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SUMMARY
The Core Binding Factor (CBF) acute myeloid leukemias (AMLs) are a prognostically distinct
subgroup that includes patients with the inv(16) and t(8:21) chromosomal rearrangements. Both of
these rearrangements result in the formation of fusion proteins, CBFB-MYH11 and AML1-ETO
respectively, that involve members of the CBF family of transcription factors. It has been
proposed that both of these fusion proteins function primarily by dominantly repressing normal
CBF transcription. However, recent reports have indicted that additional, CBF-repression
independent activities may be equally important during leukemogenesis. This article will focus on
these recent advances.
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INTRODUCTION
The CBF family is composed of four proteins, the 3 α subunits, RUNX1 (AML1, Cbfa2),
RUNX2 (Cbfα1), and RUNX3 (Cbfα3) [Ogawa et al., 1993b], and the single β subunit,
CBFβ [Ogawa et al., 1993a; Wang et al., 1993]. Disruptions of both CBFβ and RUNX1 are
associated with acute myeloid leukemia (AML). CBFβ is involved in the recurrent
chromosomal abnormality inv(16)(p13q22) as well as the less common t(16;16)(p13q22)
translocation, both of which create a fusion between the CBFB gene on 16q22, and MYH11
on 16p13, the gene that encodes smooth muscle myosin heavy chain (SMMHC) [Liu et al.,
1993]. The resulting CBFB-MYH11 fusion gene, which encodes the oncoprotein CBFβ-
SMMHC, is found in nearly all patients with French-American-British (FAB) classification
subtype M4 with eosinophilia (M4Eo) AML [Le Beau et al., 1983; Liu et al., 1995]. RUNX1
is involved in the t(8;21) translocation that results in a fusion between RUNX1 and the gene
for an E-box family protein, ETO (RUNX1T1, MTG8), to generate AML1-ETO (RUNX1-
RUNX1T1)[Erickson et al., 1992], which is associated with AML subtype M2 [Rowley,
1973]. Together, the inv(16)(p13q22) and t(8:21) translocations account for approximately
20–25% of adult AML [Speck and Gilliland, 2002], making RUNX1 and CBFB the most
commonly targeted genes in human AML. In addition, point mutations in RUNX1 have been
found in families with a familial platelet disorder with predisposition to AML [Minelli et al.,
2004; Osato, 2004] and in patients with de novo AML, particularly among those with
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subtype M0 [Osato, 2004; Roumier et al., 2003]. Gene expression profiling also indicates
that RUNX1 inactivation is associated with a distinct M0 subgroup [Silva et al., 2009; Tang
et al., 2009].

CBFβ and RUNX1 form a heterodimer and together they bind to the consensus TGTGGT
DNA sequence and regulate gene expression. The RUNX1 protein contains a conserved
RUNT homology domain (RHD), which is responsible for binding DNA and CBFβ [Speck
and Gilliland, 2002]. CBFβ does not bind DNA directly, but stabilizes the RUNX1-DNA
interaction allosterically [Tang et al., 2000] and protects RUNX1 from ubiquitination and
degradation [Huang et al., 2001]. Both RUNX1 and CBFβ are master regulators of definitive
hematopoiesis.

It is thought that both CBFβ-SMMHC and AML1-ETO function by dominantly repressing
normal CBFβ/RUNX1 heterodimer activity. Based on this model of dominant repression,
the development of new therapies for CBF leukemias has focused on disrupting this activity.
However, recent work indicates that these fusion proteins may have gain of function
activities as well, which could represent additional targets for future drug discovery. In this
article we will review the relevant literature establishing the dominant negative model, as
well as highlight recent reports that challenge this model.

MECHANISMS OF CBFβ-SMMHC INDUCED LEUKEMOGENESIS
Initial studies of Cbfb-MYH11 in mice suggest a dominant repression model. Mice
heterozygous for a knocked-in Cbfb-MYH11 fusion allele (Cbfb+/MYH11) have a nearly
identical phenotype [Castilla et al., 1996] as mice null for either Cbfb (Cbfb−/−) or Runx1
(Runx1−/−) [Niki et al., 1997; Okada et al., 1998; Okuda et al., 1996; Sasaki et al., 1996;
Wang et al., 1996a; Wang et al., 1996b], which includes embryonic lethality from massive
hemorrhaging and a complete block in definitive hematopoiesis. Subsequent in vitro studies
indicate that the fusion protein CBFβ-SMMHC has a higher affinity for RUNX1 than
endogenous CBFβ [Lukasik et al., 2002]. The N-terminus of the fusion protein retains the
RUNX1 dimerazation residues from CBFβ, but CBFβ-SMMHC also contains a second
RUNX1 high-affinity binding domain (HABD) located at the proximal end of SMMHC
[Lukasik et al., 2002] (Figure 1A). As a result, CBFβ-SMMHC binds RUNX1 at two sites,
and can outcompete CBFβ for RUNX1 binding. After preferentially binding RUNX1, it has
been proposed that CBFβ-SMMHC represses RUNX1 transactivation by a number of
different mechanisms, including sequestration to the cytoplasm [Adya et al., 1998], and
recruitment of transcriptional repressors by the SMMHC tail [Lutterbach et al., 1999].

The HABD is predicted to be important for leukemogenesis by CBFβ-SMMHC if dominant
repression of RUNX1/CBFβ is a critical step for leukemia development. To test this
hypothesis, we generated knockin mice expressing a mutant Cbfb-MYH11 allele (Cbfb-
MYH11d179-221, expressing CBFβ-SMMHCd179-221, Figure 1B) in which the HABD (aa
179–221) is deleted (Kamikubo, et al. manuscript under review after revision). As expected,
this allele had reduced repression of CBFβ/RUNX1 functions as evidenced by in vitro
studies as well as partial rescue of the embryonic lethality and definitive hematopoiesis
blockage phenotypes in the Cbfb+/MYH11

d179-221 embryos. Surprisingly, the decreased
repression of Runx1 did not correlate with reduced or delayed leukemogenesis. Mice
carrying the Cbfb-MYH11d179-221 allele developed leukemia faster than those expressing full
length Cbfb-MYH11. Furthermore, we found that expression of Cbfb-MYH11d179-221
induced clonal expansion of human CD34+ cells with a similar efficiency as full length
Cbfb-MYH11. Taken together, these results indicate that the HABD in CBFβ-SMMHC is
not required for leukemogenesis, implying that dominant repression of RUNX1 may not be
as central to CBFβ-SMMHC’s oncogenic activity as previously believed.
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Consistent with these findings is the observation that the so-called type I CBFβ-MYH11
fusion, detected in a small percentage of inv(16) AML patients, produces a CBFβ-SMMHC
fusion protein that lacks the HABD and a significant portion of the C-terminal segment of
CBFβ (Figure 1C) [Dissing et al., 1998; Van der Reijden et al., 2001]. Consequently, the
type I fusion protein has very low binding affinity for RUNX1 (Kamikubo, et al. manuscript
under review after revision). The clinical course and the characteristics of leukemia with the
type I fusion are indistinguishable from those with longer forms of the fusion protein, further
indicating that dominant repression of RUNX1 is not strictly required for CBFβ-SMMHC to
induce leukemia.

A corollary implication of this conclusion is that CBFβ-SMMHC has activities not directly
related to RUNX1 repression. In fact, we have recently shown that, in primitive blood cells,
which are mostly nucleated erythrocytes that arise from the initial wave of embryonic
hematopoiesis, Cbfb-MYH11 blocks differentiation through a Cbfb/Runx1-repression
independent mechanism [Hyde et al., 2009]. Primitive blood cells from Cbfb+/MYH11

embryos have the histological appearance of more immature precursor cells [Castilla et al.,
1996], as well as continued expression of genes associated with early progenitor or stem
cells, as detected by microarray analysis [Hyde et al., 2009]. Primitive blood cells from
neither Cbfb−/− nor Runx1−/− embryos showed significant differentiation defects, indicating
that loss of Cbfb/Runx1 activity is not responsible for the Cbfb-MYH11 induced block in
differentiation. Therefore, the fusion gene must have additional, gain of function activities.

Interestingly, many of the genes whose expression was deregulated in the Cbfb+/MYH11

embryos via this novel activity were also found expressed in leukemic cells from mice and
humans. In the case of the mouse leukemias, this gene set was expressed equally in cells
from mice with the full length Cbfb-MYH11 allele or the Cbfb-MYH11d179-221 deletion
mutant (RKH, YK, PPL, unpublished results). This finding implies that the Cbfβ/Runx1
repression independent activity described during primitive hematopoiesis is likely involved
in Cbfb-MYH11 induced leukemogenesis as well.

The mechanism for this novel activity can only be speculated at present. One hypothesis is
that CBFβ-SMMHC binds RUNX1, but does not repress its activity. Rather, perhaps
through the recruitment of co-factors by the SMMHC tail, the fusion protein changes
RUNX1 target gene specificity or transactivation ability. A second possibility is that CBFβ-
SMMHC has activities that are completely independent of RUNX1 association, probably
mediated by the SMMHC tail. Little is known about the interactions of the SMMHC tail in
vivo, and it is conceivable that as yet unknown factors interact with CBFβ-SMMHC and
contribute to leukemogenesis.

While the above described observation indicate that CBFβ-SMMHC has important
oncogenic activities independent of RUNX1 repression, it should not be concluded that
inactivation of the CBFβ/RUNX1 heterodimer does not also contribute to leukemogenesis.
Mice with one Cbfb-MYH11 knockin allele, and one Cbfb null allele (Cbfb−/MYH11) show
accelerated development of leukemia as compared to Cbfb+/MYH11 mice [Heilman et al.,
2006]. On the other hand, Cbfb-MYH11 knockin mice with Runx1 mutations developed
leukemia at rates inversely correlating with the severity of Runx1 loss (Ling Zhao and PPL,
unpublished results). A possible interpretation of these findings is that CBFβ-SMMHC
competes with CBFβ for leukemogenesis while partial inhibition of RUNX1 is more
leukemogenic than complete RUNX1 inhibition. Of note PU.1 contribution to
leukemogenesis is similarly dose dependent; mice carrying hypomorphic alleles of Pu.1
with reduced expression (20% of normal) developed AML rapidly and efficiently, while
mice with homo- or heterozygous deletion of Pu.1 did not develop leukemia [Rosenbauer et
al., 2004]. At present, it is not possible to weigh the relative importance of the CBF-
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repression dependent and independent activities. It seems likely that both pathways
contribute substantially to the oncogenic effects of CBFβ-SMMHC, and consequently, could
be important targets for the development of new treatments for inv(16)+ leukemia.

MECHANISMS OF AML1-ETO INDUCED LEUKEMOGENESIS
The fusion protein resulting from the t(8;21) translocation, AML1-ETO, contains the N-
terminal region of RUNX1 which includes the DNA and CBFβ binding runt homology
domain (RHD), joined to nearly the entire ETO protein (Figure 2A). ETO is a member of
the E-box family of transcriptional factors, and contains four conserved Nervy Homology
Regions (NHR). The ETO NHR domains have been shown to interact with a number of
transcriptional repressors, including N-CoR, SMRT, Sin3A, and HDAC1-3 [Peterson and
Zhang, 2004]. Based on the structure of the AML1-ETO protein, it has been proposed that it
functions through repression of RUNX1 target genes. Because the fusion protein retains the
intact RHD, it was originally presumed to share many of the same target genes as the
endogenous RUNX1. However, due to the NHR domains of the ETO portion, AML1-ETO
has been considered a transcriptional repressor rather than an activator. Consistent with this
model, it has been shown that AML1-ETO represses expression of the tumor suppressor
p14ARF, which is normally activated by RUNX1 [Linggi et al., 2002]. Through recruitment
of chromatin remodeling proteins, AML1-ETO has also been shown to repress expression of
the microRNA miR-223, a potential effecter of the AML1-ETO induced block in
differentiation [Fazi et al., 2007]. In addition, as in the case of CBFβ-SMMHC, mice
expressing a knockin allele of AML1-ETO [Okuda et al., 1998; Yergeau et al., 1997] have
the same phenotype of embryonic lethality and block in definitive hematopoiesis as the
Runx1−/− and Cbfb−/− mice [Niki et al., 1997; Okada et al., 1998; Okuda et al., 1996; Sasaki
et al., 1996; Wang et al., 1996a; Wang et al., 1996b], which is consistent with RUNX1-ETO
having dominant repressor activities.

Despite the attractiveness of this model, there is increasing evidence that AML-ETO
mediated leukemogenesis is more complex than simple repression of RUNX1 target genes.
AML1-ETO has also been shown to effect activation of some target genes, such as p21
[Peterson et al., 2007b], BCL-2 [Klampfer et al., 1996] and the differentiation blocking
microRNA, miR-24 [Zaidi et al., 2009], as well as regulate genes that are not targets of
endogenous CBFβ/RUNX1 [Gardini et al., 2008; Shimada et al., 2000]. Consistent with
these findings, it has been demonstrated that AML1-ETO, but not RUNX1, preferentially
binds promoters with duplicated RUNX1 consensus sites [Okumura et al., 2008]. In
addition, immunoflourescent staining of Kasumi-1 cells, a cell line derived from an AML1-
ETO+ AML patient, shows that RUNX1 and AML1-ETO are associated with different
chromosomal regions [Bakshi et al., 2008], implying that AML1-ETO regulates different
target genes than RUNX1.

Given these findings, it is perhaps not surprising that multiple studies have shown that DNA
binding by AML1-ETO is required for leukemogenesis [Kwok et al., 2009; Roudaia et al.,
2009; Yan et al., 2009]. However, whether interaction with CBFβ is also required has yet to
be resolved. Using in vitro techniques, Matheny et al [Matheny et al., 2007], identified point
mutations in AML1-ETO (Y113A and T161A) that specifically disrupted CBFβ binding
without affecting DNA binding. These point mutants were combined, expressed in mouse
bone marrow cells, and transplanted into recipient mice. Unlike the wildtype AML1-ETO,
the mutant AML1-ETO (Y113A/T161A) did not induce leukemia in cooperation with TEL-
PDGFβR [Roudaia et al., 2009], indicating that CBFβ binding is required for
leukemogenesis.
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In contrast, Kwok et al [Kwok et al., 2009], tested two different point mutants of AML1-
ETO (M106V and A107T) that by immunoprecipitation and western blot, showed severely
reduced CBFβ binding. These constructs, when expressed in mouse hematopoietic cells,
retained serial replating ability, similar to the wildtype AML1-ETO. In addition, they found
that knockdown of Cbfb by short hairpin RNA (shRNA) did not effect AML-ETO’s serial
replating ability. From these results, the authors concluded that interaction with CBFβ is
dispensable for AML-ETO’s leukemogenic activity.

One possible explanation for these contradictory results is that serial replating ability may
not precisely correlate with leukemogenic potential. CBFβ binding may not be required for
the former, but still required for the latter. In addition, it may be that AML-ETO can
function properly with a very minimal amount of CBFβ binding. The M106V and A107T
mutants [Kwok et al., 2009] may weakly associate with Cbfβ, such that it was barely
detectable by immunoprecipitation [Fig 1D, in Kwok et al., 2009], but would be enough to
stabilize AML1-ETO’s DNA binding. Follow up studies by Park et al are consistent with
this possibility [Park et al., 2009]. Similarly, shRNA knockdown of Cbfβ may not have been
complete, and the remaining CBFβ contributed to the serial replating activity. Further
experimentation will be needed to clarify the role of CBFβ in leukemia induction by AML1-
ETO. Because this interaction has been proposed as a target for the development of new
therapies, resolution of this issue could have important consequences.

AML1-ETO repression of RUNX1 target gene expression has also been questioned by
recent findings indicating that recruitment of co-repressors by the ETO domain may not be
required for leukemogenesis. Deletion mutants of the ETO co-repressor binding NHR
domains have shown that NHR1, 3, and 4 are dispensable for leukemogenesis [Kwok et al.,
2009; Yan et al., 2009]. In addition, it has been shown that loss of NHR3 and 4 either in a
truncation mutation (Figure 2B) [Yan et al., 2004] or in a naturally occurring splice isoform
(AML1-ETO9a) (Figure 2C) [Yan et al., 2006] results in accelerated leukemogenesis. These
findings indicate that, rather than contributing to leukemogenesis, NHR3 and 4 actually
inhibit the oncogenic activity of AML-ETO.

These findings raise interesting questions as to the relevance of the multiple other AML-
ETO isoforms expressed in patient samples. In addition to the AML1-ETO9a isoform
described above, nine other isoforms have been described in patients or cell lines [Peterson
et al., 2007a]. Often, multiple isoforms are found in a single sample. It will be interesting to
determine the relative leukemic potential of the various isoforms, and if their differential
expression has any correlation with prognosis.

MECHANISTIC HINTS FROM POINT MUTATIONS IN RUNX1
To date, much of the research on CBF leukemias has centered on the assumption that
RUNX1 directly binds the promoters of target genes in order to regulate their expression.
However, there is increasing evidence that RUNX1 has DNA binding-independent
activities. In some instances, RUNX1 may be recruited to the promoters of target genes
through protein:protein interactions with other transcription factors [Pabst et al., 2001;
Wheeler et al., 2002]. Recently, Cammenga et al [Cammenga et al., 2007] reported that
point mutations in the RHD of RUNX1 found in patients with AML subtype M0 led to a
gain of function activity for the RUNX1 protein. When these RHD mutants, which are not
capable of binding DNA, were expressed in murine bone marrow (BM) cells, they led to an
increase in serial replating efficiency and the accumulation of cells with a blast like
morphology, similar to that seen with AML1-ETO. Interestingly, it was found that CBFβ
interaction was not required for this activity. Although loss of RUNX1 had similar effects on
serial replating as expression of the RHD mutants, it did not readily lead to immortalization
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of BM cells, indicating that the RHD mutants have a gain of function activity through a
DNA-binding independent mechanism. From these observations, the authors argue that
normal hematopoiesis requires a balance between RUNX1’s DNA binding dependent and
independent activities, and that disruption of this balance leads to leukemogenesis.

This model could potentially apply to both CBFβ-SMMHC and AML1-ETO. In the case of
AML1-ETO, it is clear that binding DNA is required for its leukemic activity [Kwok et al.,
2009; Roudaia et al., 2009; Yan et al., 2009]. However, it is not known if the fusion protein
affects RUNX1’s DNA binding independent functions, thus upsetting the balance between
the two activities. Interestingly, it was recently shown by chromatin immunoprecipitation
that AML1-ETO is associated with promoters lacking a known RUNX1 binding site, but
enriched for sites of other hematopoiesis related transcription factors [Gardini et al., 2008].
This finding is consistent with the possibility that AML1-ETO can form complexes with
other transcription factors that provide the DNA binding activity and target gene specificity.

FINAL THOUGHTS
With the development of imatinib for the treatment of chronic myeloid leukemia (CML) in
patients with the BCR-ABL translocation [Druker et al., 2001a; Druker et al., 2001b; Druker
et al., 1996], much attention has been focused on the development of drugs that specifically
target the fusion proteins arising from other recurrent chromosomal abnormalities. However,
the development of such drugs depends on a clear understanding of the molecular
mechanisms of these oncogenes. In the case of the CBF leukemias, recent findings have
indicated that the activity of these fusion proteins is more complex than originally thought.
Both CBFβ-SMMHC and AML1-ETO appear to repress transcription of some CBFβ/
RUNX1 target genes, but also activate transcription of an alternate set of target genes. The
identity of the genes in this alternate set, as well as the co-factors involved in activating their
transcription have yet to be determined. However, this line of inquiry promises to yield
important insights into the oncogenic mechanism of both fusion proteins, and ultimately, the
development of new therapies for inv(16) and t(8:21) leukemia.
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Figure 1. Diagrammatic representation of CBFβ-SMMHC variants
Schematic of (A) full length CBFβ-SMMHC, (B) the CBFβ-SMMHCd179-221 deletion
mutant, and (C) the Type I CBFβ-SMMHC fusion. The CBFβ and SMMHC are represented
as black and white boxes, respectively. The high affinity binding domain (HABD) is
indicated.
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Figure 2. Diagrammatic representation of AML1-ETO constructs
Schematic of (A) full length AML1-ETO, (B) the AML1-ETOtr truncation mutant, and (C)
the naturally occurring AML1-ETO9a isoform. The RUNX1 and ETO domains are
represented as black and white boxes, respectively. The RUNT homology domain (RHD)
and Nervy homology regions (NHR) are indicated.
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