Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Dec;86(6):2054–2061. doi: 10.1172/JCI114942

Increased hepatic mitochondrial capacity in rats with hydroxy-cobalamin[c-lactam]-induced methylmalonic aciduria.

S Krahenbuhl 1, D B Ray 1, S P Stabler 1, R H Allen 1, E P Brass 1
PMCID: PMC329844  PMID: 1701451

Abstract

Treatment of rats with the vitamin B12 analogue hydroxy-cobalamin[c-lactam] (HCCL) impairs methylmalonyl-CoA mutase function and leads to methylmalonic aciduria due to intracellular accumulation of propionyl and methylmalonyl-CoA. Since accumulation of these acyl-CoAs disrupts normal cellular regulation, the present investigation characterized metabolism in hepatocytes and liver mitochondria from rats treated subcutaneously with HCCL or saline (control) by osmotic minipump. Consistent with decreased methylmalonyl-CoA mutase activity, 14CO2 production from 1-14C-propionate (1 mM) was decreased by 76% and 82% after 2-3 wk and 5-6 wk of HCCL treatment, respectively. In contrast, after 5-6 wk of HCCL treatment, 14CO2 production from 1-14C-pyruvate (10 mM) and 1-14C-palmitate (0.8 mM) were increased by 45% and 49%, respectively. In isolated liver mitochondria, state 3 oxidation rates were unchanged or decreased, and activities of the mitochondrial enzymes, citrate synthetase, succinate dehydrogenase, carnitine palmitoyltransferase, and glutamate dehydrogenase (expressed per milligram mitochondrial protein) were unaffected by HCCL treatment. In contrast, activities of the same enzymes were significantly increased in both liver homogenate (expressed per gram liver) and isolated hepatocytes (expressed per 10(6) cells) from HCCL-treated rats. The mitochondrial protein per gram liver, calculated on the basis of the recovery of the mitochondrial enzymes, increased by 39% in 5-6 wk HCCL-treated rats. Activities of lactate dehydrogenase, catalase, cyanide-insensitive palmitoyl-CoA oxidation, and arylsulfatase A in liver were not affected by HCCL treatment. Hepatic levels of mitochondrial mRNAs were elevated up to 10-fold in HCCL-treated animals as assessed by Northern blot analysis. Thus, HCCL treatment is associated with enhanced mitochondrial oxidative capacity and an increased mitochondrial protein content per gram liver. Increased mitochondrial oxidative capacity may be a compensatory mechanism in response to the metabolic insult induced by HCCL administration.

Full text

PDF
2057

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam P. A., Räihä N., Rahiala E. L., Kekomäki M. Oxidation of glucose and D-B-OH-butyrate by the early human fetal brain. Acta Paediatr Scand. 1975 Jan;64(1):17–24. doi: 10.1111/j.1651-2227.1975.tb04375.x. [DOI] [PubMed] [Google Scholar]
  2. BAUM H., DODGSON K. S., SPENCER B. The assay of arylsulphatases A and B in human urine. Clin Chim Acta. 1959 May;4(3):453–455. doi: 10.1016/0009-8981(59)90119-6. [DOI] [PubMed] [Google Scholar]
  3. BOXER G. E., SHONK C. E., GILFILLAN E. W., EMERSON G. A., OGINSKY E. L. Changes in coenzyme A concentration during vitamin B12 deficiency. Arch Biochem Biophys. 1955 Nov;59(1):24–32. doi: 10.1016/0003-9861(55)90459-8. [DOI] [PubMed] [Google Scholar]
  4. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Binder M., Kolhouse J. F., Van Horne K. C., Allen R. H. High-pressure liquid chromatography of cobalamins and cobalamin analogs. Anal Biochem. 1982 Sep 15;125(2):253–258. doi: 10.1016/0003-2697(82)90003-3. [DOI] [PubMed] [Google Scholar]
  6. Brass E. P., Allen R. H., Ruff L. J., Stabler S. P. Effect of hydroxycobalamin[c-lactam] on propionate and carnitine metabolism in the rat. Biochem J. 1990 Mar 15;266(3):809–815. [PMC free article] [PubMed] [Google Scholar]
  7. Brass E. P., Beyerinck R. A. Effects of propionate and carnitine on the hepatic oxidation of short- and medium-chain-length fatty acids. Biochem J. 1988 Mar 15;250(3):819–825. doi: 10.1042/bj2500819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brass E. P., Beyerinck R. A. Interactions of propionate and carnitine metabolism in isolated rat hepatocytes. Metabolism. 1987 Aug;36(8):781–787. doi: 10.1016/0026-0495(87)90117-x. [DOI] [PubMed] [Google Scholar]
  9. Brass E. P. Effect of alpha-ketobutyrate on palmitic acid and pyruvate metabolism in isolated rat hepatocytes. Biochim Biophys Acta. 1986 Aug 29;888(1):18–24. doi: 10.1016/0167-4889(86)90065-0. [DOI] [PubMed] [Google Scholar]
  10. Brass E. P., Fennessey P. V., Miller L. V. Inhibition of oxidative metabolism by propionic acid and its reversal by carnitine in isolated rat hepatocytes. Biochem J. 1986 May 15;236(1):131–136. doi: 10.1042/bj2360131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brass E. P., Garrity M. J., Robertson R. P. Inhibition of glucagon-stimulated hepatic glycogenolysis by E-series prostaglandins. FEBS Lett. 1984 Apr 24;169(2):293–296. doi: 10.1016/0014-5793(84)80336-1. [DOI] [PubMed] [Google Scholar]
  12. Brass E. P., Stabler S. P. Carnitine metabolism in the vitamin B-12-deficient rat. Biochem J. 1988 Oct 1;255(1):153–159. doi: 10.1042/bj2550153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Brass E. P., Tahiliani A. G., Allen R. H., Stabler S. P. Coenzyme A metabolism in vitamin B-12-deficient rats. J Nutr. 1990 Mar;120(3):290–297. doi: 10.1093/jn/120.3.290. [DOI] [PubMed] [Google Scholar]
  14. COX E. V., WHITE A. M. Methylmalonic acid excretion: an index of vitamin-B12 deficiency. Lancet. 1962 Oct 27;2(7261):853–856. doi: 10.1016/s0140-6736(62)90631-1. [DOI] [PubMed] [Google Scholar]
  15. Cantatore P., Flagella Z., Fracasso F., Lezza A. M., Gadaleta M. N., de Montalvo A. Synthesis and turnover rates of four rat liver mitochondrial RNA species. FEBS Lett. 1987 Mar 9;213(1):144–148. doi: 10.1016/0014-5793(87)81480-1. [DOI] [PubMed] [Google Scholar]
  16. Frenkel E. P., Mukherjee A., Hackenbrock C. R., Srere P. A. Biochemical and ultrastructural hepatic changes during vitamin B12 deficiency in animals and man. J Biol Chem. 1976 Apr 10;251(7):2147–2154. [PubMed] [Google Scholar]
  17. Frenkel E. P., White J. D. Characterization of an animal model of vitamin B12 deprivation. Lab Invest. 1973 Dec;29(6):614–619. [PubMed] [Google Scholar]
  18. Fringes B., Reith A. Time course of peroxisome biogenesis during adaptation to mild hyperthyroidism in rat liver: a morphometric/stereologic study by electron microscopy. Lab Invest. 1982 Jul;47(1):19–26. [PubMed] [Google Scholar]
  19. Gear A. R., Albert A. D., Bednarek J. M. The effect of the hypocholesterolemic drug clofibrate on liver mitochondrial biogenesis. A role for neutral mitochondrial proteases. J Biol Chem. 1974 Oct 25;249(20):6495–6504. [PubMed] [Google Scholar]
  20. Glasgow A. M., Chase H. P. Effect of propionic acid on fatty acid oxidation and ureagenesis. Pediatr Res. 1976 Jul;10(7):683–686. doi: 10.1203/00006450-197607000-00010. [DOI] [PubMed] [Google Scholar]
  21. Gray T. J., Lake B. G., Beamand J. A., Foster J. R., Gangolli S. D. Peroxisome proliferation in primary cultures of rat hepatocytes. Toxicol Appl Pharmacol. 1983 Jan;67(1):15–25. doi: 10.1016/0041-008x(83)90240-5. [DOI] [PubMed] [Google Scholar]
  22. Haller R. G., Lewis S. F., Estabrook R. W., DiMauro S., Servidei S., Foster D. W. Exercise intolerance, lactic acidosis, and abnormal cardiopulmonary regulation in exercise associated with adult skeletal muscle cytochrome c oxidase deficiency. J Clin Invest. 1989 Jul;84(1):155–161. doi: 10.1172/JCI114135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hayasaka K., Takahashi I., Kobayashi Y., Iinuma K., Narisawa K., Tada K. Effects of valproate on biogenesis and function of liver mitochondria. Neurology. 1986 Mar;36(3):351–356. doi: 10.1212/wnl.36.3.351. [DOI] [PubMed] [Google Scholar]
  24. Hayes D. J., Lecky B. R., Landon D. N., Morgan-Hughes J. A., Clark J. B. A new mitochondrial myopathy. Biochemical studies revealing a deficiency in the cytochrome b-c1 complex (complex III) of the respiratory chain. Brain. 1984 Dec;107(Pt 4):1165–1177. doi: 10.1093/brain/107.4.1165. [DOI] [PubMed] [Google Scholar]
  25. Hoppel C. L., Kerr D. S., Dahms B., Roessmann U. Deficiency of the reduced nicotinamide adenine dinucleotide dehydrogenase component of complex I of mitochondrial electron transport. Fatal infantile lactic acidosis and hypermetabolism with skeletal-cardiac myopathy and encephalopathy. J Clin Invest. 1987 Jul;80(1):71–77. doi: 10.1172/JCI113066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hoppel C. L., Tomec R. J. Carnitine palmityltransferase. Location of two enzymatic activities in rat liver mitochondria. J Biol Chem. 1972 Feb 10;247(3):832–841. [PubMed] [Google Scholar]
  27. Hoppel C., Cooper C. The action of digitonin on rat liver mitochondria. The effects on enzyme content. Biochem J. 1968 Apr;107(3):367–375. doi: 10.1042/bj1070367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hoppel C., DiMarco J. P., Tandler B. Riboflavin and rat hepatic cell structure and function. Mitochondrial oxidative metabolism in deficiency states. J Biol Chem. 1979 May 25;254(10):4164–4170. [PubMed] [Google Scholar]
  29. Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Martin-Requero A., Corkey B. E., Cerdan S., Walajtys-Rode E., Parrilla R. L., Williamson J. R. Interactions between alpha-ketoisovalerate metabolism and the pathways of gluconeogenesis and urea synthesis in isolated hepatocytes. J Biol Chem. 1983 Mar 25;258(6):3673–3681. [PubMed] [Google Scholar]
  31. Mutvei A., Kuzela S., Nelson B. D. Control of mitochondrial transcription by thyroid hormone. Eur J Biochem. 1989 Mar 1;180(1):235–240. doi: 10.1111/j.1432-1033.1989.tb14638.x. [DOI] [PubMed] [Google Scholar]
  32. Pilkis S. J., el-Maghrabi M. R., Claus T. H. Hormonal regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Biochem. 1988;57:755–783. doi: 10.1146/annurev.bi.57.070188.003543. [DOI] [PubMed] [Google Scholar]
  33. Ray D. B., Jansen R. W., Horst I. A., Mills N. C., Kowal J. A complex noncoordinate regulation of alpha-lactalbumin and 25 K beta-casein by corticosterone, prolactin, and insulin in long term cultures of normal rat mammary cells. Endocrinology. 1986 Jan;118(1):393–407. doi: 10.1210/endo-118-1-393. [DOI] [PubMed] [Google Scholar]
  34. Stabler S. P., Marcell P. D., Podell E. R., Allen R. H., Lindenbaum J. Assay of methylmalonic acid in the serum of patients with cobalamin deficiency using capillary gas chromatography-mass spectrometry. J Clin Invest. 1986 May;77(5):1606–1612. doi: 10.1172/JCI112476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Walajtys-Rode E., Williamson J. R. Effects of branched chain alpha-ketoacids on the metabolism of isolated rat liver cells. III. Interactions with pyruvate dehydrogenase. J Biol Chem. 1980 Jan 25;255(2):413–418. [PubMed] [Google Scholar]
  36. Ziegler H. J., Bruckner P., Binon F. O-acylation of dl-carnitine chloride. J Org Chem. 1967 Dec;32(12):3989–3991. doi: 10.1021/jo01287a057. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES