive cumulative distribution functions (CDFs) Fij(Y), where
Y is the forecasted validation data point at time tij for the ith subject and is assumed to be
generated from the true unknown CDF Gij(Y). For the observed validation data point Yij, the
PIT value pij = Fij(Yij) should have a uniform distribution, if Fij(Y) = Gij(Y) for every i and j.
We estimate Fij(t) by the empirical CDF , which is based on the Bayesian posterior
forecasting draws for the three models. The corresponding smoothed density plots of  are
displayed in Figure 4. The density of  for the SSVM-OU is left skewed, indicating the
forecasts are slightly under predicted, while the density for the linear mixed model is right
skewed and the forecasts are slightly over predicted. The density for the SSVM-W is hump-
shaped, implying the posterior predictive distribution is over dispersed and the credible
intervals are too wide on average. While none of the models gives the ideal PIT plots, the
plots of SSVM-OU and the LMM are reasonably close to a uniform density..

5 A Simulation Study
We carry out a simulation study to (i) assess the performance of the proposed MCMC
algorithm in estimating the model parameters and stable rates  and (ii) compare the
performance of the proposed SSVM-OU with the other two methods for forecasting future
observations. We generate 100 replicated datasets from the SSVM-OU with the model
parameter set close to those estimated from the analysis of the PSA data. Each dataset
includes 20 subjects each with 13 observations and three validation data points per subject.
The observations are equidistantly spaced with time interval 0.416, equal to the median of
time intervals in the PSA data. The three validation data points are at 0.08, 0.5 and 1 years
after the last observation, respectively. To investigate the influence of data augmentation on
the estimation of the model parameters, we analyze the same dataset using the proposed
MCMC algorithm without data augmentation, and with 9 and 19 augmented data points
between the consecutive observed data points. The corresponding time interval between the
adjacent data points, either observed or augmented, decreases from 0.416 in the original
datasets to 0.0416 and 0.0208 for the MCMC algorithm with 9 and 19 augmented data
points between neighboring observations.

Table 3 presents simulation results for the estimation of model parameters, assessed by
relative bias, MSE of posterior means, coverage rate and average length of credible interval.
All results indicate clearly that the data augmentation is critical to obtain proper estimates of
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the second moment parameters, , ,  and ρ. Their relative biases and MSEs decrease
significantly even by adding 9 data points between adjacent observations. For example, the
relative bias of ρ reduces from 0.47 to 0.052 and the MSE drops from 2.704 to 0.0360.
Augmentation with 19 data points can further improve the relative bias in the estimation of

parameters  and ρ, and no additional improvement results from more aggressive
augmentation (the results not shown here). The data augmentation, however, has little effect
on the relative bias for the estimation of parameters of interest, β1, β2 and β3, implying that
the consistent estimation for these parameters may be obtained using observed data. Yet, the
data augmentation has noticeable effects on the coverage rates, because it affects the
variance of posterior distributions.

For the data simulated from the SSVM-OU, we further forecast the validation data points by
the SSVM-OU, SSVM-W and LMM (12). Table 4 compares the forecasting ability of the
posterior mean and credible intervals for the three models, evaluated by the relative bias,
MSE, coverage rate and interval length. As we expected, the relative biases of posterior
means of the forecasting draws from the SSVM-OU are smaller than those from the other
models and the corresponding interval lengths are narrower. Furthermore, it is of interest to
study the sensitivity of the forecasting ability of SSVM-OU. We simulate another 100
datasets from the LMM specified as equation (12) in which the parameters are the same as
those obtained from the PSA data analysis. In addition, the number of subjects, and the
number of observations and the validation data points, are set identical to those used to
generate datasets from the above SSVM-OU. The forecasting results are given in the second
part of Table 4. We find that SSVM-OU has comparable performance to the LMM (for the
short-term forecast at time 0.08), with smaller relative bias but slightly larger MSE and
wider interval length. For the long-term forecast at time 0.5 or 1, SSVM-OU performs worse
than the LMM but is better than SSVM-W.

6 Discussion
This paper considers modeling and inference for the rate functions in longitudinal studies
with an application in the analysis of PSA biomarker profiles. For a given subject, the rate of
change is described by a rate function whose prior is assumed to follow a Gaussian process
conditional on the covariates. A key feature of this approach is that the Gaussian process is
specified by an SDE and is expected to be centered on a pre-specified parametric function,
while allowing significant deviations from this functional expectation nonparametrically.
We have focused on the case where the rate function follows an OU process, motivated by
analyzing PSA profiles. The same modeling strategy and inference method should be widely
useful in the setting when we aim to model the rate function semiparametrically.

One can extend our model to discrete outcomes and to include the covariates in equation (1).
Moreover, a similar modeling and inference approach can be applied to analyze the
acceleration function, which is the second-order derivative of the mean function. In addition,
for simplicity, we assume the stable rates depend on the covariates through a parametric
distribution, which could potentially be replaced by a nonparametric distribution with a
stick-breaking process as its prior.

The MCMC algorithm is currently programmed in R (R Development Core Team, 2008).
For the PSA application with 50 subjects and 225 observed or augmented data points per
subject, it took about 4 hours per 1000 MCMC iterations on a PC with 2.93GHz
Intel(R)Core(TM)2Duo CPU. In contrast, it took about 15 minutes per 1000 MCMC
iterations if the model was fit with only observed data. One way to speed up computation is
to develop a C or C++ program for the proposed method, which is one of our future research
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tasks. Our computation-related experiences have suggested that the computation time is
approximately linearly proportional to the number of subjects. Hence, we anticipate that
with fast computation software this algorithm can be applied to handle studies with
relatively large sample sizes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
PSA plots of (a) the raw data, (b) the empirical rate of change, which is defined as

, for the give subject i with observation Yij at time tij. All profiles are
plotted as the gray solid lines, except one profile highlighted in black color.
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Figure 2.
Posterior means of Vxi(t) for each subject as gray dashed lines and the population-level rate
function V (t) as black solid line
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Figure 3.
Plots of training data points (ο), validation data points (+), posterior means (−) and 95%
credible intervals (gray shades) of Uxi(t) for six randomly selected subjects.
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Figure 4.
PIT density plots for (a) tij ≤ 1 year, (b) tij > 1 year of SSVM-OU (−), SSVM-W (- - -),
LMM (⋯)
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