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Summary
The primary cilium is a microtubule-based organelle that senses extracellular signals as a cellular
antenna [1]. Primary cilia are found on many types of cells in our body and play important roles in
development and physiology. Defects of primary cilia cause a broad class of human genetic
diseases called ciliopathies. To gain new insights into ciliary functions and better understand the
molecular mechanisms underlying ciliopathies, it is of high importance to generate a catalog of
primary cilia proteins. In this study, we isolated primary cilia from mouse kidney cells by using a
calcium shock method and identified 195 candidate primary cilia proteins by MudPIT
(multidimensional protein identification technology), protein correlation profiling, and subtractive
proteomic analysis. Based on comparisons with other proteomic studies of cilia, around 75% of
our candidate primary cilia proteins are shared components with motile or specialized sensory
cilia. The remaining 25% of the candidate proteins are possible primary cilia specific proteins.
These possible primary cilia specific proteins include Evc2, Inpp5e and Inversin, several of which
have been linked to known ciliopathies. We have performed the first reported proteomic analysis
of primary cilia from mammalian cells. These results provide new insights into primary cilia
structure and function.

Results
Isolation of Mammalian Primary Cilia

To identify the proteins that localize to mammalian primary cilia, we isolated primary cilia
from the mouse IMCD3 cell line, which are derived from kidney collecting ducts, by using a
modified calcium shock method (see Supplemental Experimental Procedures). The calcium
shock method is conventionally employed for olfactory cilia isolation [2] and has been used
for proteomic analysis of human bronchial and rat olfactory cilia [3, 4].
Immunofluorescence imaging confirmed that our modified calcium shock method efficiently
removed primary cilia from cultured IMCD3 cells and isolated fraction includes primary
cilia (Figure 1).

Not surprisingly for such a method, we found that the isolated primary cilia fraction
included non-ciliary proteins when analyzed by Western blot (data not shown). To separate
primary cilia from non-ciliary proteins, we fractionated the isolated primary cilia fraction by
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velocity sedimentation through a 30–45% continuous sucrose gradient. Western blot
analysis of these fractions showed that the peak of acetylated-tubulin (fraction 13–17), a
marker for primary cilia, was displaced from the peak of actin (fraction 6–9), which was
used as a non-ciliary marker (Figure 2A, B). We confirmed that actin is not enriched in the
primary cilium by immunofluorescence microscopy (data not shown). A recent study also
showed that F-actin is excluded from cilia and the area around the base of cilia [5].

MudPIT analysis
Since the actin and acetylated-tubulin rich peaks overlapped extensively, it was not possible
to simply pick one fraction and consider it a pure ciliary fraction. Instead, we analyzed each
of the fractions 5–22 from the continuous sucrose gradient, which included both the actin
and acetylated-tubulin peaks, by MudPIT, a mass-spectrometry-based method in which
complex mixtures of proteins can be analyzed without prior electrophoretic separation [6].
MudPIT analysis of the fractions 5–22 detected 2,937 proteins in total (based on a cutoff of
10 spectrum counts), which included known ciliary proteins as well as known non-ciliary
proteins (Table S4).

Protein Correlation Profiling
To distinguish ciliary proteins from non-ciliary proteins we employed protein correlation
profiling [7]. We calculated the relative abundance of each protein in each of the sucrose
gradient fractions using the spectrum count of MudPIT data (see Supplemental Experimental
Procedures). Once the abundance profiles were calculated for every protein, we next
identified possible candidate primary cilia proteins by correlating their profiles to profiles of
known ciliary proteins. The profiles of several known intraflagellar transport (IFT) proteins,
plotted in Figure 2C, showed that they all had very similar profile patterns. These IFT
protein abundance profiles all peaked between fractions 13–17, which coincided with the
cilia peak as judged by Western blotting analysis for acetylated-tubulin (Figure 2A, B). In
contrast, non-ciliary proteins had a fractionation profile that was very different from that of
IFT proteins (Figure 2D). We performed protein correlation profiling as described in
Supplemental Experimental Procedures, comparing the profile of every detected protein
with the IFT-derived consensus profile. This analysis identified 379 candidate proteins with
similar profile patterns to the IFT proteins (Table S4). These proteins were selected as our
initial candidate set for the primary cilia proteome.

Subtractive Proteomic Analysis
Protein correlation profiling is a purely statistical tool. While it can indicate which proteins
are more likely than others to be ciliary proteins it will always generate false positives. We
therefore augmented our analysis with a subtractive proteomic strategy for discriminating
ciliary from non-ciliary proteins independent of profile correlations. We generated IMCD3
cells lacking cilia by treating cells with nocodazole and incubating at a cold temperature
(Figure 3). We then performed cilia isolations using the calcium shock method from both
normal ciliated IMCD3 cells and non-ciliated nocodazole/cold treated IMCD3 cells. The
isolated fractions from ciliated and non-ciliated cells were individually analyzed by MudPIT
and compared. Any proteins detected twice or more in the fraction from non-ciliated cells
were classified as likely non-ciliary proteins and subtracted from the original list of 379
candidates.

As a final step, we corrected for multiple isoforms and redundant protein identification.
(Table S4). The final result of our combined correlation profiling and subtractive proteomics
analysis was a list of 195 candidate primary cilia proteins (Table S1).
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Validation of Candidate Primary Cilia Proteins
To validate our candidate list, we compared our candidate primary cilia protein list with
other systematic studies, including proteomic, comparative genomic, and promoter-analysis
based studies of cilia (Table S2) [3, 4, 8–19]. We found that more than 80% of proteins in
our candidate list were also identified in one or more prior systematic studies of cilia and
around 75% of candidate proteins were also identified in other proteomic studies of cilia.
Thus we infer that our proteomic analysis of primary cilia is likely to contain many bona
fide ciliary proteins. We note that 138 of our candidate proteins were also identified in
proteomic studies of specialized sensory cilia [3, 8, 9]. Significantly, out of our list of 195
candidates, 46 were never identified in other proteomic studies of cilia.

To more directly verify our candidate list, we randomly cloned a subset of candidate
proteins, and stably expressed C-terminal green fluorescent protein (GFP)-tagged and N-
terminal FLAG-tagged candidate proteins in IMCD3 cells (Table S3). 8 of 18 candidate
proteins were localized to primary cilia in these stably expressing lines as judged by GFP
fluorescence (Figure 4) or FLAG-tag staining (data not shown). Thus only about half of the
proteins tested showed localization in cilia, and while some of these could well be false
negatives due to the peptide tags, it is clear that not all of the proteins in our candidate list
are bona fide ciliary proteins. As with any complex organelle proteome, our results are best
viewed as giving an enrichment of ciliary proteins, rather than an absolute purification.

During the course of our studies, some of these candidate proteins have already been
confirmed their ciliary localization in other tissues or cell lines by other recent studies [20–
22]. Interestingly, among these candidates we found that Gtl3 (a homologue of
Chlamydomonas BUG22) [23] is localized to both primary cilia and nuclei (Figure 4B), and
it has a domain consistent with it being a possible transcription factor. Wdr11 is mainly
localized to centrosomes but is also weakly localized to cilia (Figure 4D). One particularly
interesting candidate that we localized to primary cilia, Tsga14 (CEP41, Figure 4C), had
been identified in the proteomic analysis of the human centrosome [7] but was not
previously localized to cilia.

Discussion
We identified 195 proteins as potential primary cilia proteins by using the calcium shock
isolation method, MudPIT correlation profiling, and subtractive proteomic analysis. This
study is the first proteomic analysis of generic mammalian primary cilia. Previous proteomic
analyses of non-motile mammalian cilia focused on specialized sensory cilia, namely the
connecting cilium of photoreceptors and olfactory cilia [3, 8, 9], which differ in appearance
from “generic” primary cilia but share the same fundamental structure of a microtubule
axoneme surrounded by a membrane.

Our primary cilia candidate list includes almost all known IFT proteins except Ift43 (Table
S5). We also identified kinesin and dynein IFT motor proteins. Notably absent were any
BBS proteins, which are the causative gene products of Bardet-Biedl syndrome and are
localized to primary cilia [24]. We do not understand why most of the IFT proteins, but none
of the BBS proteins, were detected in our analysis. Nevertheless, the fact that we recovered
almost every known IFT proteins, including IFT proteins not used to construct the reference
protein profile, confirms that our calcium shock method and protein correlation profiling
were effective for identifying bona fide ciliary proteins. Our candidate list also includes
proteins that potentially regulate protein import into the cilium. We identified the septins
(Sept2, Sept7 and Sept9) in our ciliary proteome. Septins have been reported to form a
diffusion barrier that controls protein entry into cilia and regulates ciliogenesis [25, 26]. We
also detected the small GTPase Ran as well as importin, which regulate both nuclear and
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ciliary entry of proteins [27]. However, we failed to detect many known ciliary membrane
proteins, such as polycystin-1 and polycystin-2. This may reflect the reduced solubility of
such proteins under extraction conditions used for protein separation in MudPIT.

Around 75% of our candidate primary cilia proteins are shared components with motile or
specialized sensory cilia (Table S2). Especially, most of IFT proteins and Nme7 were also
identified in comparative genomics and X-box promoter analysis (Table S2). We speculate
that Nme7 is a part of IFT complex or related with IFT. However, Nme7 may regulate
protein transport or signal transduction rather than assembly of cilia [28]. This indicates
these proteins are necessary for all types of cilia and flagella. On the other hand, prior to our
analysis we had expected to recover two major classes of axonemal proteins in our candidate
list: tektins and pf-ribbon proteins [29, 30]. As these proteins are known to be stable and
abundant components of the axoneme, we assumed that they would be among the most
abundant hits in our list, just as they have been reported to be common in proteomic analysis
of motile cilia/flagella and basal bodies [4, 10, 23]. Structural studies have suggested that
tektins and pf-ribbon proteins form filamentous structures tightly associated with the outer
doublets of the axoneme, which are conserved among all animal cilia, and may therefore be
critical determinants of outer doublet architecture in all cilia [31]. Surprisingly, neither
tektin nor pf-ribbon proteins were found in the candidate list from our primary cilia
proteome. Tektin and pf-ribbon proteins have also not been identified in the proteomes of
specialized sensory cilia [3, 8, 9]. Moreover, knock out or knock down of tektin induces
defects in ciliary motility but not in ciliogenesis per se [32, 33]. Therefore, it is possible that
tektin and pf-ribbon proteins are only components of basal bodies and motile cilia, but not
primary cilia.

The remaining 25% of our candidate proteins are possible primary cilia specific proteins
because these proteins have not been identified in proteomic studies of motile or specialized
sensory cilia. However, some primary cilia specific proteins might be also localized to
sensory or motile cilia because Inpp5e was also identified in inner segment of photoreceptor
[34]. Some of the primary cilia specific proteins are apparently involved in signal
transduction, such as, Evc2, Inpp5e, Inversin, Broad-Minded (Bromi) and Nphp3. Evc2 and
Bromi function in hedgehog signal transduction [20, 35], while Inpp5e is involved with
phosphatidylinositol and PDGF signaling [34, 36].

Because ciliary defects are linked to many genetic disorders, we were particularly interested
to see if any ciliary disease loci would turn up in our candidate list. In fact, multiple
candidate proteins were found to correspond to known causative gene products of genetic
disorders (Table S6). We identified several known ciliopathy gene products, including
Inpp5e, Evc2, Nphp3, Nek8 and Lca5 (see referenes in Supplemental Information). A recent
study reported that TSGA14 is a plausible causative gene of autism spectrum disorders [37].
Moreover, WDR11 has been also recently reported as a causative gene of idiopathic
hypogonadotropic hypogonadism and Kallmann syndrome [38]. In light of our results that
Tsga14 and Wdr11 are present within primary cilia (Figure 4C, D), we hypothesize that the
autism and abnormal genital development in such patients might illustrate new symptoms of
ciliopathy.

In this study, we isolated primary cilia from cultured mammalian cells and utilized this
material to generate the first reported proteome of mammalian primary cilia. Our analysis
revealed that the majority of primary cilia components are shared with motile and
specialized sensory cilia. However, around 25% of the candidate proteins were only
identified in this analysis, including Evc2, Inpp5e, Inversin, Nphp3 and Broad-Minded.
These novel candidates, a number of which have already been implicated in ciliopathies and
signal transduction, are potentially specific to primary cilia. Tsga14 and Wdr11 are new
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candidates of causative genes of ciliopathy. The results of this study should serve as a
starting point toward a greater understanding of primary cilia functions and mechanistic
insights into ciliary diseases.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The calcium shock method efficiently isolates primary cilia from IMCD3 cells. (A, B)
Immunofluorescence images of IMCD3 cells stained with acetylated-tubulin (green; primary
cilia), ZO-1 (red; cell-cell junctions) and DAPI (blue; nuclei). Untreated cells (A) and cells
treated with deciliation solution (B). (C) Isolated fraction includes primary cilia, which
stained with acetylated-tubulin. Scale bars, 10 μm.
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Figure 2.
Fractionation of isolated ciliary proteins and protein correlation profiling. (A) Western
blotting images of isolated primary cilia fractions, fractionated on a 30–45% continuous
sucrose gradient. Acetylated-tubulin was used as a marker for ciliary proteins, while actin
represents a typical non-ciliary contaminant. (B) Quantification of band intensities from
Western blotting in A showing displaced but overlapping peaks of acetylated-tubulin and
actin. (C, D) Graphs display the normalized abundance profiles of a set of known ciliary
proteins (IFT proteins: C) and known non-ciliary proteins (focal adhesion proteins: D) based
on MudPIT mass spectrometry analysis of the fractions.
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Figure 3.
Nocodazole and cold treatment generate non-ciliated cells for subtractive proteomic
analysis.
(A, B) Immunofluorescence images of IMCD3 cells stained with acetylated-tubulin (green;
primary cilia), ZO-1 (red; cell-cell junctions) and pericentrin (magenta; centrosomes).
Untreated cells (A) and cells treated with cold and nocodazole to retract cilia (B). Scale bars,
10 μm. (C) Western blots of isolated fractions from normal IMCD3 cells and non-ciliated
(cold and nocodazole treated) cells, probed with antibodies to acetylated-tubulin (Ac-
tubulin) and actin. These non-ciliated cells were used to prepare a reference fraction for
subtractive proteomics.
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Figure 4.
Localization of candidate primary cilia proteins.
(A–E) GFP-tagged candidate primary cilia protein constructs (GFP-fusion protein, green)
stably expressed in transfected IMCD3 cells. Acetylated-tubulin (Ac-tubulin, red) antibody
stains primary cilia. Pericentrin antibody stains centrosomes (magenta). Far left column
shows merged image and DAPI (blue; nuclei). Right four columns are enlarged images.
Scale bars, 5 μm.
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