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Purpose: In current computed tomography (CT) examinations, the associated x-ray radiation dose is

of a significant concern to patients and operators. A simple and cost-effective means to perform the

examinations is to lower the milliampere-seconds (mAs) or kVp parameter (or delivering less x-ray

energy to the body) as low as reasonably achievable in data acquisition. However, lowering the mAs

parameter will unavoidably increase data noise and the noise would propagate into the CT image if

no adequate noise control is applied during image reconstruction. Since a normal-dose high diagnos-

tic CT image scanned previously may be available in some clinical applications, such as CT perfu-

sion imaging and CT angiography (CTA), this paper presents an innovative way to utilize the

normal-dose scan as a priori information to induce signal restoration of the current low-dose CT

image series.

Methods: Unlike conventional local operations on neighboring image voxels, nonlocal means

(NLM) algorithm utilizes the redundancy of information across the whole image. This paper adapts

the NLM to utilize the redundancy of information in the previous normal-dose scan and further

exploits ways to optimize the nonlocal weights for low-dose image restoration in the NLM frame-

work. The resulting algorithm is called the previous normal-dose scan induced nonlocal means

(ndiNLM). Because of the optimized nature of nonlocal weights calculation, the ndiNLM algorithm

does not depend heavily on image registration between the current low-dose and the previous

normal-dose CT scans. Furthermore, the smoothing parameter involved in the ndiNLM algorithm

can be adaptively estimated based on the image noise relationship between the current low-dose

and the previous normal-dose scanning protocols.

Results: Qualitative and quantitative evaluations were carried out on a physical phantom as well as

clinical abdominal and brain perfusion CT scans in terms of accuracy and resolution properties.

The gain by the use of the previous normal-dose scan via the presented ndiNLM algorithm is no-

ticeable as compared to a similar approach without using the previous normal-dose scan.

Conclusions: For low-dose CT image restoration, the presented ndiNLM method is robust in pre-

serving the spatial resolution and identifying the low-contrast structure. The authors can draw the

conclusion that the presented ndiNLM algorithm may be useful for some clinical applications such

as in perfusion imaging, radiotherapy, tumor surveillance, etc. VC 2011 American Association of
Physicists in Medicine. [DOI: 10.1118/1.3638125]

Key words: computed tomography, low-dose, normal-dose, previous scan, nonlocal means,

image restoration

I. INTRODUCTION

The radiation dosage associated with x-ray exposure in cur-

rent computed tomography (CT) examinations is of a signifi-

cant concern to patients and operators, especially in

screening and monitoring high-risk cancer population.1,2

Methods to minimize the x-ray exposure have been one of

the major endeavors in CT fields.3 A simple and cost-

effective means to perform low-dose CT examinations is to

lower the milliampere-seconds (mAs) or kVp parameter (or

delivering less x-ray energy to the body) as low as reason-

ably achievable in data acquisition. However, lowering the
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parameters will unavoidably increase the data noise. The

noise would propagate into the CT image if no adequate

noise control is applied during image reconstruction.

At present, various techniques in optimizing CT imaging

protocols for dose reduction have been explored, e.g., auto ex-

posure control4–6 and many image reconstruction algorithms

with noise suppression have been reported.7,8 Notably, for

low-dose noisy data,9–11 statistical iterative reconstruction

(SIR) methods, which model the noise properties of the meas-

urements and impose adequate regularization on the recon-

struction, have shown the potential to achieve a superior

noise-resolution tradeoff as compared to analytical recon-

struction techniques such as the conventional filtered back-

projection (FBP) reconstruction algorithm. A major drawback

of SIR is the computational burden associated with the multi-

ple reprojection and back-projection operation cycles through

the image domain. One way to mitigate this drawback while

maintaining the advantage of noise modeling and regulariza-

tion is to estimate the ideal sinogram from acquired noisy one

and to reconstruct the CT image from the estimated ideal

sinogram without the multiple reprojection and back-

projection operations through the image domain.12–15 The

gain in efficiency is at the cost of losing more physical model-

ing information in the reprojection operation through the

image domain. As an alternative to the above statistical noise

modeling and regularization framework, many sophisticated

linear and nonlinear noise filtering techniques for sinogram

noise reduction have also been investigated.16–19 Although

most of the linear and nonlinear noise filtering techniques are

computationally efficient and can suppress the noise and

streak artifacts along the highly attenuated projection, they of-

ten sacrifice structural details because of a lack of noise mod-

eling over all projections.

Recently, several structure-preserving filters in the image

domain have also been investigated for low-dose CT image

restoration. For example, Schaap et al.20 proposed the aniso-

tropic diffusion filter based edge-preserving noise reduction

technique, which adaptively tunes the control parameters to

obtain noise reduction, edge enhancement, and structure pres-

ervation in the images. Borsdorf et al.21 presented a wavelet

based structure-preserving filter for CT image noise reduction

based on the assumption that the image data can be decom-

posed into information and temporally uncorrelated noise. In

reality, the noise in low-dose CT images is nonstationary and

its distribution is usually unknown. Therefore, designing a

structure-preserving filter in the image domain is difficult.

To reduce the difficulty in designing a structure-preserving

filter, a previously scanned high-quality diagnostic CT image

may be used as a priori information. For example, Yu et al.22

proposed a regularized reconstruction strategy, named PSRR,

where the previous scans of the patient are used to recover the

details in the reconstruction of the current low-dose noisy

images. The key idea behind the PSRR is to recognize the

substantially changed regions in the low-dose scan and

replace the other regions with corresponding features from

the previous normal-dose scan. To realize the idea, the PSRR

procedure needs accurate image registration. Any residual

error in the image registration due to interfractional variation

in treatment positions and deformation of the tissues/organs

may cause significant error in the image reconstruction. In

other words, dedicated or accurate registration algorithms are

necessary for PSRR.

To relieve these requirements, this paper presents a method

to utilize the previous normal-dose CT scan of the patient as a
priori information to restore the signal from the current low-

dose CT images. The presented method does not need accu-

rate image registration and can effectively improve the image

quality of the low-dose CT scan. The innovation is the use of

nonlocal means (NLM),23–25 which differs from the conven-

tional local operations on neighboring image voxel where

accurate registration is needed. NLM can extract the redun-

dancy information from the previous normal-dose CT images.

In addition to the innovation, this paper further exploits ways

to optimize the nonlocal weights in the NLM framework. The

resulting algorithm is called the previous normal-dose scan

induced nonlocal means (ndiNLM). Two major contributions

of this work are as follows: First, due to the optimized nature

of nonlocal weights calculation, the ndiNLM algorithm does

not need accurate image registration between the current low-

dose and the previous normal-dose CT images. Second, auto-

matic tuning of the smoothing parameter is designed based on

the image noise relationship between the current low-dose

and the previous normal-dose scan protocols. Qualitative and

quantitative evaluations were carried out on both a physical

phantom and clinical patients scans in terms of accuracy and

resolution properties.

The remaining part of this paper is organized as follows.

In Sec. II, the NLM terminology and ndiNLM algorithm will

be presented, and then the evaluation designs will be

described. In Sec. III, experimental results will be reported.

Finally, a discussion and conclusion will be given in Sec. IV.

II. METHODS AND MATERIALS

II.A. Brief review of nonlocal means terminology

The NLM concept was originally proposed by Buades

et al.23–25 The discrete version of their NLM algorithm can

be expressed as follows. Let B be a discrete grid of voxels

and l ¼ lðxiÞjxi 2 Bf g be a noisy image. The restored inten-

sity NLM(l)(xi) of the voxel xi is the weighted average of all

the voxel intensities in the image l and can be expressed as

NLMðlÞðxiÞ ¼
X
xj2B

wðxi; xjÞlðxjÞ; (1)

where l(xj) is the original image intensity of voxel xj and

w(xi, xj) is the weight assigned to l(xj) in the intensity resto-

ration for voxel xi. The weight values w(xi, xj) depend on the

similarity between the voxels xi and xj, and satisfy the condi-

tions of 0 � w(xi, xj) � 1 and
P

xj2B wðxi; xjÞ ¼ 1 (see Fig.

1(a)). It can be expressed as

wðxi; xjÞ ¼
1

ZðxiÞ
exp �

lðViÞ � lðVjÞ
�� ��2

2;a

h2

8<
:

9=
;; (2)
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where Z(xi) is a normalizing factor, ZðxiÞ ¼
P

xj2B exp

� lðViÞ � lðVjÞ
�� ��2

2;a

� �
=h2

n o
. The terms Vi and Vj denote

two local similarity neighborhoods (named patch-windows)

centered at the voxels xi and xj, respectively. The term

l Við Þ :¼ l xkð Þ; xk 2 Vif g denotes the vector of neighbor-

hood voxel values restricted in patch-window Vi. The nota-

tion jj�jj2,a denotes a Gaussian-weighted Euclidean distance

between two similarity patch-windows, where a is the stand-

ard deviation of the Gaussian function.23 In Eq. (2), h is a pa-

rameter which controls the decay of the exponential

function. Obviously, when h is small, the weight w(xi, xj)

will tend to be small, thus the corresponding restored value

NLM(l)(xi) will tend to be weakly smoothed. When h is

large, the restored value NLM(l)(xi) will be strongly

smoothed. Typically, as a smoothing parameter, h depends

on the standard deviation of the image noise.

The NLM algorithm of Eqs. (1) and (2) exploits the high

degree of information redundancy within the image itself. It

indicates that each voxel can systematically employ the

global self-prediction configuration information across the

whole image. However, in reality, the search of the informa-

tion across the whole image is computationally prohibitive.

To reduce the computational burden, the search will be con-

fined to an appropriate neighborhood Ni(<B) (named search-

window) centered at the current voxel xi.

FIG. 1. Presentations of the NLM and ndiNLM algo-

rithms. (a) A 2D presentation of the NLM algorithm.

The restored value of voxel xi is the weighted average

of all intensities of voxels xj in the search-window Ni

based on the similarity of two patch-windows Vi and

Vj; (b) a 2D presentation of the ndiNLM algorithm.

Restored value of voxel xi is the weighted average of

all intensities of voxels ~xj in the search-window ~Ni

based on the similarity of two patch-windows Vi and
~Vj. Ni and ~Nj represent the search-window in the low-

dose image domain and the normal-dose image do-

main, respectively. Vi and ~Vj represent the patch-

window in the low-dose image domain and the normal-

dose image domain, respectively.
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II.B. Description of the ndiNLM algorithm

Our proposed ndiNLM algorithm adapts the NLM concept

to exploit the high degree of information redundancy in the

previous normal-dose scan, instead of the low-dose image

itself. The ndiNLM algorithm is still performed in the image

domain and contains three major steps: (a) rough image regis-

tration between the current low-dose CT image volume lld

and the previous normal-dose CT image volume lnd; (b) opti-

mal nonlocal weights construction using rough registered lld

and lnd; and (c) NLM weighted average using the optimal

nonlocal weights. In the following sections, we describe each

step in detail.

II.B.1. Rough registration of two image volumes

In order to utilize the information from both the previous

normal-dose and the current low-dose scans, we expect that

these two scans are somehow spatially aligned. However,

because the two scans are often not acquired simultaneously

or even from the same scanner, the two image volumes fre-

quently contain nonrigid organ motion and are not perfectly

aligned. Despite this, there is no doubt that the normal-dose

image volume contains a huge amount of redundant informa-

tion regarding the low-dose image volume. As in the work in

video sequence restoration,25 if we have two roughly regis-

tered volumes, the rich redundant information in the roughly

registered normal-dose volume can be effectively utilized to

induce the ndiNLM weighted average or signal restoration

from the low-dose volume more effectively.

II.B.2. Nonlocal weights construction

Due to the redundancy of information in the previous

normal-dose image and in the current low-dose image, an

optimal nonlocal weights may be determined from the previ-

ous normal-dose images, instead of the low-dose image

itself, to improve the NLM weighted average. If the previous

normal-dose image volume has been roughly registered,

lreg
nd , with the current low-dose image volume lld, then an

optimal nonlocal weights construction, see Fig. 1(b), can be

constructed using the NLM terminology as follows:

~wðxi; ~xjÞ ¼
1

~ZðxiÞ
exp �

lldðViÞ � lreg
nd ð ~VjÞ

�� ��2

2;a

h2

8<
:

9=
;; (3)

where ~ZðxiÞ is a normalizing factor, ~ZðxiÞ ¼
P

~xj2 ~Ni
exp

� lldðViÞ � lreg
nd ð ~VjÞ

�� ��2

2;a

� �
=h2

n o
. The subsets Vi and ~Vj

denote two similar patch-windows centered at voxel xi in the

image volume lld and at voxel ~xj in the image volume lreg
nd ,

respectively. ~Ni represents the search-window in the image

volume lreg
nd .

II.B.3. NLM weighted average

Based on the constructed nonlocal weights ~wðxi; ~xjÞ, a

weighted average operation can be performed similar to

Eq. (1). Our proposed ndiNLM algorithm, using the new

nonlocal weights derived from the previous normal-dose

scan as a priori information, can be described as follows:

ndiNLMðlldÞðxiÞ ¼
X
~xj2 ~Ni

~wðxi; ~xjÞlreg
nd ð~xjÞ: (4)

From the weighted average of Eq. (4), we can see that the

restored intensity values for the restored low-dose images

are from the registered normal-dose images. As a result, the

noise induced artifacts in the current low-dose CT image

will be greatly suppressed in the restored low-dose CT image

due to the registered normal-dose image as a reference,

which provides redundancy of information for the restoration

operation.

II.C. Algorithm implementation

II.C.1. Rough registration

An equivalent meridian plane (EMP) based fast three-

dimensional (3D) medical image registration algorithm26

was adapted in implementing the ndiNLM algorithm. The

accuracy and robustness of the EMP registration has been

validated by many registration experiments. When the low-

dose image volume lld is selected as the reference, the EMP

algorithm registers the normal-dose image volume lnd to the

low-dose image volume lld through the following five steps:

(1) performing binarization on the two image volumes to

form 3D vectors and producing the vector coordinate repre-

sentation of the two image volumes; (2) obtaining the cent-

roid and covariance matrices of the two volumes; (3)

performing a principal component analysis (PCA) on the

two volumes; (4) setting the two volumes into a canonical

coordinate frame by the PCA transform; and (5) refining the

registration by maximizing the mutual information between

EMP in the normal-dose image volume and the coordinate

plane in the low-dose image volume.

II.C.2. Nonlocal weights construction

For the proposed nonlocal weights ~wðxi; ~xjÞ construction

by Eq. (3), three parameters will be determined: the sizes of

the search-window, the patch-window, and the value of the

smoothing parameter h.

II.C.2.a. Selection of the search- and patch-windows. To

fully exploit the redundant information for the ndiNLM res-

toration from the roughly registered normal-dose image vol-

ume lreg
nd , the size of the search-window ~Ni should be large

enough to acquire more similarity information while mini-

mizing the influence of the rough 3D registration. However,

an increase of the search-window size increases the compu-

tational demands of the algorithm. Thus, to obtain an

adequate size for the search-window ~Ni, an empirical strat-

egy was adapted as follows: First, we selected a slice of in-

terest to be restored from the low-dose image volume. Then

the corresponding or associated slice was determined from

the registered normal-dose image volume to perform an opti-

mal nonlocal weights construction. Through extensive

5716 Ma et al.: Low-dose CT image restoration using previous normal-dose scan 5716
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experiments by visual inspection for eye-appealing results

with comparison to the normal-dose scans, we found that a

41� 41 search-window is adequate for effective noise and

artifacts suppression while retaining computational effi-

ciency. In selecting the size of the patch-windows Vj and ~Vj,

the similarity of two patch-windows was measured by the

conventional Euclidean distance jj�jj2, which has been pro-

ven to be very effective in our experiments and a 5� 5 simi-

larity patch-window was found adequate.

II.C.2.b. Tuning of the smoothing parameter. According

to the previous studies,23 the smoothing parameter h is a

function of the standard deviation r of the image noise (or

low-dose image noise in our case), and h¼ ar is a good

choice in the two-dimensional (2D) image domain where a
is a scalar. For the ndiNLM algorithm, because the noise dis-

tribution of the low-dose images is not stationary and usually

unknown, determining the standard deviation r of the low-

dose images is not a trivial task. On the other hand, progress

has been made on the simulation of low-dose CT image

noise from normal-dose CT scans.27,28 For example, if the

mAs value is doubled in the data acquisition, the noise level

in the data will be reduced by a factor of
ffiffiffi
2
p

. Based on this

observation, and the work of Coupé et al.,29 the smoothing

parameter h can be determined as h2 ¼ 2a
ffiffiffi
q
p � 1
� �

r̂
� �2j ~Nij

for the ndiNLM algorithm, where r̂ is the standard deviation

of the normal-dose image. The term r̂ can be estimated via a

robust median estimator, i.e., r̂ ¼ medianðjWði; jÞjÞ=0:6745,

where W(i, j) represents the (i, j)th coefficient of wavelets

subband HH.30 The quantity q is the ratio of mAs values of

the normal-dose scan and the low-dose scan. j ~Nij represents

the size of the search-window as defined before. The scalar a
is determined by visual inspection on the restoration of the

low-dose image with comparison to the normal-dose image.

II.C.3. NLM weighted average

After the construction of the nonlocal weights, the NLM

weighted average in the ndiNLM algorithm can be per-

formed effectively using Eq. (4).

For comparison purpose, we adapted the NLM algorithm

of Eq. (1) with a modification on its nonlocal weight,

h2¼ 2sr2jNij rather than h¼ ar, in order to consider the

size of the search window jNij, centered at voxel i. Here, r
is the standard deviation of the low-dose scans and it can be

estimated via a robust median estimator,30 and s, similar to

a, is a scalar (to be determined by experiments). By this

modification, the nonlocal weight in the NLM algorithm is

comparable to the weight in the ndiNLM algorithm, i.e.,

h2 ¼ 2a
ffiffiffi
q
p � 1
� �

r̂
� �2 ~Ni

�� ��.
In implementing both the NLM and ndiNLM algorithms,

Ni¼ 41� 41 and Vi¼ 5� 5 were chosen for the roughly reg-

istered two image volumes. The parameters s for the NLM

algorithm and a for the ndiNLM algorithm were determined

by a trial-and-error fashion for a visually appealing result in

comparison to normal-dose scans. With such an implementa-

tion, we can see the performance of the NLM algorithm for

low-dose CT image restoration and also observe the gain

obtained by the use of the previous normal-dose scan.

II.D. Data acquisition

Experimental data were acquired from a physical phan-

tom and two patients using three different CT scanners: a

16-row MDCT scanner from GE (LightSpeed VCT; GE Co.,

Ltd., Tianjing, China), a 16-row MDCT scanner from Sie-

mens (Siemens Emotion CT 2007E; Siemens Co., Ltd.,

Guangzhou, China), and 64-row MDCT scanner from Sie-

mens (Siemens SOMATOM Definition Dual Source CT;

Siemens Co., Ltd., Guangzhou, China). All CT images were

downloaded to personal computers using the DICOM (Digi-

tal Imaging and Communications in Medicine) file format

with a matrix size of 512� 512 and a gray level of 16-bits.

II.D.1. Physical phantom imaging

The physical phantom was scanned by the GE LightSpeed

VCT scanner without table movement. The scanning param-

eters were as follows: 16� 5.0 mm detector collimation, 0.5

s per gantry rotation, 5.0 mm slice thickness, tube voltage of

120 kVp, tube currents of 50 mA and 250 mA, and a stand-

ard reconstruction kernel.

II.D.2. Patient abdominal imaging

The patient scan was scheduled for an abdominal normal-

dose CT study for medical reasons and an additional low-

dose scan was undergone by patient consent. The normal-

dose scan was performed first. Then, the low-dose scan was

performed after 20 min. All abdominal CT images were

acquired with the Siemens Emotion CT scanner in a spiral

mode. The scanning parameters were as follows: 16� 1.2

mm detector collimation, pitch of 0.8 mm, 0.6 s per gantry

rotation, 1.5 mm slice thickness, tube voltage of 130 kVp,

tube currents of 50 mA and 333 mA, and reconstruct kernel

of B40s. The CT dose indexes (CTDIvol) for the normal- and

low-dose scans are 22.29 mGy and 3.35 mGy, respectively.

II.D.3. Patient brain perfusion imaging

Another patient with an old infarction was scheduled for a

brain perfusion CT study. Under written consent, the patient

was scanned with the 64-row MDCT scanner from Siemens

without table movement. First, an unenhanced noncontrast

CT scan of the whole brain was performed with a tube current

of 240 mA, tube voltage of 80 kVp, as the previous normal-

dose scan in this study. Then, 50 ml of Iopromide 370

(Ultravist, Schering, Germany) was injected at a rate of 5.0

ml/s, followed by contrast-enhanced image acquisition from

three adjacent sections, including the level of the basal gan-

glia, of the brain volume. The cine (continuous) post-contrast

normal-dose scan was performed by the following protocol:

200 mA, 80 kVp, slice thickness 8 mm, 1 s per rotation for a

duration of 39 s, and reconstruction kernel of H30s. From the

normal-dose enhanced scan, we simulated the low-dose brain

perfusion enhanced CT images from the acquired normal-

dose enhanced images using a simple CT noise simulator31

according to the Siemens 64-row MDCT imaging geometry,

rather than scanned the patient twice, in order to alleviate

radiation dose. The CTDIvol for the normal-dose enhanced

5717 Ma et al.: Low-dose CT image restoration using previous normal-dose scan 5717
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scan is 380.80 mGy. The CTDIvol for the simulated low-dose

contrast-enhanced CT scan is about one-sixth of that from the

normal-dose scan.

II.E. Evaluation merits

II.E.1. Evaluation by noise reduction

The following metrics were utilized to measure the noise

reduction on the restored image from the low-dose image:

(1) mean per cent bias (MPB); (2) mean per cent squared

error (MPSE); and (3) mean per cent absolute error

(MPAE),

MPB ¼ 100

S

XS

m¼1

l̂ldðmÞ � lreg
nd ðmÞ

�lreg
nd ðmÞ

; (5)

MPSE ¼ 100

�lreg
nd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S� 1

XS

m¼1

ðl̂ldðmÞ � lreg
nd ðmÞÞ

2

vuut ; (6)

MPAE ¼ 100

S

XS

m¼1

l̂ldðmÞ
lreg

nd ðmÞ
� 1

����
����; (7)

where m indexes the voxels in a region of interest (ROI), S is

the number of voxels in the ROI, lreg
nd ðmÞ denotes the regis-

tered normal-dose image, l̂ldðmÞ denotes the estimated

image of low-dose scan, and �lreg
nd is the average voxel value

in the ROI of the registered normal-dose image. Three ROIs

were selected from the phantom and the patient abdominal

images, respectively, as shown in Fig. 2(a) and Fig. 8(b) and

indicated by the squares.

FIG. 2. Examples from physical phantom image restorations: (a) from the normal-dose scan acquired with 120 kVp, 125 mAs protocol; (b) from the low-dose

scan acquired with 120 kVp, 25 mAs protocol; (c) the restored image from the low-dose scan by using the NLM algorithm (Ni¼ 41� 41, Vi¼ 5� 5,

s¼ 1.2� 10� 3); and (d) the restored low-dose image by using the ndiNLM algorithm with the normal-dose image in (a) as a reference image (Ni¼ 41� 41,

Vi¼ 5� 5, a¼ 1.1� 10� 2). Display window option: width is 300 HU, level is 35 HU.
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II.E.2. Evaluation by contrast-to-noise ratio

Since a low-contrast region is of interest in the CT imag-

ing, we selected an ROI (indicated by the larger black arrow)

in Fig. 2(a) for the calculation of the contrast-to-noise ratio

(CNR),

CNR ¼ lROI � lBGj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ROI þ r2
BG

q ; (8)

where lROI is the mean of the voxels inside the ROI, and

lBG is the mean of the voxels in the background. The terms

rROI and rBG are the standard deviations of the voxel values

inside the ROI and the background, respectively.

II.E.3. Evaluation by resolution measure

Resolution is usually measured using the modulation

transfer function (MTF). In this study, we used the MTF as

our resolution measure. For the MTF computation, an edge

spread function (ESF) was first obtained along the central

horizontal profile on the left disk as indicated by the red

arrow in Fig. 2(a). Then a line spread function (LSF) was

generated from the derivation of the ESF. By applying the

Fourier transformation on the LSF, the MTF was calculated,

where a normalization is imposed so that MTF(0)¼ 1.

II.E.4. Evaluation merits for perfusion CT imaging

The perfusion imaging maps generated from the enhanced

CT images have been widely used to evaluate infarctions,

including prediction of tissue at risk and patient outcome.32 In

our experiments, cerebral blood volume (CBV), cerebral

blood flow (CBF), and mean transit time (MTT) maps were

generated by using a public domain software program, Perfu-

sion Mismatch Analyzer (PMA).33 As a standardized soft-

ware, PMA was developed in the activity of Acute Stroke

Imaging Standardization group in Japan.34 A standard

singular-value decomposition method was used in the PMA.

III. RESULTS

III.A. Phantom study

Figure 2 shows one slice of the phantom images with var-

ious disks and strip bars. Figure 2(a) was reconstructed by

the conventional FBP method from the normal-dose scan

acquired with 120 kVp, 125 mAs protocol. Figure 2(b) was

reconstructed by the conventional FBP method from the

low-dose scan acquired with 120 kVp, 25 mAs protocol. It

can be observed that the noise level is quite high in the low-

dose image. Figure 2(c) shows the restored image from the

low-dose scan by using the NLM algorithm (i.e., without uti-

lizing the previous normal-dose scan), where some texture

artifacts are presented. Figure 2(d) shows the restored image

from the low-dose scan by using the presented ndiNLM

algorithm, where the normal-dose image corresponding to

Fig. 2(a) was used as the reference image. It can be seen that

both the NLM and ndiNLM algorithms suppress the noise-

induced artifacts effectively. The ndiNLM algorithm pro-

duces a more similar texture to the normal-dose scan than

the NLM algorithm. To further illustrate the effectiveness of

the NLM and ndiNLM algorithms for signal restoration from

the low-dose scan and their difference, zoomed images of

the strip bars from the corresponding pictures in Fig. 2 are

shown in Fig. 3. It can be observed that the small strip bars

are well preserved shown in Fig. 3(c) and Fig. 3(d) for

the NLM and ndiNLM algorithms. Their difference is no-

ticeable. The result of the ndiNLM algorithm is more similar

to the normal-dose scan than that of the NLM algorithm.

Figure 4 shows the profiles through the small strips of the

FIG. 3. Zoomed images of the strip bars from the corresponding images in Fig. 2: (a) from the normal-dose scan; (b) from the low-dose scan; (c) from the

restored image of the low-dose scan by using the NLM algorithm; and (d) from the restored image of the low-dose scan by using the ndiNLM algorithm. Dis-

play window option: width is 300 HU, level is 35 HU.
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pictures in Fig. 3. These profiles show that the intensity val-

ues of the restored images by both the NLM and ndiNLM

algorithms are well preserved. The gain obtained by using

the normal-dose scan is noticeable. In summary, as shown in

Figs. 3 and 4, the strip bars were well preserved by the NLM

and ndiNLM algorithms, whereas some of the strip bars

were over-smoothed by the NLM algorithm. To further

quantitatively evaluate the NLM and the ndiNLM algo-

rithms, the noise reduction, CNR, and resolution preserva-

tion were measured as described in the following sections.

III.A.1. Noise reduction measure

Table I lists the MPB, MPSE, and MPAE measures of the

restored image from the low-dose scan by using the NLM

and ndiNLM algorithms, respectively. It can be seen that the

results from both NLM and ndiNLM algorithms exhibited an

average of more than 10% gains over the current low-dose

scan in terms of the MPB, MPSE, and MPAE measures on

the three different ROIs. The ndiNLM algorithm performed

better than the NLM algorithm with more than 10% gains

for ROI1 and ROI2 except ROI3 where for MPSE and

MPAE metrics the NLM algorithm is about 2% better than

the ndiNLM algorithm.

III.A.2. CNR measure

Figure 5 shows the variation of the CNRs of the restored

images from the low-dose scan using the NLM and ndiNLM

algorithms, respectively, with different scalar parameter

values. As can be seen, the CNR from the NLM algorithm

increased as the parameter s increased from 5.0� 10� 4 to

1.2� 10� 3, and then it decreased as s increased from

1.2� 10� 3 to 2.2� 10� 3. In contrast, the CNR from the

ndiNLM algorithm increased as the parameter a increased

from 2.4� 10� 3 to 1.9� 10� 2. This reflects the difference

between NLM and ndiNLM algorithms for low-contrast

region identification. The ndiNLM algorithm performed

more consistently than the NLM method for the wide range

of the parameter value. Both algorithms can improve the

FIG. 4. Profiles through the small strips of the images in Fig. 3 along the line as indicated by the blue lines in Fig. 3: (a) from the normal-dose scan; (b) from

the low-dose scan; (c) from the restored image of the low-dose scan by using the NLM algorithm; and (d) from the restored image of the low-dose scan by

using the ndiNLM algorithm.
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CNR of the low-dose scan (acquired with 120 kVp and 25

mAs) toward that of the normal-dose scan (acquired with

120 kVp and 125 mAs protocol). The CNR of the restored

image from the low-dose scan by the ndiNLM algorithm is

higher than that of the NLM method in a wide range of the

parameter value.

III.A.3. Influence of the scalar parameter on the
resolution

Figure 6 shows the MTFs of the restored images from the

low-dose phantom scan by using both the NLM and ndiNLM

algorithms with respect to a wide range of the scalar parame-

ters. Figure 6(a) shows the MTFs of the image restored by the

NLM algorithm, while Fig. 6(b) shows the MTFs of the image

restored by the ndiNLM algorithm. It can be observed that the

spatial resolution of the restored images by the NLM algo-

rithm fluctuated as the smoothing strength changed from

s¼ 5.0� 10� 4 to s¼ 2.2� 10� 3. In contrast, the MTF

curves of the restored images by the ndiNLM algorithm were

clustered together when the smoothing parameters changed in

a large interval from a¼ 2.4� 10� 3 to a¼ 1.9� 10� 2.

III.A.4. Influence of registration accuracy on the
ndiNLM algorithm

To qualitatively evaluate the influence of image registra-

tion on the restoration performance of the ndiNLM algorithm,

we first introduced an elastic deformation in a normal-dose

phantom image acquired with a 120 kVp and 125 mAs proto-

col. Then the deformed normal-dose phantom image was

used to directly induce the ndiNLM restoration on a low-dose

image acquired with a 120 kVp and 25 mAs protocol. Figure 7

shows the influence of the registration accuracy with the

normal-dose image on the ndiNLM algorithm in the low-dose

image restoration. Figures 7(a) and 7(b) show the low-dose

image and the normal-dose image, respectively. The normal-

dose image with elastic deformation is shown in Fig. 7(c). By

the use of the EMP registration algorithm on Fig. 7(c) and

Fig. 7(a), the registered result is shown in Fig. 7(d). From Fig.

7(b) and Fig. 7(c), the deformation between these two images

is obvious. Figure 7(e) shows the low-dose image restored by

the ndiNLM algorithm with Fig. 7(c) as the reference image

(the previous normal-dose scan). Figure 7(f) shows the

restored image from the low-dose scan by the ndiNLM algo-

rithm with Fig. 7(d) as the reference image. The images in

Figs. 7(e) and 7(f) are very similar. Figure 7(g) shows the cor-

responding difference image between Figs. 7(e) and 7(b); and

Fig. 7(h) shows the corresponding difference image between

Figs. 7(f) and 7(b). From the difference images of Figs. 7(g)

and 7(h), it can be observed that the ndiNLM algorithm is not

sensitive to the deformed normal-dose reference image. In

other words, the presented ndiNLM method does not heavily

depend on the normal-dose image registration accuracy. A

rough registration may be sufficient.

By the use of metrics of Eqs. (5)–(7) on the ROI indicated

by the squares in Figs. 7(e) and 7(f), respectively, we obtained

TABLE I. Image quality metrics on the three ROIs indicated by the squares in Fig. 2(a).

ROI1 ROI2 ROI3

Methods MPB MPSE MPAE MPB MPSE MPAE MPB MPSE MPAE

NLM � 5.12% 1.07 0.85 4.25% 1.23 1.07 � 2.89% 1.04 0.82

ndiNLM 3.87% 0.94 0.76 � 0.40% 0.86 0.70 0.22% 1.07 0.83

Low-dose scan 18.33% 2.33 1.87 � 0.48% 2.14 1.71 4.36% 2.25 1.80

FIG. 5. CNRs of the ROI1 in Fig. 1(a) with different smoothing parameters: (a) from the NLM algorithm where the scalar parameter s was selected from

5.0� 10� 4 to 2.2� 10� 3; (b) from the ndiNLM algorithm where the scalar parameter a was selected from 2.4� 10� 3 to 3.2� 10� 1. The solid and dotted-

dashed lines denote the CNRs for the normal-dose scan and the low-dose scan, respectively.
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the MPB, MPSE, and MPAE values in Table II. It can be

observed that the ndiNLM method exhibits similar results in

terms of the MPB, MPSE, and MPAE metrics with respect to

differently deformed reference images.

III.B. Clinical study

III.B.1. Abdominal CT image restoration

Figure 8 shows the restored results from the patient ab-

dominal low-dose CT images by the NLM and ndiNLM

algorithms. Figure 8(a) shows one slice of the normal-dose

image acquired with 130 kVp and 200 mAs protocol and

reconstructed by a standard B40s reconstruction kernel.

Figure 8(b) shows one slice of the low-dose scan from the

same patient with 130 kVp and 30 mAs protocol and a

standard B40f reconstruction kernel. Figure 8(c) shows the

restored image from the low-dose scan by the NLM

algorithm with scalar parameter value of s¼ 2.44� 10� 4.

Figure 8(d) shows the restored image from the low-dose

scan by the ndiNLM algorithm with scalar parameter value

of a¼ 1.95� 10� 4, where the normal-dose scan in Fig. 8(a)

registered via the EMP algorithm was used as the reference

image. Figure 9 shows the zoomed images corresponding to

Fig. 8. It can be observed that noise in the low-dose CT

images is effectively suppressed by the use of the NLM and

ndiNLM algorithms. The quality of the restored image from

the low-dose scan by both algorithms is comparable to that

of the normal-dose image. The edges are preserved slightly

better in the image restored by the ndiNLM algorithm. In

the region indicated by the arrow in Fig. 9(d), we can see

that the low-contrast structure is well preserved in the

image restored by the ndiNLM algorithm. However, some

structural details are blurred in the image restored by the

NLM algorithm. This observation is consistent with the

quantitative evaluation using the physical phantom studies

as described above, i.e., both the NLM and ndiNLM algo-

rithms performed well in the image restoration and the gain

obtained using the previous normal-dose scan is noticeable.

Figures 9(e) and 9(f) show the corresponding difference

ROI images (indicated by the red squares in Figs. 9(c) and

9(d)) between Figs. 9(c) and 9(b) and Figs. 9(d) and 9(b),

respectively. It can be further observed that the ndiNLM

FIG. 6. MTF curves of two NLM-based image restorations with different scalar parameter settings: (a) the results from the restored image by the NLM algo-

rithm and (b) the results from the restored image by the ndiNLM algorithm.

FIG. 7. Influence of the normal-dose image registration

on the performance of the ndiNLM algorithm for image

restoration from the low-dose scan: (a) a low-dose scan

acquired with 120 kVp, 25 mAs protocol; (b) a normal-

dose scan acquired with 120 kVp, 125 mAs protocol;

(c) an elastic deformation of the normal-dose image

(b); (d) the registered image between (c) and (a) by

using the EMP registration algorithm; (e) the restored

image by the ndiNLM algorithm with the normal-dose

scan (c) as a reference image; (f) the restored image by

the ndiNLM algorithm with the normal-dose scan (d)

as a reference image; (g) the corresponding difference

image of (e) and (b); and (h) the corresponding differ-

ence image of (f) and (b). Display window option:

width is 300 HU, level is 35 HU.
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algorithm can preserve well edge information even when

some tissue motion exists between the normal- and low-

dose images.

Figure 10 displays the horizontal profiles through a small

strip as indicated by the arrow in Fig. 8(b). Each profile was

fitted to a Gaussian function. The full width at half maxi-

mum (FWHM) of the profile is 3.73 voxel units for the NLM

method and 3.20 pixels for the presented ndiNLM algorithm.

The standard deviation of a uniform region (indicated by the

white square in Figs. 8(c) and 8(d), respectively) is 26.59 in

Fig. 8(c) and 26.58 in Fig. 8(d). It can be observed that the

profile from the ndiNLM algorithm is narrower than that

from the NLM method, i.e., a better edge preservation can

be obtained by the ndiNLM algorithm. Table III lists the

image quality metrics on the three ROIs indicated by the

blue squares in Fig. 8(b). It can be seen that the ndiNLM

algorithm can reach a higher restoration accuracy than the

NLM method as measured by the three metrics in the three

ROIs.

III.B.2. Brain perfusion CT image restoration

In this experiment, the normal-dose unenhanced brain CT

image lnd was used to induce the low-dose enhanced brain

CT image lld restoration. In order to reflect the intensity dif-

ference between the enhanced scan and the unenhanced scan

images and also to achieve a more reasonable similarity

between the two patches, we modified the optimal nonlocal

weight construction as follows:

~wðxi; ~xjÞ ¼
C

~ZðxiÞ
exp �

lldðViÞ � C � lndð ~VjÞ
�� ��2

2

h2

( )
; (9)

where ~ZðxiÞ is a normalizing factor, ~ZðxiÞ ¼
P

~xj2 ~Ni
exp

� lldðViÞ � C � lndð ~VjÞ
�� ��2

2

� �
=h2

n o
. The term C is a local

enhancement factor used to account for local changes in in-

tensity due to the contrast enhancement, which is defined as

C ¼ EðlldðViÞÞ=Eðlndð ~VjÞÞ, E(�) being the expected value or

mean of the intensity in the patch Vi. Based on the insensitiv-

ity of the ndiNLM algorithm to image registration, we

assumed no large motion between the enhanced and unen-

hanced scans and, therefore, the EMP registration algorithm

was not employed in this experiments.

Figure 11 shows the experimental results from the brain

perfusion CT imaging by using two different methods.

Figure 11(a) is from the normal-dose unenhanced scan;

TABLE II. Image quality metrics on the ROI indicated by the squares in Figs.

7(e) and 7(f).

Methods MPB MPSE MPAE

ndiNLM (registration) 0.44% 1.04 0.87

ndiNLM (no registration) 0.59% 1.22 0.91

FIG. 8. Clinical abdominal CT image restorations: (a)

the normal-dose scan acquired with 130 kVp, 200 mAs

protocol and a standard B40s reconstruction kernel; (b)

the low-dose scan acquired with 130 kVp, 30 mAs pro-

tocol and a standard B40s reconstruction kernel; (c) the

restored image from the low-dose scan using the NLM

algorithm (Ni¼ 41� 41, Vi¼ 5� 5, s¼ 2.44� 10� 4);

and (d) the restored image from the low-dose scan

using the ndiNLM algorithm, where the registered ref-

erence image from the normal-dose scan (a) was used

as a reference image ( ~Ni ¼ 41� 41; ~Vi ¼ 5� 5,

a¼ 1.95� 10� 4). Display window option: width is 545

HU, level is� 169 HU.
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Fig. 11(b) is from the normal-dose enhanced scan; Fig. 11(c)

is the simulated low-dose enhanced image from the normal-

dose scan (Fig. 11(b)); Fig. 11(d) is the restored image from

the simulated low-dose enhanced scan by the NLM method

with parameter s¼ 4.6� 10� 4; Fig. 11(e) is the restored

image from the simulated low-dose enhanced scan using

the NLM method with a different scalar parameter

s¼ 9.7� 10� 4, which is visually better than Fig. 11(d); and

Fig. 11(f) is the restored image from the simulated low-dose

enhanced scan by the ndiNLM algorithm with scalar parame-

ter a¼ 4.6� 10� 4. Both the NLM and ndiNLM algorithms

achieved excellent restoration results. The gain by the

ndiNLM algorithm in terms of noise suppression and edge

preservation can be seen by comparing Fig. 11(f) with

Fig. 11(e), both of which were obtained using optimal scalar

parameter values. The gain can be seen more easily in the dif-

ference images from the acquired normal-dose enhanced

image of Fig. 11(b). Figure 11(g) shows the difference image

between Figs. 11(b) and 11(c), which is set as the baseline.

Fig. 11(h) is the difference image between Figs. 11(b) and

11(c), showing the gain of the NLM algorithm. Figure 11(i) is

FIG. 9. Zoomed abdominal CT images corresponding

to Fig. 8: (a) the normal-dose scan; (b) the low-dose

scan; (c) the restored image from the low-dose scan by

the NLM algorithm; (d) the restored image from the

low-dose scan by the ndiNLM algorithm; (e) the corre-

sponding difference ROI image, indicated by the red

square in (c), from (c) and (b); and (f) the correspond-

ing difference ROI image, indicated by the square ROI

in (d), from (d) and (b). Display window option: width

is 545 HU, level is� 169 HU.

FIG. 10. Horizontal profiles through a small strip as indicated by an arrow in

Fig. 8(b). The dotted line shows the profile from the low-dose image, the

dashed line shows the profile from the restored image of the low-dose scan

by the NLM algorithm, and the solid line shows the profile from the restored

image of the low-dose scan by the ndiNLM algorithm.
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the difference image between Figs. 11(f) and 11(c), showing

the gain of the ndiNLM algorithm. The skulls in the differ-

ence images were removed for display purposes. It can be

seen that the difference image Fig. 11(i), corresponding to the

ndiNLM algorithm, is very similar to the baseline of

Fig. 11(g), indicating that the restoration by the presented

ndiNLM algorithm has similar image texture as the normal-

dose enhanced scan. However, the difference image

Fig. 11(h) corresponding to the NLM method contains some

enhanced structural information as indicated by the two blue

arrows, indicating that some different image texture appeared

in NLM restored image. In other words, the image restored

by the ndiNLM algorithm has a noticeable gain in preserving

the enhanced structures and, therefore, leads to improvement

in extraction of the kinetic map information.

Figure 12 shows the CBV, CBF, and MTT maps generated

from the difference cerebral perfusion CT image series. Fig-

ure 12(a) is from the acquired normal-dose enhanced images

and Fig. 12(b) is from the simulated low-dose enhanced

images, both of which are set as the baseline for comparison

purposes. Figure 12(c) is from the image restored by the

NLM method. Figure 12(d) is from the image restored by the

ndiNLM method. It can be seen that the quality of CBV,

CBF, and MTT maps from the restored images of the simu-

lated low-dose enhanced scans by both the NLM and ndiNLM

algorithms is comparable to that from the acquired

normal-dose enhanced image, indicating the usefulness of

NLM-based strategies for the clinical task of perfusion hemo-

dynamics. The gain obtained by using the previous normal-

dose scan via the ndiNLM algorithm is made more visible by

the following analysis.

We first generated the color-coded maps of CBF, CBV,

and MTT and then manually selected 19 specific ROI in the

acquired normal-dose images and the simulated low-dose

images, each covering a 5� 5 square area. Without loss of

generality, as shown in Fig. 11(b), the ROI locations were

chosen at the hemispheres in the grey matter, white matter,

and basal ganglia where major blood vessel branches and

TABLE III. Image quality metrics on the three ROIs indicated by the blue squares in Fig. 8(b).

ROI1 ROI2 ROI3

Methods MPB MPSE MPAE MPB MPSE MPAE MPB MPSE MPAE

NLM 5.07% 1.63 1.28 � 34.29% 3.67 1.93 � 45.84% 2.01 1.56

ndiNLM � 3.98% 1.54 1.22 � 31.71% 2.94 1.28 � 29.45% 1.92 1.49

Low-dose scan � 42.05% 3.44 2.75 � 36.05% 3.56 2.80 � 57.02% 3.23 2.56

FIG. 11. Brain perfusion low-dose CT image restora-

tion study. (a) The normal-dose unenhanced scan; (b)

the normal-dose enhanced scan; (c) the simulated low-

dose enhanced image (b); (d) the restored image from

the simulated low-dose enhanced scan by the NLM

algorithm (Ni¼ 17� 17, Vi¼ 3� 3, s¼ 4.6� 10� 4);

(e) the restored image from the simulated low-dose

enhanced scan by the NLM algorithm (Ni¼ 17� 17,

Vi¼ 3� 3, s¼ 9.4� 10� 4); (f) the restored image from

the simulated low-dose enhanced scan by the ndiNLM

algorithm ( ~Ni ¼ 17� 17; ~Vi ¼ 3� 3, a¼ 4.6� 10� 4);

(g) the difference image between (b) and (c); (h) the

difference image between (e) and (c); and (i) the differ-

ence image between (f) and (c). The skulls of the dif-

ference images were removed in displaying the

cerebral tissue display. Display window option: width

is 172 HU, level is 65 HU.
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suspected abnormal signals were excluded. Figure 13 illus-

trates the correlation coefficients, regression results, and the

corresponding Bland–Altman plots of the MTT values in dif-

ferent conditions. As shown in the plots, the correlation coef-

ficient (left column) from the ndiNLM algorithm is larger

and difference in the ordinate axis on the Bland–Altman plot

(right column) is smaller than that from the NLM method,

while both the NLM and ndiNLM algorithms performed

very well compared to the plots (a) and (b). Because the

MTT tends to be very sensitive to the changes of the tube

current and is very useful for the evaluation of the extent of

the cerebral perfusion reserve impairment, we may make a

conjecture that the ndiNLM algorithm outperforms the NLM

algorithm in this perfusion study. Figures 14 and 15 provide

similar results for the CBV and CBF maps. These figures

demonstrate that the presented ndiNLM method can achieve

noticeable performance in low-dose brain perfusion imaging

while maintaining the accuracy of quantitative CT measure-

ments for evaluating regional cerebral function.

IV. DISCUSSION AND CONCLUSION

As with most denoising methods, the presented NLM-

based strategies restore the intensity of each image voxel by

averaging the intensities of its neighboring voxels. However,

NLM strategies differ in that the averaging weight is based on

the intensity similarity of the patches within the neighborhood

of the concerned voxel and does not depend on the spatial

proximity to the concerned voxel. Conceptually, the patches

can be anywhere, and the averaging weights can be inter-

preted as a probability distribution with normalization to unity

and is always positive. Obviously, optimizing the weights is

crucial. Up to now, several NLM-based methods have been

proposed, aiming at an optimal weight computation.29,35–38 In

this paper, we adapted the NLM strategy for low-dose CT

imaging.

In addition to the adaption, we further advanced the NLM

framework to utilize the redundancy information in the previ-

ous normal-dose scans to optimize the weights construction

FIG. 12. CBV, CBF, and MTT maps generated from the different brain perfusion CT images. Column (a) from the acquired normal-dose enhanced images;

column (b) from the simulated low-dose enhanced images; column (c) from the restored images of the simulated low-dose enhanced scans by the NLM algo-

rithm (Ni¼ 17� 17, Vi¼ 3� 3, s¼ 9.7� 10� 4); and column (d) from the restored images of the simulated low-dose enhanced scan by the ndiNLM algorithm

( ~Ni ¼ 17� 17; ~Vi ¼ 3� 3, a¼ 4.6� 10� 4). CBV, CBF, and MTT maps are displayed with same color lookup table, automatic color scale determination, and

vascular pixel elimination, respectively.
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FIG. 13. The correlation (left column) and Bland–Altman plot (right column) between the MTT map pixel values computed from the normal-dose images and

the restored low-dose images. Plots (a) and (b) represent the results obtained from the normal- and low-dose images and are set as the baseline for comparison

purpose. Plots (c) and (d) represent the corresponding results obtained from the normal-dose images and the low-dose image restoration by the NLM algo-

rithm. Plots (e) and (f) represent the corresponding results obtained from the normal-dose images and the low-dose image restoration by the ndiNLM

algorithm.
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FIG. 14. The correlation (left column) and Bland–Altman plot (right column) between the CBV map pixel values computed from the normal-dose images and

the restored low-dose images. Plots (a) and (b) represent the results obtained from the normal- and low-dose images and are set as the baseline for comparison

purpose. Plots (c) and (d) represent the corresponding results obtained from the normal-dose images and the low-dose image restoration by the NLM algo-

rithm. Plots (e) and (f) represent the corresponding results obtained from the normal-dose images and the low-dose image restoration by the ndiNLM

algorithm.
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FIG. 15. The correlation (left column) and Bland–Altman plot (right column) between the CBF map pixel values computed from the normal-dose images and

the restored low-dose images. Plots (a) and (b) represent the results obtained from the normal- and low-dose images and are set as the baseline for comparison

purpose. Plots (c) and (d) represent the corresponding results obtained from the normal-dose images and the low-dose image restoration by the NLM algo-

rithm. Plots (e) and (f) represent the corresponding results obtained from the normal-dose images and the low-dose image restoration by the ndiNLM

algorithm.
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and improve the NLM weighted average. The presented NLM

framework, including both the NLM and ndiNLM algorithms,

produces excellent results. The gain by the use of the previous

normal-dose scans over the low-dose CT itself is noticeable.

In many clinical studies, such as radiotherapy, tumor surveil-

lance and perfusion imaging, repeated CT scans are often

acquired. In these studies, the presented ndiNLM weights

optimization may be useful in reducing the x-ray radiation

dose after the first normal dose CT scan.

Due to the tissue deformation, the anatomy of the same

patient may differ at two different scan periods. Thus, in

order to make use of the previous CT images of the same

patient, dedicated image registration techniques are

needed,26,39,40 which is a very challenging task. However,

this challenge may not be a major obstacle for the ndiNLM

algorithm, because the algorithm does not heavily depend on

the accuracy of the image registration. Figure 7 demonstrates

that the ndiNLM algorithm performs very well for preserva-

tion of the edges and structural details in the presence of sig-

nificant normal-dose image deformation. Certainly, an

accurate registration between the normal-dose and the low-

dose images can reduce the computational burden by allow-

ing use of a smaller search-window and can further improve

the image restoration.

Estimation of the parameter h for both the NLM and

ndiNLM algorithms has taken both the size of the search-

window and the standard deviation of the image noise into

account. Figures 5 and 6 show the results of these two NLM

based low-dose image restorations with different smoothing

parameter values h. Both the NLM and ndiNLM algorithms

produced excellent results for a wide range of parameter val-

ues. The ndiNLM algorithm is more robust than the NLM

for preserving the spatial resolution and identifying the low-

contrast structure because the standard deviation of the low-

dose image is well estimated by the use of the image noise

relationship between the low-dose scan and the normal-dose

scan protocols.27,28

A major drawback of the NLM method is its computa-

tional burden, especially in the 3D case. For the presented

ndiNLM, the computation may be further complicated

because a large search-window is needed to cover a wide

region for the purpose of reducing the influence from imper-

fect image registration. Coupé et al.29 have presented several

techniques to reduce the computational complexity for the

NLM-based strategies including the optimal voxel selection

in the search-window, blockwise implementation, and paral-

lel computation. Because of the similarity in the weighted

averages between the NLM and ndiNLM methods, the tech-

niques proposed by Coupé et al. for the reduction of the

computational burden can be adapted for the presented

ndiNLM. This is a topic for future research.

As pointed out by a reviewer of this work, the presented

ndiNLM algorithm may potentially suppress the small iso-

lated dot structures. For example, observe that two small

black dots located at the vertical center and horizontal right

inside the grey near-circular region in Fig. 8(b) (i.e., the

acquired low-dose CT scan). These two small black dots were

preserved in the NLM restored image of Fig. 8(c), while one

of two dots is suppressed in the ndiNLM restored image of

Fig. 8(d). The suppression is due to the absence of the small

dot in the normal-dose scan of Fig. 8(a). Since the ndiNLM

algorithm assumes the previous normal-dose scan as a priori
known information and adds the information into the

weighted average, a small dot presence in the low-dose scan

but absence in the previous normal scan will likely be sup-

pressed. In clinic, if a small dot in the low-dose CT scan

reflects a true signal, then a measure for the signal shall be

included in the ndiNLM weighted average. Thus, an advanced

nonlocal weights construction by combining the currently

scanned low-dose scan and the previously scanned normal-

dose scan together should be explored in future research.

In this work, our aim was focused on the low-dose image

restoration using a previously scanned normal-dose image.

To test the presented ndiNLM algorithm, all the experiments

were based on the same CT scanning protocol, except for the

mAs parameter setting. In general, the ndiNLM algorithm

utilizes a previously scanned normal-dose image as a refer-

ence, and this reference could be acquired by different CT

scanning protocols, including variations in kVp, mAs, slice

collimation, and reconstruction kernels. Optimizing the scan-

ning protocol parameter settings (i.e., kVp, mAs, etc.) for

the normal-dose and low-dose scans may further improve

the ndiNLM image restoration, which will be another topic

for future research.
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