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We present a new definition of the transition state for chemical reactions, named the χ1 separatrix.
In contrast to previous transition state definitions which depend on the choice of reaction coordi-
nates, the χ1 separatrix is defined by choosing a time scale for observation and is connected to
exact rate constants in the high friction limit. We demonstrate that this separatrix appears in the iso-
merization of alanine dipeptide as a stationary population in quasi-equilibrium, without assuming a
particular coordinate system or reactant and product surfaces. © 2011 American Institute of Physics.
[doi:10.1063/1.3610957]

I. INTRODUCTION

The fundamental assumption in the theory of simple
chemical reactions is that a separation of time scales exists
such that molecular states within the reactants (or products)
transform between each other rapidly, while transformations
between the reactant and product states occur at the much
slower reaction rate. For classical systems, the source of this
separation of time scales arises strictly from the dynamics of
the system, determined by the complete Hamiltonian; how-
ever, it can be largely understood in terms of the existence of
a transition state, or separatrix dividing the system’s confor-
mational space into reactant and product states.

The explicit definition of the transition state separatrix is
prerequisite to elucidating the relation between the transition
state and reaction rate, and for designing methods to locate
the transition state. It is important to stress that implicit in
all transition state definitions is the assumption that there is a
separation of time scales so that a single reaction rate constant
is appropriate to describe the transition. Modern definitions of
the transition state have origins in the classical transition state
theory (TST).1 In TST, it is assumed there are two low energy
regions in configuration space, corresponding to the reactant
and product states; the transition state is then defined as the
saddle point along the minimum energy path connecting the
two low energy regions. By assuming trajectories crossing the
transition state do not recross, a close upper bound to the reac-
tion rate could then be determined from the equilibrium flux
through a surface crossing the energetic saddle point and nor-
mal to the unstable directions in the energy surface.

Although the classical transition state was well defined
and proved adequate for many simple chemical reactions, the
upper bound for the rate can be significantly improved by se-
lecting a surface with minimal equilibrium flux. In theory,
there exists a best dividing surface separating preselected re-
actant and product configurations independent of any choice
of reaction coordinates.2, 3 In practice, one chooses the best
dividing surface from among a set parametrized by a reac-
tion coordinate. Theories based on this idea are known col-
lectively as variational transition state theories (VTSTs).4, 5 In
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VTSTs, one identifies the reactants and products as the low
free energy regions in the reaction coordinate, and the transi-
tion state with the fixed value of the coordinate between the
reactant and product maximizing the free energy.

The success of VTSTs depends strongly on a priori
knowledge of a “good” reaction coordinate, but VTSTs gen-
erally do not propose a means for defining a good coordinate.
However, when a good definition of reactant and product vol-
umes are known, one can define an ideal coordinate describ-
ing the motion between the surfaces as the splitting proba-
bility for a trajectory initiated from a particular configuration
in the full configuration space to reach either the reactant or
product surface first.6–8 Each probability to reach the product
surface first defines an iso-committor surface corresponding
to all the configurations with same probability. In the proper
context, the iso-committor coordinate can be connected to
exact rates between preselected configuration volumes.6 A
new definition for the transition state can be given by the
equi-committor surface, defined by the configuration of points
which have equal splitting probabilities.8–10 It is important to
note that the rate obtained by considering the equi-committor
surface as the dividing surface is not necessarily the rate pro-
vided by the iso-committor approach with the theoretical scaf-
fold of transition path theory. A method based on time-series
analysis has been proposed that is equivalent to iso-committor
transition state but cheaper in computational cost.11, 12 It is ex-
pected that a good definition of the VTST transition state will
comprise states with nearly equal splitting probabilities.8–10

The definition of the transition state as the equi-committor has
received criticism due to the fact that it does not necessarily
locate the peak in the free energy when there are intermedi-
ates in the reaction.13 Additionally, we find that identifying
reactant and product surfaces as free energy minima in one
coordinate system does not lead to nearly equal splitting prob-
abilities on the equi-committor in another coordinate system
(as discussed in detail below).

In the following, we propose an alternative definition of
the transition state, named the “χ1 separatrix,” dependent
only on the dynamics in the relaxation to equilibrium on a
given time scale; this definition does not involve any a priori
choice of reaction coordinate nor the identification of ansatz
reactant and product surfaces. The techniques used here to
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locate the χ1 separatrix are computationally expensive; our
present intention is only to express the soundness of this idea,
and in the future, more efficient techniques for its location will
be explored.

We find that this definition of transition state is exactly re-
lated to the relaxation rate of the reaction in the high friction
limit. To describe the χ1 separatrix, we first present the the-
oretical basis of our approach, we demonstrate a set of prop-
erties that make it a good transition state, and then apply it to
locate the transition state in a test system, the isomerization
dynamics of all-atom alanine dipeptide in vacuum. We pos-
tulate that the χ1 separatrix is a necessary dividing surface
for “good” reactant and product volumes for iso-committor
coordinates.

II. DEFINITION OF THE χ1 SEPARATRIX

In systems with a separation of time scales, we define
the χ1 separatrix as the ensemble of system’s configurations
on which the first non-trivial eigenfunction of the Fokker-
Planck operator is zero. In practice, this means that the time
dependent population on this surface is static after the reactant
and product have reached quasi-equilibrium. The theoretical
justification for this definition is provided in the rest of this
section.

We focus on systems described by the coordinates {q}
and associated momenta {p}, with Hamiltonian H(q, p), and
for which the dynamics at a given temperature T are governed
by the Langevin equation,

∂q

∂t
= ∂H

∂p

∂p

∂t
= −∂H

∂q
− γp +

√
2T γ η(t), (1)

that is, we consider reactions where quantum effects are not
relevant (as usually assumed in macromolecular dynamics).
In Eq. (1), we have set the Boltzmann constant kB = 1, γ is
the friction constant, η(t) is a Gaussian white noise with unit
variance, and t is the time variable. In the high friction, ther-
modynamic limit of identical such systems, the evolution of
the population distribution, P (q, t) is governed by the Fokker-
Planck equation (FPE),14

∂P

∂t
= −HFPP, (2)

where the Fokker-Planck operator is

HFP = ∂

∂q

(
T

∂

∂q
+ ∂H

∂q

)
. (3)

Because the Fokker-Planck operator is Hermitizable, it has
bi-orthogonal eigenfunctions satisfying

HFPψi = λiψi (4)

and ∫
eEβψiψj dV = δij , (5)

where E is the potential energy, β is the inverse temperature,
and the integral is over the whole configuration space.

In terms of the Fokker-Planck eigenfunctions, the time
dependent population density can be written as

P (q, t) =
∑

i

ciψi(q)e−λi t , (6)

where the expansion coefficients are determined by the initial
conditions by

ci =
∫

eβEψi(q)P (q, 0) dV. (7)

We assume that the system is closed, so that trajec-
tories remain in the relevant configuration space. This as-
sumption is tantamount to the condition P (q, t) → 0 and
e−βE∇(eβEP (q, t)) → 0 at the boundary of the configura-
tion space. Under these conditions, the Fokker-Planck op-
erator has an eigenspectrum of non-negative eigenvalues λi

with λ0 = 0 < λ1 ≤ λ2 ≤ . . ., and corresponding eigenfunc-
tions ψi(q). In particular, there is a unique eigenfunction with
eigenvalue λ0 = 0, proportional to the Boltzmann distribu-
tion: ψ0 ∝ e−βE . All other eigenfunctions satisfy

∫
ψi dV

= 0. For convenience, we choose to normalize ψ0 such that∫
P (q, t) dV = 1, resulting in ψ0 = e−βE/

√
Z, where Z is

the canonical partition function. In the following, we denote
the smallest non-zero eigenvalue as λ1, and ψ1 its correspond-
ing eigenfunction.

For systems with a separation of time scales, where one
slow process dominates the reaction, there exists a unique
eigenfunction with eigenvalue λ1; for these systems we de-
fine the χ1 transition state as the separatrix in configuration
space where ψ1(q) = 0. We show in Sec. III that this surface
possesses a set of properties that make it a good transition
state separatrix.

We note that this definition of the transition state depends
only on assumptions common to all systems governed by the
Langevin equation in the high friction limit, with no addi-
tional assumptions about reaction coordinates or a priori de-
scriptions of reactant and product states. The transition state
emerges directly from the Hamiltonian of the system.

There are (multiple) roots to the eigenfunctions with
eigenvalues λi > λ1, and we could refer to them as χ2, χ3,

etc. separatrices. These separatrices become relevant when,
for instance, there is a long lived intermediate (λ2 ≈ λ1). In
that case, it no longer makes sense to speak about a phe-
nomenological reaction rate,15 and it would become neces-
sary to incorporate the χ2 separatrices into our description of
the reaction and reaction rate calculations. For example, in the
case of an intermediate, we expect that there are two χ2 sep-
aratrices dividing the intermediate state from the reactant and
product. This problem is not particular to the χ1 separatrix,
but rather in the appropriateness of describing the time de-
pendence of a reaction by a single rate constant calculated by
any theory. Although we require a separation of time scales
(λ2 � λ1) in order for the χ1 separatrix to be related to the
reaction rate of the system, this assumption is not unique to
this theory and is in fact implicitly assumed when using clas-
sical transition states to calculate a reaction rate. At present,
there are no practical methods for making certain a priori
that a separation of time scales exists. In order to verify the
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existence of a separation of time scales, one must observe the
dynamics of the system explicitly, or simply assume only two
dominant basins exist (as in VTST). In Appendix D, we ex-
press the breakdown of the separation of time scales analyti-
cally through Fokker-Planck eigenfunctions in the context of
the reactive flux method. When multiple time scales are rel-
evant to a reaction, the χ1 separatrix will correspond to the
slowest time scale.

Higher order separatrices also play a subtle role in our as-
sumption that the system under consideration is closed. That
is, we assumed that no trajectories escape the relevant volume
of configuration space during the time scale of observation.
In fact, in our observation of the c7 to c5 isomerization of ala-
nine dipeptide presented below, we assume that the reaction is
closed to trajectories exiting to other regions of the conforma-
tional space (such as the Cax and D-amino isomers, that can be
populated on much longer time scales16). As a consequence,
the observed separatrix could be considered a χ2 or χ3 sepa-
ratrix. The ability to observe the c7 to c5 isomerization as if
it was a χ1 separatrix emphasizes the robustness of this per-
spective in terms of its ability to characterize transition states
for succeeding steps in a reaction.

III. PROPERTIES OF THE χ1 SEPARATRIX

The physical interpretation of the first non-zero eigen-
function when λ1 	 λ2 can be made clear by expressing the
time evolution of the population density (Eq. (6)) on a time
scale t � 1/λ2,

P (q, t) ≈ ψ0√
Z

+ c1e
−λ1tψ1(q). (8)

We note that this expression of the time dependent population
distribution (valid for any initial state) describes the popula-
tion around each point q as monotonically approaching the
Boltzmann equilibrium distribution by transferring popula-
tion from regions initially in excess (c1ψ1(q) > 0) to regions
where initially deficient (c1ψ1(q) < 0). Therefore, when there
is a separation of time scales (λ1 	 λ2), the surface ψ1(q)
= 0 provides a natural classification of microstates as re-
actants or products according to whether (after a short lo-
cal relaxation time 
 1/λ2) their time dependent populations
monotonically increase or decrease. This classification of mi-
crostates as reactants or products is one of the several proper-
ties that makes the χ1 separatrix an intuitive and robust def-
inition of the transition state. We use this property to find an
initial approximation of the separatrix below.

Additional properties of χ1 separatrix that we demon-
strate and use in this article are the following:

� An initial population distribution on the separatrix re-
laxes to chemical equilibrium on the fast molecular re-
laxation time (≈ 1/λ2).

� The escape rate from either reactants or products to
this separatrix are equal to each other and to the relax-
ation rate for the reaction in the high friction limit.

� It is the surface of maximum net flux when the reac-
tants and products have reached quasi-equilibrium.

� It is close to the least successfully crossed separa-
trix and optimum dividing surface for the reactive flux
method of computing relaxation rates.

The last two properties provide further support for the con-
ception of the χ1 separatrix as an ideal dividing surface sep-
arating reactants and products in a simple reaction; as well as
provide explicit objectives for making use of and refining the
separatrix. We demonstrate these properties analytically in the
Appendix.

The first two properties listed above (on the fast relax-
ation behavior and escape rate) are easily explained. The
fast relaxation behavior follows simply from calculation of
the first coefficient in Eq. (7); any distribution initially over-
lapping ψ1 only on its root will have c1 = 0, and rapidly
yield a population approximating equilibrium (see Eq. (8)).
In the following, we make use of the fast relaxation prop-
erty to refine the location of the separatrix (as detailed in the
Appendix).

The escape rate property follows from Courant nodal
theorem17 when we solve the FPE with absorbing boundary
conditions on the χ1 separatrix. Because ψ1 satisfies the FPE
and the boundary conditions and has no root on the domain,
Courant’s theorem guarantees that it is the solution associ-
ated with the smallest non-zero eigenvalue. It follows that this
eigenvalue is the asymptotic rate of decay of a population ab-
sorbed at the χ1 separatrix.

From another perspective, the usefulness of character-
izing metastable states in terms of eigenfunctions of a dif-
fusion operator has been exploited before in Perron clus-
ter cluster analysis (PCCA).18 In PCCA, a transition matrix
is derived from transition probabilities between microstates
observed from a long simulation; the eigenfunctions of the
matrix are then used to decompose the state space into
metastable states. For a two-state reaction, PCCA character-
izes metastable states divided by the root of the first eigen-
function of the transition matrix. However, because of numer-
ical instability in this approach, modern methods in the same
vein have focused on different but nearby separatrices.19, 20 In
this work, the refined procedure for locating the surface corre-
sponding to the root of the eigenfunction of the FPE is stable
and precise as is evident from the precision of the rate calcu-
lations presented below.

A. Relation to the iso-committor coordinate

The iso-committor coordinate is known to be an ideal
coordinate for describing the transition between two prede-
fined reactant and product volumes.6, 8, 16, 21 However, an iso-
committor coordinate can be defined for any choice of re-
actant and product volumes, and the freedom in choosing
these volumes means that the iso-committor coordinate is not
necessarily constrained to describe the simple reaction deter-
mined by the Hamiltonian itself. Indeed, in the discussion
presented below, in the context of the isomerization of ala-
nine dipeptide we find that different definitions of the iso-
committor reactant and product surfaces lead to markedly dif-
ferent descriptions of the transition in the c7 to c5 isomeriza-
tion reaction (see Fig. 3).
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A principal advantage of using the χ1 separatrix as the
dividing surface defining the reactant and product volumes
of configurations space is the freedom from the requirement
of a priori identification of the volumes; the χ1 separatrix
provides a definition of these volumes dependent only on the
Hamiltonian of the system.

To be clear, it is necessary to explicitly distinguish iso-
committor reactant and product surfaces from the reactant and
product volumes defined by the χ1 separatrix. The distinction
we need to emphasize is that the iso-committor reactant and
product surfaces do not intersect one another, and together do
not comprise all of configuration space. The reason for this is
that the iso-committor coordinate would be undefined in the
intersection of the two volumes and can only take on values
other than 1.0 and 0.0 in the complement of their union. Fur-
thermore, the iso-committor reactant and product surfaces are
usually determined on the base of a priori knowledge on the
system. In contrast, the reactant and product volumes defined
by the χ1 separatrix share a single boundary and are defined
directly by the FPE.

We posit that the χ1 separatrix is a necessary dividing
surface between iso-committor reactant and product surfaces
in order for the iso-committor coordinate to be relevant to the
description of the reaction. That is, good iso-committor re-
actant and product volumes should be constrained to be vol-
umes with low free energy which are subsets of the volumes
separated by the χ1 separatrix. The possibility of using eigen-
functions of a diffusion operator for the automatic definition
of good iso-committor reactant and product surfaces has been
suggested before,7 but to our knowledge has not been for-
mally developed.

When the iso-committor reactant and product volumes
are constrained to be separated by the χ1 separatrix, the fast
relaxation property of the χ1 separatrix (noted above) implies
that the χ1 separatrix and the equi-committor separatrix are
effectively identical when the equilibrium probability to be in
the respective basins are equal (for instance, at the transition
temperature, or in a symmetric system). Indeed, in the c7 to
c5 isomerization reaction in the alanine dipeptide model dis-
cussed in Sec. IV, we show that the equilibrium probability to
be in the respective basins are nearly equal at room temper-
ature, and the equi-committor surface and χ1 separatrix are
very close (see Fig. 2).

When the χ1 separatrix and the equi-committor sepa-
ratrix are the same ensemble, this allows us to extend the
physical properties of the χ1 separatrix to explain the physi-
cal meaning of the equi-committor separatrix when it is not
correlated with the peak free energy along good structural
coordinates.13

When there are important intermediates, a good descrip-
tion of the reaction requires multiple time scales,


(q, t) ≈ ψ0√
Z

+ c1e
−λ1tψ1(q) + c2e

−λ2tψ2(q). (9)

In this case, the escape over the intermediate barrier is re-
lated to the intermediate time scale (t 
 1/λ2), while the
equi-committor separatrix indicates the ideal separatrix for
describing the entire intermediate as being responsible for the

longer relaxation time, 1/λ1, between the reactant and prod-
uct basins.

IV. APPLICATION TO A SIMPLE SYSTEM

In the following, we provide an example of the practical
application of the theory presented above to the characteri-
zation of the transition state and reaction rate for the well
studied process of isomerization of alanine dipeptide. This
system is a typical testbed for new methods in molecular dy-
namics problems.9, 16, 22 Alanine dipeptide consists in a single
alanine amino acid with acetylated and methylated peptide
bonds, with 22 atoms in total. Because of its small size, it is
computationally feasible to sample its conformational space
extensively. Additionally, the peptide backbone angles φ and
ψ (when used together) are well known to be good coordi-
nates, giving an effective “overhead” view of all of the rele-
vant dynamics in only two dimensions.9 For comparison, we
demonstrate the appearance and effect on the equi-committor
separatrices developed from “bad” coordinates by combining
φ and ψ individually with the backbone dihedral angle ω1

(see Fig. 1). With this additional dihedral angle, we can de-
fine three different coordinate systems in which to observe
the reaction: (φ,ψ), (φ,ω1), and (ψ,ω1). To further orient
ourselves and give a benchmark for comparison, we use each
of the coordinate systems to construct iso-committor coordi-
nates and their associated equi-committor separatrices.

Throughout the following, our goal is to describe the re-
action with minimal a priori information about it; we assume
only that we have an initial configuration located within the
system and that there is an isolated, simple reaction on a short
time scale. Although “good” coordinates are well known for
this system, we refrain from using them except as a posteriori
presentation of our data.

Our simulations were performed by running multiple
molecular dynamics trajectories with the AMBER03 force
field in vacuum. With this choice of force-field, there are three
main ensembles of configurations that are populated with high
probabilities and are separated by free energy barriers, these

FIG. 1. Molecular structure of alanine dipeptide. The configuration space of
the c7 to c5 isomerization reaction is well described by torsion of the back-
bone dihedral angles φ and ψ indicated in the figure. The additional dihedral
angle ω1 is a poor descriptor of the reaction.
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are the c7 , c5 , and Cax isomers (The c7 and c5 isomers are
also known as C7eq and C ′

7eq).9, 16, 22 The barrier separating
the c7 and c5 isomers is sufficiently high that the c7 to c5 iso-
merization can be considered isolated from the Cax minimum
on the short time scales we simulate. The effective isolation
from the Cax minima allows us to observe the χ1 separatrix
separating the c7 and c5 isomers.

A. Observation of the χ1 separatrix

A useful property of the χ1 separatrix is its static popu-
lation density in the relaxation of an out of equilibrium pop-
ulation (see Eq. (8)). This property is observable macroscop-
ically in the sense that it does not depend on the identity of
specific trajectories in an ensemble; we are concerned only
on the average number of trajectories expected in a specific
volume at a given time. Here, we use this property to lo-
cate an approximation of the χ1 separatrix in the alanine
dipeptide c7 to c5 isomerization with minimal domain specific
knowledge.

In practice, we simulate a large ensemble of short trajec-
tories, starting from a Dirac delta distribution, and measure
the time dependent changes in the population within a small
radius (0.3 Å) around a set of test centers in the configuration
space. Although this process is computationally intensive, it
is trivially parallelizable, and demonstrates the existence of
the separatrix directly.

We then classify each test center as being either a re-
actant or product according to whether, after the short local
relaxation time, the slope of the time dependent population
within the small least root mean square deviation (RMSD)
radius around the test center during a short time interval is
positive or negative.

Although we are interested only in one way transition
probabilities to specific microstates, and we are not forming
a matrix, this method is similar in spirit to the method used
to compute an approximation to the components of the mi-
crostate transition matrix discussed in Ref. 19.

The slope of the time dependent population is determined
by performing a linear fit to the population within the RMSD-
ball on a time scale 
t . A linear fit for the population decay is
justified after the fast molecular relaxation time when 
t 	
1/λ1. When this is the case, the quasi-equilibrium population
in Eq. (8) within a small RMSD-ball around the configuration
xi can be approximated by

P (xi, t) ≈ A(xi) + B(xi)t, when
1

λ2
	 t 	 1

λ1
. (10)

Here, B(xi) ∝ c1ψ1(xi) (from the first order expansion in time
of Eq. (8)), thus the slope B(xi) changes sign on the same
surface as ψ1(xi). The surface dividing centers with slopes
of opposite signs then provides us with an approximation of
the χ1 separatrix. The result is shown in Fig. 2 (green curve,
indicated as “slope-χ1” in the figure). Details on the procedure
are provided in the Appendix.

Additionally, we can make use of the fast relaxation prop-
erty of the χ1 separatrix to develop a more precise character-
ization. The fast relaxation property tells us that when a tra-
jectory is initiated on the χ1 separatrix, the probability to find

FIG. 2. Two approximations to the χ1 separatrix, and the equi-committor
separatrix for the isomerization reaction of alanine dipeptide, for iso-
committor reactant and product surfaces defined in (φ,ψ) as depicted in
Fig. 3. The free energy contours in intervals of 0.5 kT depicted in gray scale in
(φ, ψ) obtained from equilibrium simulations are shown as a reference. The
dividing surfaces are obtained in the full configuration space and projected
into the (φ,ψ) coordinate system as selected contours of the average class
(the class of a reactant or product sample is −1 or 1, respectively).

it in some volume after the fast relaxation time is the equilib-
rium probability to be in that volume (see Eq. (8)). We locate
a refined χ1 separatrix by using this property in two ways,
first we use the observed separatrix to learn the equilibrium
distribution between the two c7 /c5 states of alanine dipeptide.
We then refine the separatrix by considering the configura-
tions which relax to the equilibrium distribution on the fast
relaxation time scale (
 1/λ2). The details of the procedure
are described in the Appendix.

The resulting refined separatrix is plotted in Fig. 2 (pur-
ple curve, indicated as “refined-χ1” in the figure), where it is
projected into the (φ,ψ) coordinates and compared to the lo-
cation of the separatrix before the refinement (green curve, in-
dicated as “slope-χ1” in the figure), and to the equi-committor
separatrix (yellow curve, labeled as “φ ψ” in the figure) ob-
tained by defining the reactants and products in the (φ,ψ)
coordinate system (see discussion below).

B. Sensitivity of equi-committor surface to a priori
assumptions

To our knowledge, there are no published discussions
on the sensitivity of equi-committor transition state to the
a priori choice of coordinates used to identify the reactant
and product states. When studying the equi-committor, re-
searchers have always focused on values calculated with re-
spect to a single definition of the reactant and product states,
with no attention given to alternative choices, or justification
why their particular choice was prudent.8, 16, 21 We show in the
following that alternative and ostensibly reasonable choices
for the reactant and product states lead to markedly different
iso-committor coordinates and transition states, at least for the
c7 -c5 transition of the alanine dipeptide system considered in
this study.
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The approach generally used for a given chemical re-
action is the following: the equilibrium population distri-
bution is projected onto some a priori chosen coordinates
(z1, . . . , zn), and a rectangular box (in z) is defined surround-
ing the local probability maxima where the reactant and prod-
uct states are presumed to be.8, 10, 22 For example, in the sem-
inal paper introducing the iso-committor approach in protein
folding, p-fold,8 Du et al. chose as coordinates for a protein
folding reaction the fraction of native contacts, Q, and total
number of contacts, K , with values near the observed free en-
ergy minima obtained with these coordinates as the definition
of the reactant and product. In studies of alanine dipeptide,
a priori coordinates used to identify the reactant and prod-
uct states are typically the peptide dihedral angles, φ and ψ ,
and reactants and products are rectangular boxes in φ and ψ

around well known isomers.16, 21, 22 The chosen coordinates
in these cases are well known as good coordinates for the
system.

To study the effect of coordinate choice on the equi-
committor surface in alanine dipeptide, we calculated the
equi-committor using an intuitive definition for reactants and
products in the different sets of coordinate systems presented
above, that is, formed by the following different combinations
of the dihedral angles: (φ,ω1), (ψ,ω1), and (φ,ψ). These
three different choices of coordinates lead to three markedly
different equi-committor transition states; for brevity, we shall
refer to the distinct transition states as the “φψ ,” “φω1,” and
“ψω1”-transition states.

The free energy in each of the coordinate systems, along
with indications of our choice of reactant and product states,
are shown in Fig. 3. Each of the depicted coordinate sys-
tems shows two distinct free energy basins states separated
by a barrier. In each coordinate system, we define a config-
uration of alanine dipeptide to be a reactant when the two
relevant angles were in the intersection of 150◦ < ψ < 170◦,
−160◦ < φ < −150◦ and 177◦ < ω1 < 182◦. Similarly, we
define the configuration of alanine dipeptide to be a prod-
uct when the two relevant angles were in the intersection of
50◦ < ψ < 60◦, −85◦ < φ < −70◦, and 177◦ < ω1 < 182◦.
The reactant and product states so defined are indicated as
rectangles in the free energy profiles in Fig. 3. The compari-
son of the φψ-transition state with the χ1 separatrix is shown
in Fig. 2.

We measured the value of the iso-committor probabil-
ity for each of the configurations used as centers for the ob-
servation of the χ1 separatrix described above. The com-
mitment probability was taken as the fraction of trajectories
which reached the product surface first in 500 simulations.
The results are presented in Fig. 3. The contours represent
the approximation in the collective coordinates of the equi-
committor separatrix, and its reactants and products, obtained
by taking the average value of the iso-committor probability
in each point of the collective coordinate system.

An important result emerging from Fig. 3 is that each
choice of coordinate system leads to different identifications
of the equi-committor surface. In the worst case, there is ef-
fectively no overlap between the equi-committor surfaces in-
volving ψ and the other equi-committor surface. In each case,
the equi-committor successfully identifies the free energy sad-

FIG. 3. Selected contours of the average iso-committor probabilities in three
coordinate systems: (a) (φ, ψ); (b) (ω, ψ); (c) (φ, ω) with the free energy
contours in intervals of 0.5 kT depicted in gray scale. The average iso-
committor contours displayed are 0.1 (dashed), 0.5 (thick), and 0.9 (thin).
The correlation between iso-committor probabilities obtained with different
definition of reactants and products is reported in (d). The correlation plot
shows that the different iso-committor probabilities strongly disagree about
the location of the equi-committor. In the worst case, the φψ and φω equi-
committor surfaces do not overlap at all. Definitions of reactants and prod-
ucts in each coordinate system are represented as rectangles. 3% of equi-
librium population in the c5 iso-committor reactant rectangle in the (φ,ω)
coordinates, and 1% of the ψω c7 iso-committor rectangle, is separated by
the χ1 separatrix. The φψ iso-committor rectangles do not cross the χ1
separatrix.

dle point in the coordinate system in which the reactants and
products are defined.

One way to understand the sensitivity of the equi-
committor to the choice of reactants and products in the ala-
nine dipeptide test case shown in Fig. 3 is that the common
procedure of choosing reactant and product volumes as rect-
angles with low free energy can lead to bad choices for the
reactant and product volumes. We expect that the location of
the equi-committor would be nearly independent of the choice
of reactant and product volumes as long as “good” reactant
and product volumes are used; however, we are not aware of
any formal requisites or methods for choosing good ones. We
postulate that requiring the reactant and product volumes to
be separated by the χ1 separatrix would lead to good choices;
however, full exploration of this idea is beyond the scope of
this paper.

C. Calculation of relaxation rates

As discussed above, the χ1 separatrix is directly related
to exact reaction rates through escape rates from the reac-
tant and product basins to the separatrix. With an ideal co-
ordinate connecting the reactant basins to the separatrix, the
conditions for the escape are identical to those in Kramer’s
escape formula.23 However, use of Kramer’s approximation
for the escape rate requires the introduction of an effective
one-dimensional coordinate and an error independent of the
theory presented here. To demonstrate the relation between
escape rates and relaxation rates, we simulated the escaping
trajectories directly. For comparison, we measured the escape
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TABLE I. Relaxation rate and the escape rates for each separatrix and a range of friction constants.

Frictiona

5 10 20 40
Separatrix Directionb Ratec

ψω Forward 12.63 ± 0.09 9.69 ± 0.26 6.48 ± 0.10 3.80 ± 0.12
Reverse 9.44 ± 0.16 7.05 ± 0.06 4.58 ± 0.02 2.63 ± 0.01

φψ Forward 11.65 ± 0.05 8.68 ± 0.13 5.66 ± 0.01 3.26 ± 0.07
Reverse 10.51 ± 0.15 8.02 ± 0.13 5.25 ± 0.03 3.04 ± 0.03

Refined-χ1 Forward 11.47 ± 0.03 8.56 ± 0.10 5.52 ± 0.02 3.18 ± 0.07
Reverse 10.85 ± 0.16 8.28 ± 0.16 5.44 ± 0.05 3.10 ± 0.05

Slope-χ1 Forward 11.16 ± 0.04 8.16 ± 0.10 5.20 ± 0.04 2.96 ± 0.08
Reverse 11.99 ± 0.35 9.30 ± 0.30 6.23 ± 0.12 3.66 ± 0.07

φω Forward 9.85 ± 0.26 6.72 ± 0.03 4.15 ± 0.08 2.30 ± 0.00
Reverse 16.75 ± 0.25 13.34 ± 0.25 9.18 ± 0.06 5.48 ± 0.05

λ1 Forward 17.62 ± 0.47 10.96 ± 0.44 6.35 ± 0.10 3.25 ± 0.09
Reverse 16.65 ± 0.86 11.04 ± 0.80 5.75 ± 0.36 3.12 ± 0.08

aFriction constants are provided in units of ps−1.
bThe forward direction is the c7 –c5 transition.
cRates are provided in units of 10−2 ps−1.
Note: The refined χ1 separatrix shows the closest agreement in the forward and reverse escape rates for all friction constants, and an escape rate nearly the relaxation rate in the high

friction limit.

rate to each of the equi-committor separatrices in addition to
the observed and refined χ1 separatrices. The results show the
unique property of identical escape rates to the χ1 separatrix
in both directions.

In practice, the rates are measured as follows. Starting
with a configuration in each basin we simulated 200 000 tra-
jectories initiated from a single configuration for a time inter-
val of (2 ps2)γ (where γ is the friction constant),24 noting the
time at which each trajectory first crosses each separatrix. We
measured the relaxation and escape rates for each separatrix
by fitting a function of the form Ae−Et + B to the popula-
tion within the initial basin, and the population which had not
yet crossed the respective separatrices at time t . We report
the exponents, E, as the rate in Table I. Although the escape
rate converged quickly, a large number of trajectories and long
simulation interval was necessary to obtain converged results
for the relaxation rate.

For the measurement of the escape rate in the c7 to c5 di-
rection, we used the same starting configuration from the
Dirac delta relaxation simulated to locate the χ1 separatrix.
For the reverse c5 to c7 escape rates, we chose the center with
the largest time slope from the histograms used to observe the
separatrix.

In order to evaluate the robustness of the high friction
limit approximation (that is implied in the FPE), three sets of
simulations were performed with different values of the fric-
tion constant (5.0 ps−1, 10.0 ps−1, 20.0 ps−1, and 40.0 ps−1).
By comparing the results obtained with different values of the
friction constant, we observe that the friction constant typi-
cally used in molecular dynamics simulations (around 5 ps−1)
is not large enough to give an escape rate exactly equal to
the relaxation rate. The reason for the difference between the
relaxation rate and the escape rate to the χ1 separatrix with
moderate friction is that in this case trajectories crossing are
more likely to continue to the alternate basin than they would
in the high friction limit, leading to a comparably higher re-
laxation rate. To demonstrate that indeed the rates converge

in the high friction limit, we ran escape simulations for in-
creasing values of the friction constant. Indeed, the results
reported in Table I show a convergence between the χ1 es-
cape rates and the relaxation rate for the reaction. For low to
moderate friction, we expect that a generalization of χ1 sep-
aratrix to the eigenfunctions of the Kramer’s equation (rather
than the FPE) would eliminate the dependence on the friction;
however, development of a computationally feasible method
to observe the full phase space separatrix is beyond the scope
of this paper.

V. CONCLUSIONS

We have presented a definition of the transition state that
does not require a priori knowledge of a good coordinate sys-
tem for its location or existence. We have demonstrated that
the χ1 separatrix is a useful and intuitive definition of the tran-
sition state for simple chemical reactions. In order to illustrate
the validity of the theory of the χ1 separatrix in its simplest
form, we have used a brute force approach for its observation.
Although this direct approach used to observe the separatrix
is computationally intensive and is impractical for exact iden-
tification of the χ1 separatrix in very long time scale prob-
lems, it is clear that other more efficient approaches can be
used to locate the χ1 separatrix. For instance, when used in
conjunction with a priori information about the reaction, our
refined approach locates the separatrix accurately using a rel-
atively small number of short trajectories. We expect this ap-
proach can be made even more efficient when combined with
other techniques; in particular, it has been shown that the equi-
committor separatrix can be described in terms of the Fokker-
Planck equation,7 and many of the tools developed for equi-
committor calculations16, 25 should be portable to the problem
of locating the χ1 separatrix. Finally, it is worth mentioning
that super-symmetric methods26–28 could be used, which al-
low the simulation of dynamics which anneal to regions of
high net current at the same rate that regular molecular dy-
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namics relaxes to the equilibrium population. As we demon-
strate in the Appendix, the surface of maximum net current in
quasi-equilibrium is the χ1 separatrix.
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APPENDIX A: χ1 SEPARATRIX AS THE SURFACE OF
MAXIMUM FLUX

At equilibrium, the net current through any surface
is zero. When reactants and products have reached quasi-
equilibrium, there is negligible net current within the basins,
but a steady reactive current in the space dividing them. Here,
we show that the separatrix through which the net current is
maximized in quasi-equilibrium is the χ1 separatrix.

When the reactants and products have reached quasi-
equilibrium, the population density can be described by Eq.
(8). For any separatrix χ which can be described by a smooth
function D(x) such that D(x) = 0 only on the separatrix, we
indicate the enclosed volume (in the direction of ∇D(x)) as
|∂χ |. Then, indicating the current at position x as J(x), the
separatrix χ with maximum net flux is

maxargχ

∣∣∣∣
∫

∂χ

J(x) · dσ

∣∣∣∣ = maxargχ

∣∣∣∣
∫

|∂χ |
∇ · J(x) dV

∣∣∣∣
(A1)

by the divergence theorem. From the continuity equation, in
the quasi-equilibrium 1/λ2 	 t , the maximizing surface is

= maxargχ

∣∣∣∣
∫

|∂χ |

∂P

∂t
dV

∣∣∣∣ (A2)


 maxargχ

∣∣∣∣
∫

|∂χ |
c1ψ1(x)

∂e−λ1t

∂t
dV

∣∣∣∣ . (A3)

The constants c1 and λ1 are independent of the dividing sur-
face and may be taken outside the integral. Without loss of
generality, we assume c1 < 0, since it depends only on the
Hamiltonian and initial distribution, and is independent of the
dividing surface. With this assumption,

maxargχ

∣∣∣∣
∫

∂χ

J(x) · dσ

∣∣∣∣ = maxargχ

∫
|∂χ |

ψ1(x) dV .

(A4)

Now, we can partition the volume |∂χ | into subvolumes
|∂χ |+ = {x|x ∈ |∂χ | and ψ1(x) > 0} and |∂χ |− = {x|x ∈
|∂χ | and ψ1(x) < 0}, and note that∫

|∂χ |
ψ1(x) dV =

∫
|∂χ |+

ψ1(x) dV +
∫

|∂χ |−
ψ1(x) dV

≤
∫

|∂χ |+
ψ1(x) dV ≤

∫
V+

ψ1(x) dV ,

where the volume V+ = {x|ψ1(x) > 0}. It immediately fol-
lows that the separatrix maximizing the flux is the surface
where ψ1(x) = 0, the χ1 separatrix.

APPENDIX B: RELATION TO VTST TRANSITION
STATE

It is interesting to investigate the relationship between the
χ1 separatrix and the definition of the VTST transition state
independent of any choice of reaction coordinates.2, 3 As de-
tailed in the following, we find that these transition state sepa-
ratrices are not necessarily the same. To compare these states,
it is useful to describe the VTST transition state in terms of
Fokker-Planck eigenfunctions. To do this, we begin with the
population inside some bounded volume R, of the global pop-
ulation initially at equilibrium,

PR(x, 0) =
{

ψ0(x)√
Z

, x ∈ R

0, x /∈ R,
(B1)

the instantaneous flux out of R is the equilibrium flux across
its bounding surface,

JR,eq = − ∂

∂t

∫
R

P (x, t) dV

∣∣∣∣
t=0

. (B2)

The time dependent behavior of the population initially
on one side of R expanded in Fokker-Planck eigenfunctions
is

PR(x, t) =
∞∑
i=0

ciψi(x)e−λi t

=
∞∑
i=0

(∫
R

eβE(x ′) ψ0(x ′)√
Z

ψi(x
′) dx ′

)
ψi(x)e−λi t

(B3)

= 1

Z

∞∑
i=0

(∫
R

ψi(x
′) dx ′

)
ψi(x)e−λi t , (B4)

where we have used Eqs. (6) and (7).
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Defining jR,i = 1/Z(
∫
R

ψi(x) dx)2, substitution into Eq.
(B2) shows

JR,eq = 1

Z

∞∑
i=0

λi

(∫
R

ψi(x) dx

)2

=
∞∑
i=0

λijR,i . (B5)

From this, we see that the surface with minimum equilibrium
flux must minimize the contributions to the sum of the jR,i

corresponding to eigenfunctions ψi with large eigenvalues.
We note that, at time t = 0, the total population of PR

enclosed in R is

〈NR〉0 =
∫

PR(x, 0) dx = 〈NR〉2
0 +

∞∑
i=1

jR,i , (B6)

hence
∞∑
i=1

jR,i = 〈NR〉0 − 〈NR〉2
0 = 〈NR〉0 〈NP 〉0. (B7)

Choosing among surfaces for a given 〈NR〉0, the total equilib-
rium flux will tend to be minimized by varying R to maximize
the jR,i with the smallest eigenvalues. This will tend to attract
the VTST transition state toward the χ1 separatrix, but they
will in general be different.

APPENDIX C: CONFIGURATIONS ON THE
χ1 SEPARATRIX RELAX TO CHEMICAL EQUILIBRIUM
ON THE FAST MOLECULAR RELAXATION TIME
SCALE

Another useful property of the χ1 separatrix giving it a
direct relation to the reaction is the fast relaxation to chemical
equilibrium. Normally an initial distribution needs to relax for
a time t ≈ 1/λ1 before approaching equilibrium. However,
configurations initially confined to the χ1 separatrix relax to
equilibrium after only t ≈ 1/λ2.

The coefficients for expansion of the time dependent pop-
ulation distribution P (x, t), (Eq. (6)), are computed from

ci =
∫

eβEψi(x)P (x, 0) dV. (C1)

When the initial population is constrained to lie on the χ1 sep-
aratrix,

P (x, 0) �= 0 if ψi(x) = 0, (C2)

we find c1 = 0, and the time dependent solutions are

ψ(x, t) = ψ0√
Z

+ c2e
−λ2tψ2(x) + c3e

−λ3tψ3(x) + · · · .
(C3)

Thus, after the time scale t ≈ 1/λ2, P (x, t) ≈ ψ0/
√

Z.

APPENDIX D: THE χ1 SEPARATRIX IS CLOSE TO THE
LEAST SUCCESSFULLY CROSSED SEPARATRIX

When a simple reaction emerges in the motion of a sys-
tem, there are two regions within which trajectories can move
freely, but between which successful transitions are compara-
bly rare (that is, on the time scale ≈ 1/λ1). In this context, we
define as optimal the separation of microstates into two vol-
umes which produces the highest probability that a trajectory

selected from the Boltzmann distribution will be found again
in the same volume after the fast molecular relaxation time
(≈ 1/λ2 	 1/λ1). This definition is equivalent to the mea-
sure of metastability given in Refs. 19 and 29. We show in
Appendix E that such a division of microstates would be an
optimal separation for obtaining the relaxation rate of the sys-
tem via the reactive flux method. Here, we argue that when
there is a sufficient separation of time scales, the χ1 separa-
trix is close to such an optimal separation.

For any surface dividing the space into reactant (R) and
product (P) regions, we want to know what fraction of the
population initially on the R side of a separatrix will be on
the P side at a time tquasi later, with 1/λ2 	 tquasi 	 1/λ1.
We suppose that we have an initial population which is pro-
portional to the Boltzmann distribution within R, and no pop-
ulation outside of R. That is, we assume an initial distribution
of the form,

PR(x, 0) =
{

ψ0(x)√
Z〈NR〉0

, x ∈ R

0, x /∈ R,
(D1)

where 〈NR〉0 = ∫
R

ψ0/
√

Z dx normalizes the total
population.

The time dependent behavior after t = 0 expanded in
Fokker-Planck eigenfunctions is

PR(x, t) =
∞∑
i=0

ciψi(x)e−λi t

=
∞∑
i=0

(∫
R

eβE(x ′) ψ0(x ′)√
Z 〈NR〉0

ψi(x
′) dx ′

)
ψi(x)e−λi t

(D2)

= 1

Z 〈NR〉0

∞∑
i=0

(∫
R

ψi(x
′) dx ′

)
ψi(x)e−λi t , (D3)

where we have used Eqs. (6) and (7).
The portion of this population which has left R is

〈NP 〉 (t) =
∫

P

PR(x, t) dx (D4)

= 1

Z 〈NR〉0

∞∑
i=0

(∫
P

ψi(x) dx

) (∫
R

ψi(x) dx

)
e−λi t

(D5)

= 1

〈NR〉0

(
〈NP 〉0 〈NR〉0 − 1

Z

∞∑
i=1

(∫
R

ψi(x) dx

)2

e−λi t

)
,

(D6)

where 〈NP 〉0 = ∫
P

ψ0(x)/
√

Z dx, and we have made use
of the fact that

(∫
R

ψi(x) dx
) + (∫

P
ψi(x) dx

) = 0, for any
i > 0.

Analogously (by reversing R and P ), we define 〈NR〉 (t)
as the fraction of trajectories which move from an equili-
brated distribution in P to R during the same time frame.



044116-10 P. J. Ledbetter and C. Clementi J. Chem. Phys. 135, 044116 (2011)

Then, the total fraction of the equilibrium population which
has switched sides after a time t is

〈NC〉 (t) = 〈NR〉0 〈NR〉 (t) + 〈NP 〉0 〈NP 〉 (t)

= 2

(
〈NP 〉0 〈NR〉0 − 1

Z

∞∑
i=1

(∫
R

ψi(x) dx

)2

e−λi t

)
.

(D7)

As stated above, we assume there is a separation of
time scales, and a time tquasi, where reactants and products
have locally equilibrated, and we can estimate 1 ≈ e−λ1tquasi �
cie

−λi tquasi ≈ 0, for any i > 1, where the ci = (∫
R

ψi(x) dx
)2

.
At this time the population which has crossed is

〈NC〉 (tquasi) ≈ 2

(
〈NP 〉0 〈NR〉0 − 1

Z

(∫
R

ψ1(x) dx

)2
)

.

(D8)

The separatrix minimizing 〈NC〉 (tquasi) will be the least
successfully crossed separatrix. We know from the previous
section that

(∫
R

ψ1(x) dx
)2

is maximized when the separa-
trix is the χ1 separatrix, but, in principle, a different choice
of separatrix produces different 〈NP 〉0 and 〈NR〉0, which per-
turbs the optimality. However, we find that the difference be-
tween 〈NP 〉0 and 〈NR〉0 for the optimal separatrix, and those
for χ1 separatrix must be negligible. That is, we assume there
is an optimal separatrix separating volumes R‡ and P‡ such
that a population initially confined to either volume relaxes
to a quasi-Boltzmann distribution on the tquasi time scale with
only a minimal population reaching the complementary vol-
ume. From the χ1 separatrix, we define analogous volumes,
Rχ1 and Pχ1 . We assume the reactant and product definitions
associated with the χ1 separatrix and the optimal separatrix
agree in the intersecting volumes Rχ1 ∩ R‡ and Pχ1 ∩ P‡ and
disagree in the intersecting volumes Rχ1 ∩ P‡ and Pχ1 ∩ R‡.
The total equilibrium population in the volumes of disagree-
ment comprises the difference in 〈NP 〉0 and 〈NR〉0 between
the two separatrices.

From the fast relaxation property of the χ1 separatrix,
the reaction reaches equilibrium once all of the trajectories
have crossed the χ1 separatrix once. It follows that equilib-
rium population inside Rχ1 ∩ P‡ must be negligible compared
to P‡, and Pχ1 ∩ R‡ must be negligible compared to R‡. That
is 〈Pχ1 ∩ R‡〉0/〈Rχ1 ∩ R‡〉0 and 〈Rχ1 ∩ P‡〉0/〈Pχ1 ∩ P‡〉0 are
< λ1tquasi. Because both 〈Rχ1 ∩ R‡〉0 and 〈Pχ1 ∩ P‡〉0 are < 1,
both 〈Pχ1 ∩ R‡〉0 and 〈Rχ1 ∩ P‡〉0 are < λ1tquasi.

It follows that

〈Rχ1〉0〈Pχ1〉0 = (〈Rχ1 ∩ R‡〉0 + 〈Rχ1 ∩ P‡〉0) (〈Pχ1 ∩ R‡〉0

+〈Pχ1 ∩ P‡〉0) (D9)

= 〈Rχ1 ∩ R‡〉0〈Pχ1 ∩ R‡〉0 + 〈Rχ1 ∩ R‡〉0〈Pχ1 ∩ P‡〉0

(D10)

+〈Rχ1 ∩ P‡〉0〈Pχ1 ∩ R‡〉0 + 〈Rχ1 ∩ P‡〉0〈Pχ1 ∩ P‡〉0

(D11)

< 〈Rχ1 ∩ R‡〉0〈Pχ1 ∩ P‡〉0 + 3λ1tquasi (D12)

< 〈R‡〉0〈P‡〉0 + 3λ1tquasi. (D13)

It follows that, whenever there is an optimal separatrix giv-
ing 〈NC〉 (tquasi) 	 1, and a separation of time scales giving
λ1tquasi 	 1, the χ1 separatrix will be close to the optimal
separatrix.

APPENDIX E: OPTIMAL SURFACE FOR REACTIVE
FLUX METHOD

The two key assumptions of the reactive flux method30

are a separation of time scales and that the equilibrium time
correlation function, C(t), satisfies

1

λ1
≈ 1

C(0)

∫ ∞

0
C(t) dt. (E1)

The equilibrium time correlation function is defined by divid-
ing configuration space into regions R and P , and taking the
ensemble average over the Boltzmann distribution:

C(t) = 〈
NR (x, 0) 
NR (x, t)〉0 (E2)

=
∫

ψ0(x)√
Z


NR (x, 0) 
NR (x, t) dx (E3)

Here, we define 
NR (x, t) by


NR (x, t) =
∫

R

δx(x ′, t) − 1√
Z

ψ0(x ′) dx ′, (E4)

where δx(x ′, t) is the time dependent solution to the Fokker-
Planck equation starting from an initial Dirac delta distribu-
tion, δx(x ′, 0) = δ(x − x ′).

The correlation function can be expressed in terms of
Fokker-Planck eigenfunctions after computing the coeffi-
cients of the Dirac delta distribution at x,

ci(x) =
∫

eβE(x ′)ψi(x
′)δx(x ′, 0) dx ′ = eβE(x)ψi(x). (E5)

So that


NR (x, t) =
∫

R

∑
i

eβE(x)ψi(x)ψi(x
′)e−λi t− 1√

Z
ψ0(x ′) dx ′

(E6)

=
∞∑
i=1

e−λi t eβE(x)ψi(x)
∫

R

ψi(x
′) dx ′. (E7)

Carrying out the correlation integral and using the
biorthognality relation shows that

C(t) = 1

Z

∞∑
i=1

e−λi t

(∫
R

ψi(x) dx

)2

(E8)
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= 〈NP 〉0 〈NR〉0

∞∑
i=1

ξ 2
i e−λi t , (E9)

where the coefficients ξ 2
i are defined as

ξ 2
i = 1

Z

(∫
R

ψi(x) dx
)2

〈NP 〉0 〈NR〉0
=

(∫
R

ψi(x) dx
)2

∑∞
i=1

(∫
R

ψi(x) dx
)2 < 1.

(E10)

On these terms, we see the assumption that the reactive
flux method yields the relaxation rate is tantamount to

1

λ1
≈ 1

C(0)

∫ ∞

0
C(t) dt (E11)

=
∫ ∞

t=0

∞∑
i=1

ξ 2
i e−λi t dt (E12)

=
∞∑
i=1

ξ 2
i

1

λi

(E13)

≈ ξ 2
1

1

λ1
. (E14)

The discrepancy between the reactive flux relaxation rate
and the true relaxation rate by the factor ξ1 has been noted
before.31–33

This result suggests a variational approach choosing
a dividing surface maximizing ξ 2

1 . However, we recognize
ξ 2

1 = 1 − 〈NC〉 (tquasi)/C(0) from Appendix D. As we showed
there, the χ1 separatrix is close to such an optimal surface
when there is a separation of time scales 1/λ2 	 tquasi 	
1/λ1.

APPENDIX F: LOCALIZATION ON THE
χ1 SEPARATRIX IN THE FULL DIMENSIONAL SPACE:
FIRST APPROXIMATION

As stated in the article, we use the slope of the time de-
pendent population around a set of points to obtain a first ap-
proximation for the χ1 separatrix. After a short local relax-
ation time (≈ 1/λ2), we consider the time evolution of the
population within a small (0.3 Å) RMSD-ball around a con-
figuration xi for a short time interval 
t 	 1/λ1 in the form,

P (xi, t) ≈ A(xi) + B(xi)t when
1

λ2
	 t 	 1

λ1
, (F1)

where B(xi) ∝ c1ψ1(xi) and changes sign on χ1.
In order to consider the time dependent population, we

first generate a swarm of trajectories originated from a Dirac
delta distribution in the configuration space. The starting
point for the Dirac delta relaxation was chosen as a low
energy configuration from previous exploratory simulations.
The χ1 separatrix would be observable from the diffusion ini-
tiated from an initial Dirac delta distribution almost anywhere
in c7 /c5 configurational space of alanine dipeptide (excluding
only configurations very near the separatrix itself); however,

choosing an initial point which would give a large value of
the coefficient c1 increases the magnitude of the B(xi) and
makes observation of the separatrix easier. The magnitude of
c1 for an initial Dirac distribution at x is eE(x)βψ1(x) (from
Eq. (7)). The eigenfunction ψ1(x) is the quasi-equilibrium
population distribution for particles escaping at the separa-
trix, so eE(x)βψ1(x) will be large and nearly independent of
x effectively anywhere inside the reactant or product basin.
Since configurations within the basins mostly compose of the
equilibrium population, choosing any configuration at random
from a long trajectory would be a satisfactory starting point;
choosing a low energy configuration improves this chance.

The centers for measuring the time dependent population
were chosen as the set of final configurations from all trajecto-
ries simulated in the Dirac delta diffusion. Choosing the cen-
ters this way provides a simple means of ensuring that centers
existed in the region near the separatrix.

The relaxation dynamics from the Dirac delta distribu-
tion were simulated by running 500 000 trajectories for 5.0 ps,
with initial velocities taken from a Maxwell distribution at
temperature T = 300 K. The population of the 500 000 trajec-
tories was histogrammed into the 0.3 ÅRMSD-balls at each
test center at intervals of 0.1 ps, and a linear function was fit to
the time dependent population around each center which had
a population greater than 10 samples at each time step. Ob-
servation of the time dependent population within test centers
near the starting configuration showed an initial rapid decline
over a time scale of 1.0 ps followed by much slower decline.
This slower decline in the population indicated a reaction tak-
ing place on this time scale. The linear fit was then extracted
considering the time interval between 3.0 and 5.0 ps in each
of the 5.0 ps trajectories.

The centers were then classified according to the sign of
the slope of the population in the RMSD balls around each
center. Figure 2 illustrates the results obtained by projecting
the χ1 separatrix located on the full configurational space of
alanine dipeptide on the (φ,ψ) subspace, and compares it to
the equi-committor surfaces obtained by choosing the reactant
and product states in the (φ,ψ) coordinates. We indicate the
χ1 separatrix located with this approach as the “slope-χ1” in
the following.

Although robust in principle, this method for classifying
configurations is inherently noisy, particularly near the sepa-
ratrix where the trajectories rarely visit. To remove some of
the noise and allow us to extend the classification to other
samples (for instance, in the escape simulations), we trained
a support vector machine (SVM) to recognize configurations
of alanine dipeptide on each side of the respective separatri-
ces. The SVM operates by finding an optimal set of samples,
{xi} (the support vectors), with associated weights {αi} and an
offset b, producing a function,

D(x) =
∑

i

αi exp{−(x − xi)
2} + b, (F2)

such that the sign of D(x) describes the class of x. In our case,
the class of x is either 1 or –1 if the configuration x is in the
reactant or product state. After normalizing each sample so
that the maximum value of any coordinate in the training set
was 1, we used the SVMLIGHT package34 to train the SVM
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parameters. When using the SVM to classify a new sample,
we rescale its coordinates with the same factor used to nor-
malize the training set.

The SVM was then used to classify every center in the
training set as either a reactant or product. The results are pre-
sented in Fig. 2.

APPENDIX G: LOCALIZATION ON THE
χ1 SEPARATRIX IN THE FULL DIMENSIONAL SPACE:
REFINEMENT

As mentioned in the article, we use the fast relaxation
to equilibrium of the points located on the χ1 separatrix to
refine its location. After a short time ≈ 1/λ2, a distribution
of trajectories starting on the χ1 separatrix will be relaxed to
the equilibrium distribution. On the contrary, distribution of
trajectories starting in either the reactant or product volumes
will relax to equilibrium on a longer time scale ≈ 1/λ1.

In order to find the equilibrium distribution, the conven-
tional approach is to sample a single trajectory for a time
much longer than the relaxation time for the reaction. How-
ever, since the c7 /c5 reaction of alanine dipeptide is not com-
pletely isolated from the Cax state, a single trajectory long
enough to adequately sample the respective basins will also
have a non-negligible probability to escape to the Cax min-
imum. We could simply remove trajectories escaping to the
Cax minimum, but doing so requires that we use domain spe-
cific knowledge to describe this population and remove it
from our sample set. In the spirit of studying the reaction
without domain specific knowledge, we made use of the fast
relaxation property to obtain the equilibrium c7/c5 popula-
tions without running trajectories long enough to enter the
Cax minimum. An added benefit is that we were able to ob-
tain the equilibrium populations by using a large set of shorter
simulations simulated massively in parallel.

If we were certain that we had a configuration on the sep-
aratrix, a short relaxation on the time scale around 1 ps would
be sufficient to obtain the equilibrium distribution; what is
necessary is that we go beyond any relevant intermediate time
scale. The close fit of the escaping population to a single ex-
ponential indicated that there was no relevant intermediate on
this time scale. However, since the observed separatrix may
be slightly off, it was necessary to run simulations beyond the
short relaxation time. The escape rate to the separatrix trained
from the slope classes (reported in Table I), showed that the
time scale for the relaxation was on the order of 10 ps. Noting
the approximate time scale for relaxation, we were ensured a
relaxation time of 40 ps would produce an equilibrium distri-
bution. We proceeded to relax a delta distribution of 200 000
trajectories from a configuration on the slope-χ1 separatrix.

In order to confirm the accuracy of the equilibrium distri-
bution obtained from the fast relaxation technique, we com-
pared the distribution to one taken from a long trajectory of
20 μs with samples taken at 10 ps intervals. After removing
the samples from the Cax minimum, we found the population
distributions matched in the (φ,ψ) coordinate system with
the same accuracy as a second simulation of a long trajectory
(both had a relative error ≈ 4%). Furthermore, the relative

probability to be in the respective volumes separated by the
SVM was accurate to within 0.2%.

After using the SVM to classify the equilibrated sample
population, we found the probability to be on the c5 side of the
separatrix was ≈ 55%. For each configuration in our sample
set, we ran 500 1 ps trajectories, measuring the probability
for the trajectory to end in the c5 basin as determined by the
SVM. We then trained a new SVM to separate configurations
with probabilities above and below the 55% probability to be
in the c5 basin. This procedure produced a refined location of
the χ1 separatrix; the result is plotted in Fig. 2 (purple curve,
indicated as “refined-χ1” in the figure).

It is important to note that the key property necessary to
obtain the refined separatrix by the above method is the fast
relaxation to equilibrium as compared to the relaxation rate;
initial delta distributions on the χ1 separatrix relax to global
equilibrium faster than delta distributions in any other part of
configuration space. Thus, the property necessary to classify
a configuration as being on the χ1 separatrix is that a delta
distribution located at that configuration will be found in any
subvolume in the system with equilibrium probability after a
much shorter time than the global relaxation rate. The vol-
umes separated by a good transition state separatrix would
be pragmatically close to ideal, since trajectories which are
present in those volumes after a short time are not likely to
leave until the much longer relaxation time. This makes the
necessary time to converge to the equilibrium population in-
side the volume much shorter than the time scale necessary for
complete relaxation within the volume.We use this method to
refine the slope-χ1 separatrix obtained directly from the de-
crease/increase of population around a set of points (as dis-
cussed in Appendix F). The whole process requires no a pri-
ori information about the reaction.
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