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ABSTRACT: Mutations in WNKI1 and WNK4 cause
familial hypertension, the Gordon syndrome. WNKI1
and WNK4 conserved noncoding regions were targeted
to polymorphism screening using DHPLC and DGGE.
The scan identified an undescribed polymorphic AluYb8
insertion in WNKI1 intron 10. Screening in primates
revealed that this Alu-insertion has probably occurred in
human lineage. Genotyping in 18 populations from
Europe, Asia, and Africa (n = 854) indicated an expan-
sion of the WNK1 AluYb8 bearing chromosomes out of
Africa. The allele frequency in Sub-Saharan Africa was
~3.3 times lower than in other populations (4.8 vs.
15.8%; P=9.7x107°). Meta-analysis across three
European sample sets (n = 3,494; HYPEST, Estonians;
BRIGHT, the British; CADCZ, Czech) detected signifi-
cant association of the WNKI1 AluYb8 insertion with
blood pressure (BP; systolic BB, P =4.03 x 1072, effect
1.12; diastolic BB, P = 1.21 x 1077, effect 0.67). Gender-
stratified analysis revealed that this effect might be
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female-specific (n = 2,088; SBE, P = 1.99 x 1072, effect
1.59; DBP P =3.64 x 107%, effect 1.23; resistant to
Bonferroni correction), whereas no statistical support
identified for the association with male BP
(n =1,406). In leucocytes, the expressional proportions
of the full-length WNKI1 transcript and the splice-form
skipping exon 11 were significantly shifted in AluYb8
carriers compared to noncarriers. The WNK1 AluYb8
insertion might affect human BP via altering the profile
of alternatively spliced transcripts.

Hum Mutat 32:806-814, 2011. © 2011 Wiley-Liss, Inc.
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Introduction

Essential hypertension is a complex disease promoted by an
unfavorable combination of person’s life style and heritable
factors. It is a significant health risk leading to other cardiovas-
cular and renal diseases. Genetic studies of monogenic, Mendelian
forms of hypo- and hypertension have identified ~20 rare
mutations in blood pressure regulating genes with a strong effect
on the phenotype [Lifton et al., 2001; Vehaskari, 2007]. Although
these rare mutations do not explain blood pressure variation in
the general population, the identified genes are promising targets
for functional, physiological and genetic studies of essential
hypertension [Ji et al., 2008].

Serine/threonine protein kinase family members WNK1 (MIM#
605232) and WNK4 (MIM# 601844) [Verissimo and Jordan, 2001;
Xu et al., 2000] are involved in the development of a Mendelian
form of hypertension, pseudohypoaldosteronism type II, or the
Gordon syndrome [Wilson et al., 2001, 2003]. The syndrome is
caused either by large deletions (two identified variants: 22 and
42kb) in the first intron of WNKI or by nonsynonymous
substitutions in WNK4 (four described mutations). Although
WNKI and WNK4 are expressed in multiple tissues, their major
role is to regulate the transport of sodium and potassium ions in
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distal convoluted tubule and cortical collecting duct of nephrons,
and thereby to contribute to blood pressure determination
[Verissimo and Jordan, 2001; Wilson et al., 2001]. The human
WNKH4 gene (19 exons) spans ~16 kb on chromosome 17q21.31.
The human WNKI gene (29 exons) covers ~160kb on
chromosome 12p13 and codes for multiple transcripts initiated
by alternative promoters [Delaloy et al., 2003; Wilson et al., 2001;
Xu et al., 2000]. Two major WNK1 isoforms have been described:
a long isoform (L-WNKI1) with complete kinase domain and a
short kidney-specific isoform (KS-WNKI1), which is kinase-
deficient [Xu et al., 2000]. Although multiple alternative splice-
forms of WNKI have been identified, the function of individual
transcripts is yet to be determined. In addition to the identifica-
tion of rare variants in WNKI and WNK4 responsible for the
Gordon syndrome, common single nucleotide polymorphisms
(SNPs) in these genes have been associated with blood pressure
variation and susceptibility to hypertension in general population
among adults as well as children [Kokubo et al., 2004; Newhouse
et al., 2005, 2009; Osada et al., 2009; Tobin et al., 2005, 2008].
SNPs in WNKI also affect the response of thiazide diuretics
treatment on patient’s blood pressure [Turner et al., 2005].

Although monogenic diseases are usually caused by rare
variants located in the coding sequence of a gene, common
diseases are rather considered to result from genetic variation in
gene regulatory elements altering the expressional profile of the
locus [Pastinen and Hudson, 2004; Visel et al.,, 2009]. As gene
regulatory elements tend to map within evolutionarily conserved
segments of the genome [Elgar and Vavouri, 2008; Hardison,
2000], these regions have a potential to harbor polymorphisms
contributing to the susceptibility to common traits including
essential hypertension.

The aim of the current study was to screen the evolutionarily
conserved noncoding regions of WNKI and WNK4 to identify
novel polymorphisms potentially affecting blood pressure in
general population. Variant screening resulted in the identification
of a novel human-specific polymorphic AluYb8 insertion in
WNKI1 intron 10. This Alu-insertion was targeted to further
evolutionary and population genetic analysis, as well as was also
explored for association with blood pressure and its effect on the
transcriptional profile of the WNKI gene in leucocytes.

Materials and Methods

In Silico Analysis of Conserved Noncoding Regions
in WNK1 and WNK4

Conserved noncoding regions (CNRs) in WNKI and WNK4
were screened using the Web-based VISTA software (http://
genome.lbl.gov/vista/index.shtml) with the proposed default
parameters (cutoff criteria: 100-bp sliding window; sequence
identity >70%; comparison with rat and mouse). The analyzed
loci spanned from 10 kb upstream to 10 kb downstream of WNK1
(12p13.3; coordinates 722,486-900,879, NCBI Build 36.1, hgl8)
and WNK4 (17q21.31; coordinates 38,176,222—38,212,587, NCBI
Build 36.1, hgl8). All VISTA regions that had any overlap
with annotated genes track at UCSC Genome Browser (http://
genome.ucsc.edu/) were excluded as potential coding regions.
Polymorphism discovery was targeted to CNRs with sequence
identity >70% between human and rodents, length of the
region 50-300bp, and location >200bp from the nearest exon
(Supp. Table S1).

Screening for Novel Polymorphisms in WNKT and WNK4
Conserved Noncoding Regions

In total, 40 CNRs (n =29 in WNKI; n=11 in WNK4) were
selected for polymorphism screening, which was conducted either by
Denaturing Gradient Gel Electrophoresis (DGGE; INGENYphorU-
2 x 2 system, Ingeny International BV, Goes, The Netherlands) and/
or Denaturing High-Performance Liquid Chromatography method
(DHPLC; Wave Technologies Inc., Herndon, VA). In the design of
the DGGE and DHPLC assays and in establishing the experimental
conditions, the manufacturers’ recommendations were followed.
Details of the assays are given in Supp. Text S1. The design of both
DGGE and DHPLC assays was unsuccessful for seven CNRs in
WNKI and two CNRs in WNK4 due to failure in primer design
(inappropriate primer T, or more than two T,, melting points for
the region of interest) or a negative result in the genome test (Supp.
Table S1). The genome test was applied to confirm the unique
binding of a tested primer in the genome. The rest of the 31 selected
CNRs were screened for polymorphisms either by DHPLC (seven
regions in WNKI; five in WNK4), by DGGE (seven in WNKI; one in
WNKH4) or by both assays (eight in WNKI; three in WNK4; Supp.
Table S1). Primers for DHPLC and DGGE assays are given in Supp.
Tables S2 and S3, respectively.

The average length of the CNR segments selected for
polymorphism screening was 145bp (range: 68-291bp) and
PCR fragments was 360 bp (range: 245-487 bp). Genomic DNAs
of essential hypertension patients from two Eastern European
studies (n =22 from HYPEST; n =24 from CADCZ; detailed
description below) were targeted to polymorphism screening by
DGGE (individual DNAs) and/or DHPLC (pools of DNA from
three patients). PCR products exhibiting evidence for the presence
of a polymorphism were sequenced on both forward and reverse
orientations. Polymorphisms were identified using BioEdit
Sequence Alignment Editor (T. Hall, Department of Microbiology,
North Carolina State University).

Genotyping of the WNK1 AluYb8 in General Human
Population Samples

For large-scale genotyping of WNKI AluYb8 in humans PCR
followed by standard agarose gel electrophoresis was used. The
primer design (WNK1_Alu_F: 5'-GGGTAACCAACCCTTGAAG-
TAGG-3; WNKI1_Alu_R: 5-GGGTACTTCTCAAGTGATTAG-
GAGGA-3') was carried out using the Web-based program
Primer3 [Rozen and Skaletsky, 2000]. Quality control of the
genotyping by agarose gel electrophoresis was assured by
including previously resequenced positive controls representing
alternative genotype carriers on each gel: wild-type (PCR product
353bp); heterozygous (PCR products 353 and 660bp) and
homozygous (PCR product 660bp) individuals for the AluYb8
insertion (Fig. 1; Supp. Figs. SI and S2). The distribution of the
WNKI AluYbS8 insertion was studied in six European (Estonians,
n=100; Czech, n=50; CEPH, n=30; the Basque, n=50;
Catalans, n = 41; Spanish Gypsies, n = 50), four Asian (Koreans,
n = 43; Chinese Han, n = 25; Tatars, n = 47; Bashkir, n = 47), and
eight African populations (Tunisians, n = 48; Algerians, n = 48;
Moroccans, n = 84; Mandenkalu, n = 24; Saharawi, n = 50; Gabon
Bantus, n = 50; Gabon Pygmies, n = 50; Tanzanians, n = 17).

Conservation of the WNK1 AluYb8 Insertion in Primates

The presence of the WNKI AluYb8 insertion was ascertained for
a gorilla (Gorilla gorilla; primary cell line AG05251B, purchased

807

HUMAN MUTATION, Vol. 32, No. 7, 806—814, 2011



marker -f- AJ- AlA chimpanzee gorilla orangutan
human human human

700 bp

600 bp [ | _

500 bp

400 bp

300 bp —

200 bp

Figure 1.

Detection of the presence of WNKT intron 10 AluYb8insertion in primates. Agarose gel (3%) electrophoresis of WNKT intron 10 PCR

products amplified from human, chimpanzee, gorilla, and orangutan genomic DNAs. In humans, alternative genotype carriers are shown: wild-
type homozygote without AluYb8insertion (—/—, PCR product 353 bp); heterozygous (A/—) and homozygous (A/A, PCR product 660 bp) carriers of

the insertion

from ECACC), for an orangutan (Pongo pygmaeus; primary cell
line AG12256, purchased from ECACC) and for 11 western
chimpanzees (Pan troglodytes verus) using identical PCR setup as in
human genotyping. DNA sample of one chimpanzee originates
from a wild-born male specimen (Pino) from Tallinn Zoo, Estonia.
Ten samples of wild-caught and unrelated animals (Annaclara,
Frits, Hilko, Louise, Marco, Oscar, Regina, Socrates, Sonja, and
Yoran) are from the collection stored at the Max Planck Institute
for Evolutionary Anthropology, Leipzig, Germany, and were kindly
shared by Dr. Svante Pddbo. This sample collection is described in
detail elsewhere [Becquet et al., 2007; Ptak et al., 2004].
Ancestral sequence of the targeted genomic region (WNKI
exonlO—intron10-exonll) was assessed by the comparative
sequencing of the genomic DNA from WNKI AluYb8 insertion
noncarrier (—/—) and carrier (Alu/Alu) human homozygotes as
well as from a chimpanzee (Pino). Sequencing primers are listed
in Supp. Table S4. PCR cycling conditions, product purification,
and sequencing have been described elsewhere [Hallast et al.,
2005]. Sequences were aligned using Web-based global alignment
program ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/). Human
WNKI1 alternative sequences of the region including exon 10/intron
10/exon 11 (without and with AluYb8 insertion) were compared with
available genome sequences from multiple species using the BLAST
tool blastn (http://blast.ncbinlm.nih.gov/Blast.cgi). The searches
were performed against the following sequence databases: NCBI
Genomes, Whole-Genome-Shotgun Sequences. Nucleotide sub-
stitution rates between human and chimpanzee were calculated as
the percentage of the number of substitutions divided with the
total number of aligned nucleotides in the specific genomic
region. The number of substitutions and the total number of
aligned nucleotides were calculated using EMBOSS stretcher
(http://emboss.sourceforge.net/) [Rice et al., 2000].

Stage 1 Association Analysis in HYPEST

In Stage 1, the association of the WNKI AluYb8 insertion with
BP was addressed using HYPEST (HYPertension in ESTonia)
case—cohort sample collection (Table 1; recruitment details in
Supp. Text S1). The HYPEST study has been approved by the
Ethics Committee on Human Research of University of Tartu (no.
122/13, 22.12.2003; 137/20, 25.04.2005) and it was carried out in
compliance with the Helsinki Declaration. All the participants
have given their written informed consent. HYPEST subjects were
recruited across Estonia during 2004-2007 (1,823 individuals; age
range: 18-85 years) with the aim to analyze genetic—epidemiological
risk factors for essential hypertension and related cardiovascular
disease in Estonian population. In the current study, the total
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number of genotyped HYPEST subjects was n =1,747. At the
recruitment, the resting BP of each participant has been measured
by trained clinicians using a standard mercury column sphygmo-
manometer and size-adjusted cuffs. HYPEST individuals pos-
sessed a documented history of multiple systolic and diastolic BP
readings (on average, 4.31 readings per individual during mean
3.17 years). For the analysis, the median across the longitudinal
BP readings as well as the median of the subject’s age during the
readings were used.

Association analysis with SBP and DBP was performed using
1,211 individuals (803 women, 408 men) derived from the
population-based cohort across Estonia consisting of long-term
blood donors not receiving any antihypertensive medication
(Table 1). For binary analysis with essential hypertension, cases
(n=673) were defined as untreated subjects with BP readings
>160/100 mmHg based on the median of several measurements or
patients receiving antihypertensive therapy. Normotensive controls
(n=601; SBP <140 mmHg/DBP <90 mmHg) were selected from
the population-based HYPEST cohort among the subjects that
have never been prescribed antihypertensive treatment.

Stage 2 Replication

In Stage 2, association testing of the WNKI AluYbS8 insertion
and BP was performed in two European samples—the BRIGHT
(BRItish Genetics of HyperTension) and the CADCZ (Coronary
Artery Disease in Czech)—and the results were combined in
meta-analysis with Stage 1 study samples. The final sample size in
meta-analysis with SBP and DBP was 3,494 subjects (2,088
women, 1,406 men; none treated with antihypertensive medica-
tion), and with hypertension 3,181 cases/2,720 controls (women,
1,851/1,692; men 1,330/1,028).

CADCZ study has been approved by the Ethics Committee of
Charles University—First Faculty of Medicine (December 1996)
and the BRIGHT study was approved by the Ethics Committee
from local research committees of all partner institutes. All
BRIGHT and CADCZ participants have given their written
informed consent. The MRC British Genetics of Hypertension
case—control samples have been recruited across the United
Kingdom (http://www.brightstudy.ac.uk). Case ascertainment and
phenotyping has been described elsewhere [Caulfield et al., 2003].
Briefly, cases originated from severely hypertensive families (1,700
sibpairs and 800 families collected for transmission disequilibrium
test) were defined as patients under antihypertensive treatment
and with BP readings >150/100 mmHg based on one reading
or >145/95mmHg based on the mean of three readings.
Healthy normotensive controls (n = 2,000; BP < 140/90 mmHg,



Table 1.
Hypertension (HYP)

Phenotypic Parameters of Study Subjects in the Analysis with Systolic (SBP) and Diastolic (DBP) Blood Pressure and

HYPEST

CADCZ BRIGHT

Essential hypertension®

Essential hypertension” Family-based hypertension®

Population Population
Parameter (Mean +SD) sample” Cases Controls sample” Cases Controls Cases Controls
No. of individuals 1,211 673 601 644 266 480 2,242 1,639
(male/female) (408/803) (228/445) (162/439) (361/283) (180/86) (229/251) (922/1,320) (637/1,002)
Age at recruitment (y) 44.84+12.5 56.04+9.5 38.94+9.0 47.8+11.0 55.5+6.5 459+11.1 57.2410.8 58.84+9.0
Age at onset of disease (years) na 44.0+12.7 na na 46.5+9.6 na 46.8+10.3 na
BMI (kg/mz) 26.7+4.8 30.3+5.1 24.6+4.3 26.1+4.0 29.3+4.5 25.6+3.9 274439 253432
SBP (mmHg) 141.0+19.0 144.24+17.6 127.8+8.0 126.0+14.4 146.8+17.7 122.0+10.2 154.2+20.8 123.1+10.5
DBP (mmHg) 87.2+11.0 88.3+10.6 80.8+6.4 80.4+9.4 90.64+9.3 78.248.0 94.1+11.1 76.5+7.1
Antihypertensive treatment (% of subjects) 0.0% 78.5% 0.0% 0.0% 85.0% 0.0% 100% 0.0%

*Subjects from Estonian (HYPEST) and Czech (CADCZ) populations not receiving antihypertensive medication and used in association analysis with SBP and DBP.
PCases: subjects under antihypertensive treatment or untreated subjects SBP > 160 mmHg and/or DBP > 100 mmHg; Controls: subjects with SBP <140 mmHg and DBP

<90 mmHg, receiving no antihypertensive medication.

“Cases: patients from severely hypertensive families, under antihypertensive treatment and with BP >150/100 mmHg based on one reading or >145/95 mmHg based on the
mean of three readings; Controls: subjects with BP < 140/90 mmHg, receiving no antihypertensive medication. SD, standard deviation; BMI, body mass index (kg/m?); SBP,

DBP, systolic and diastolic blood pressure; y, age in years; na, not applicable.

no antihypertensive medication and no diagnosed diseases) were
recruited by matching age, sex, and geographical distribution
across the United Kingdom. Following the study design, the
association analysis with SBP and DBP included healthy untreated
BRIGHT controls (n = 1,639, 1,002 women, 637 men; Table 1). In
case—control analysis hypertensives (n = 2,242) and normotensives
(n=1,639) were classified as defined at the recruitment. CADCZ
subjects were recruited by the Cardiology Department of the
Second Clinic of Internal Medicine, Faculty Hospital Kralovské
Vinohrady in Prague Czech Republic, and details of the
recruitment are published elsewhere [Janosikova et al., 2003].
Trained clinicians documented three measurements of resting BP
and the median value was recorded. Association testing between
SBP, DBP, and the carrier status of WNKI AluYb8 insertion
included subjects not receiving antihypertensive treatment
(n=0644, 283 women, 361 men; Table 1). Hypertensives
(n=1266) and normotensives (n =480) in case—control analysis
were defined as in HYPEST.

RNA Extraction and cDNA Synthesis

EDTA-blood (9ml) was collected from nine female subjects
from HYPEST study selected based on their alternative genotypes:
three heterozygotes (Alu/—) and three homozygotes (Alu/Alu)
for the WNKI AluYb8 insertion; and three subjects with wild-type
(—/—) sequence (Supp. Table S5). Total RNA from leucocytes was
extracted using LeukoLOCK™ Total RNA Isolation System
(Ambion Inc., Austin, TX) including an optional TURBO™ DNase
treatment to degrade the genomic DNA. Quantity and quality of
extracted RNA was assessed with NanoDrop®™ ND-1000 UV-Vis
Spectrophotometer (NanoDrop Technologies, LLC, Wilmington, DE).
RNA was reverse transcribed using SuperScript ™ III First-Strand
Synthesis SuperMix for qRT-PCR (Life Technologies Corporation,
Carlsbad, CA) according to the manufacturer’s instructions
(details in Supp. Text S1).

Quantification of WNKT Transcripts by Real-Time PCR

Relative expression analysis of three WNKI splice forms (ex+11
+12, ex—11+12, and ex—11—12; Fig. 2A) was performed with
real-time PCR. Primer-probe mix of the WNKI transcript

including exon 11 (ex+11+12; Hs01018312_m1, amplicon size
78bp) and selected reference gene HPRTI [Human HPRTI1
(HGPRT) Endogenous Control (VIC/MGB Probe, Primer
Limited, amplicon size 100bp)] were purchased from Applied
Biosystems, Inc. (Foster City, CA). Primers and probes for the
WNKTI transcripts lacking exon 11 (ex—11+12) and both exons 11
and 12 (ex—11—12) were designed using Primer Express version
3.0 (Applied Biosystems Inc.). Oligonucleotide sequences are
given in Supp. Table S4.

The real-time RT-PCRs were performed using Applied
Biosystems 7900HT Fast Real-Time PCR system in 96 microwell
plates. Target region and endogenous control were amplified in
the same well. The experimental conditions for the real-time PCR
are given in detail in Supp. Text S1. In total six replicate analyses of
each of the nine extracted RNA samples were conducted: two
independently synthesized ¢DNAs were assayed by RT-PCR
reactions in triplicate.

Statistical Analysis

Statistical differences in allele frequencies between populations
were calculated using the Web-based Fisher’s Exact Test calculator
(http://www.langsrud.com/fisher.htm). The significance of the
associations between the WNKI1 AluYb8 insertion and BP (SBP;
DBP) as a quantitative trait was tested using linear regression
(additive genetic model) with age and gender as covariates.
Additive genetic model assumes a trend per copy of the minor
allele to contribute to the trait or disease susceptibility on
genotype categories. Association with the diagnosis of hyperten-
sion as a binary trait was assessed by logistic regression adjusted
for age and sex. Association tests and calculation of LD between
SNP pairs (1) were implemented in the PLINK software,
version 1.04 (http://pngu.mgh.harvard.edu/~purcell/plink/). The
Bonferroni threshold for multiple testing correction was estimated
0.05/9 = 5.56 x 107>, taking into account the number of tested
phenotypes (three) and tested study samples (three). Results were
combined in a meta-analysis using the inverse-variance method
under fixed-effects model using R, version 2.7.2 (R Development
Core Team 2008, http://www.r-project.org/).

Normalized expression values of target regions were calculated
using Microsoft™ Excel®-based software Q-Gene [Muller et al.,
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Expression of (A) three WNKT7 alternative splice-forms in blood leucocytes obtained from (B) heterozygous (Alu/—) and

(C) homozygous (Alu/Alu) carriers of the WNKT AluYb8 insertion in comparison with the wild-type homozygote without the insertion. A:
Alternative splicing of WNKT exons 10-13 is presented schematically according to Delaloy et al. [2003]. Black numbered boxes and horizontal
lines represent exons and introns, respectively, and dotted lines indicate splicing events. B, C: Relative mRNA quantification of the targeted
WNKT1 splice-forms in leucocytes was performed with real-time RT-PCR (Tagman assay, HPRT as a reference gene). Relative expression of each
targeted WNKT splice-form in subjects with the AluYb8insertion (Alu/Alu homozygotes, Alu/— heterozygotes) is shown using the quantity of the
transcript in wild-type homozygotes (—/—) as a reference value (wt = 1). The presented relative expression levels represent the mean values of
the three study subjects within the genotype group (each individual represented by six data points from replicate experiments). Bars represent
standard error of the relative expression. P-Values reflecting the differences between groups were estimated by Wilcoxon rank sum test.

2002]. Q-Gene calculates the normalized expression values of the
target gene based on the Ct values and the reaction efficiencies of
the target and the reference gene (here HPRT). For every study
subject six replicate values of relative expression per each
alternative WNKI1 splice form (ex+11+12, ex—11+12, and
ex—11—12) was calculated. As each of the genotypes (Alu/Alu,
Alu/—; —/—) was represented by three individuals, in total 18 data
points were collected per transcript within a genotype group. The
most outlier Ct value within the respective genotype group was
excluded from the statistical testing. Differences of normalized
expression values between alternative genotype groups were
estimated by Wilcoxon rank sum test implemented in R software.

Results

Polymorphism Screening in WNK7 and WNK4 Conserved
Noncoding Regions

DHPLC and/or DGGE assays were designed for screening novel
polymorphisms in CNRs of the WNK1 (29 targeted CNRs based
on criteria outlined in Materials and Methods) and the WNK4 (11
CNRs) genes (Supp. Table S1). Based on the in silico quality
control criteria for assay design, nine regions were excluded from
the wet-lab analysis. Finally, 31 CNRs entered variant detection in
Eastern European essential hypertension patients (from HYPEST
and CADCZ studies). Among the screened 31 CNRs, one SNP was
identified in the WNK4 and six SNPs in the WNKI gene (Supp.
Table S6). All but one (rs36052085) of the detected SNPs were rare
(minor allele frequency <10%), including three singletons (two
novel). The functional effect of these SNPs was addressed neither
by association study due to large sample size requirements nor
by gene expression analysis due to unavailability of minor allele
homozygotes.

In addition, in one of the WNKI CNRs, a novel unreported
common indel (~300bp) was detected (Fig. 1; Supp. Table S6).
Sequence analysis of this variant revealed a polymorphic insertion
of an AluYb8 element (288 bp without flanking T nucleotides) into
810
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Table 2. WNK1T Intron 10 AluYb8 Allele Frequencies in
Population Groups

No. of  Allele
Group subjects frequency Population composition
Eastern Europe 150 16.3%  Estonians, Czech
Western Europe 121 14.1%  CEPH/Utah families, Basques, Catalans
Gypsies 50 12.0%  Spanish Gypsies
Volga-Ural 94 17.0%  Tatars, Bashkirs
Eastern Asia 68 16.8%  Chinese Han, Koreans
North Africa 230 16.4%  Moroccans, Saharawi, Algerians, Tunisians
Sub-Saharan Africa 141 4.8%  Mandenkalu, Tanzanians, Gabon Bantus,

Gabon Pygmies

a poly-T tract within WNKI intron 10,~780bp upstream from
exon 11 (Supp. Fig. S2). This Alu-insertion was targeted to further
evolutionary and population genetic analysis as well as was
explored for the association with cardiovascular disease and the
effect on the gene expression profile.

Alu Distribution Among General Human Populations

The WNK1 AluYb8 insertion was genotyped in 18 population
samples from Europe, Asia, and Africa (Supp. Table S7 and Supp.
Fig. S3). The genotyped variant was in Hardy-Weinberg equili-
brium in all but one (Saharawi, n=50) studied population
samples. Frequency of the AluYb8 insertion in human populations
differed based on their geographic affiliation (Table 2, Supp. Fig. S3).
The proportion of WNK1 AluYbS8 carriers in Sub-Saharan Africa
was significantly lower (average allele frequency 4.8%; range:
2.1-7.0%) compared to North-African (mean: 16.4%, range:
10.4-25.0%; Fisher’s Exact Test, P= 2.2 x 107%), European (mean:
15.1%, range: 12.0-16.5%; P = 8.7 x 10_9), and Asian (mean:
15.9%, range: 11.6-22.0%; P = 9.4 x 107%). On average, the allele
frequency of the WNKI AluYb8 in Sub-Saharan Africa was ~3.3
times lower than in other studied populations (P =9.7 x 10™°).



Alu Insertion in Primates and Conservation Around
Insertion Site

The analysis of the WNKI intron 10 in 11 chimpanzees, 1
gorilla, and 1 orangutan revealed that the WNKI AluYb8 insertion
has most probably occurred in human lineage. No AluYb8
insertion was detected in the WNKI intron 10 of the studied
primate genomes (Fig. 1, Supp. Fig. S1). Comparative sequencing
of the WNKI genomic fragment (exonlO/intronl0/exonll)
amplified from a chimpanzee and from human wild-type as well
as AluYb8 insertion carrying chromosomes revealed high con-
servation of intron 10 (Supp. Fig. S1). The substitution divergence
between human wild-type and chimpanzee WNK1 was 0, 0.2, and
1.1% for exon 10 (150bp), exon 11 (459bp), and intron 10
(1,211 bp), respectively. Overall substitution rate was 0.7 and 1.3%
between WNKI exons and introns, respectively. The uniqueness of
the WNKI AluYb8 insertion in human was supported by a negative
result of the BLAST search among available genome sequences.

Stage 1 Association Testing of the WNK17 AluYb8 Insertion
with Blood Pressure and Hypertension in the HYPEST Study

The identified WNKI AluYbS8 insertion was tested for associa-
tion with BP in the Estonian HYPEST cohort subjects (n = 1,211).
The analysis detected significantly higher SBP (P =1.26 x 102,
effect 2.23 mmHg; linear regression, additive model) and DBP
(P =3.04 x 1072, effect 1.22 mmHg; Table 3) among Alu-insertion
carriers. Analysis in men and women separately revealed that the
effect of the AluYb8 insertion on BP might be female-specific
(SBP: P=1.32 x 10™ %, effect 2.72 mmHg; DBP: P=6.20 x 102,
effect 1.84 mmHg), whereas no statistical support was found for
the association in men (SBP, DBP, P>5.9 x 10_1). We also
observed higher WNKI AluYb8 frequency among HYPEST
essential hypertension patients (n =673; 17.7%) compared to
normotensive controls (n = 601; 14.5%; Supp. Table S8).

Stage 2 Association Testing in BRIGHT and CADCZ, and
Meta-Analysis Across Three European Sample Sets

To confirm the discovery association between the WNKI AluYb8
insertion and BP identified in the HYPEST study (Estonians), we
performed Stage 2 replication testing in two independent European
samples: the BRIGHT (the British) and the CADCZ (Czech)
(Table 1). Stage 1 and Stage 2 results were combined in a joint

meta-analysis (Table 3). Meta-analysis across all studies (n = 3,494)
improved significantly the support for the association with BP
(SBP, P=4.03 x 1077, effect 1.12mmHg; DBP P=1.21x 10~*
effect 0.67 mmHg). The pronounced effect of this Alu-insertion on
BP in women was confirmed (7 =2,088; SBP, P=1.99 x 107>,
effect 1.59mmHg; DBP P=3.64 x 10™* effect 1.23 mmHg).
Detected associations of the WNKI AluYb8 insertion with SBP in
the full sample and with female SBP and DBP remained significant
after stringent correction for multiple testing (Bonferroni threshold
o= 0.05/9 = 5.56 x 10~>; Table 3). Consistent with the discovery
sample, no support was detected to the effect of AluYb8 insertion
on male BP (n=1,406; SBP, DBP, P>4.7 x 107 }).

Consistent with HYPEST, the trend for higher frequency of
WNK1 AluYb8 was observed in CADCZ hypertensive patients
compared to controls (17.1 vs. 15.3%), but not in the BRIGHT cases
representing extreme family based hypertension (Supp. Table S8).

Linkage Disequilibrium (LD) Landscape Between the
Novel AluYb8 Insertion and Reported Blood Pressure-
Associated WNK1 SNPs in HYPEST and BRIGHT

When allelic association was assessed between the AluYb8 insertion
and rs765250 the associated SNP with SBP variation in a meta-
analyses including the BRIGHT study and the HYPEST subjects in a
previous report [Newhouse et al., 2009], low LD was estimated in
both samples (HYPEST: * = 0.069; BRIGHT: 1* = 0.080). However,
AluYb8 was in strong LD with three previously genotyped WNKI
SNPs in the BRIGHT resource: rs11064527 (12 =0.821; MAF = 0.16,
intron 1), rs12816718 (r2 =0.921; MAF = 0.15, intron 6), and
15956868 (* = 0.975; MAF = 0.14, exon 13) (Supp. Table $9). Amino
acid alignment of the WNKI exon 13 among vertebrates exhibited
low evolutionary conservation at the position of rs956868 coding for
two alternative amino acids Proline or Threonine in human (Supp.
Fig. S4). When association testing with BP was performed for the
BRIGHT individuals genotyped for the AluYb8 insertion as well as
the three SNPs in LD (n=1421), the strongest association was
detected with AluYb8 (Supp. Table S10).

The Impact of the AluYb8 Insertion on the Expression
Profile of WNK1T in Leucocytes

The human WNKI gene codes for a high number of mRNA
transcripts and extensive alternative splicing has been described

Table 3. Association of AluYb8 Insertion with Systolic (SBP) and Diastolic (DBP) Blood Pressure

CADCZ*
(N = 644/283/361)

HYPEST*
(N =1,211/803/408)¢

BRIGHT®
(N = 1,639/1,002/637)

Joint meta-analysis®
(N = 3,494/2,088/1,406)

Beta (SE)¢ P-Value Beta (SE) P-Value Beta (SE) P-Value Beta (SE) P-Value

SBP

All 2.23 (0.89) 1.26 x 1072 0.05 (1.09) 9.65 x 107" 1.01 (0.47) 323 %1072 1.12 (0.39) 4,03 x 107>*

Women 2.72 (1.10) 1.32 x 1072 2.45 (1.60) 1.26 x 107" 1.09 (0.63) 8.24 x 1072 1.59 (0.52) 1.99 x 1077

Men 0.78 (1.48) 5.97 x 107! —2.10 (1.48) 1.58 x 107" 0.74 (0.68) 2.71x 107" 0.33 (0.57) 5.58 x 107!
DBP

All 1.22 (0.56) 3.04 x 1072 0.10 (0.71) 8.95x 107" 0.60 (0.33) 7.22x 1072 0.67 (0.27) 1.21 x 1072

Women 1.84 (0.67) 6.19 x 10> 1.00 (1.07) 351x107" 1.02 (0.44) 2.00 x 1072 1.23 (0.35) 3.64 x 10°**

Men —0.17 (1.03) 8.67 x 107" —0.72 (0.94) 442x107" —0.20 (0.51) 6.95%x 107" —0.30 (0.41) 471x107"

*Population-based subjects not receiving blood pressure-lowering medication.
"Normotensive controls across UK not receiving blood pressure-lowering medication.

“Meta-analysis of HYPEST, BRIGHT, and CADCZ; inverse-variance method under fixed-effect model.

4N = All/Women/Men.

“Linear regression (additive model, age, and gender as covariates) was used to test association with SBP and DBP (effect given as beta, SE). P<0.05 is given in bold and
P-values resistant to Bonferroni correction for multiple testing are indicated with the asterisk (*). Bonferroni significance level was estimated o = 0.05/9 = 5.56 x 10>
(3 phenotypes x 3 study samples). SBP, DBP, systolic and diastolic blood pressure; N, number of subjects; SE, standard error.
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for exons 9, 11, and 12 [Verissimo and Jordan, 2001]. The major
human WNKI transcript completely lacks exons 11 and 12
[Delaloy et al., 2003]. In order to explore the functional effect of
the AluYb8 insertion on the expression profile of WNKI
alternative transcripts, we quantified the gene transcripts in
mRNA extracted from the leucocytes of nine women with
alternative genotypes (Supp. Table S5). The study subjects
included three individuals heterozygous and three homozygous
for the AluYb8 insertion, as well as three wild-type genotype
carriers. The expression of three WNKI splice forms was
addressed using relative quantification method based on real-
time RT-PCR assays. The studied splice forms differed by
alternative inclusion/exclusion of exon 11 and exon 12 (Fig. 2A).
Compared to the subjects with the wild-type genotype, the
heterozygous AluYb8 carriers had significantly lower expression of
all three splice-forms (Wilcoxon rank sum test; ex+11+12: P=
608x107%  ex—11+122  P=678x10;  ex—11—1
P=539x10"% Fig. 2B). Consistently, homozygous AluYb8
carriers showed lower expression level of splice forms ex—11+
12 (P=1.62x107°) and ex—11—12 (P=1.82 x 10~ }; Fig. 2C).
However, the expression of the full-length WNKI transcript,
which includes both exon 11 and 12 (ex+11+12) was upregulated
among AluYb8 —homozygous carriers (P =3.56 x 1072). We
conclude that the carrier status of the AluYb8 insertion may have
an impact on the profile in WNKI transcript in leucocytes.

Discussion

We targeted conserved noncoding regions in hypertension
candidate genes WNKI and WNK4 to polymorphism screening in
order to identify functional variants potentially contributing to BP
determination. We identified a novel human-specific polymorphic
AluYb8 insertion in WNKI intron 10. The AluYb8 insertion belongs
to a young Alu subfamily represented with ~2,200 copies in the
human genome compared to only nine insertions detected in
chimpanzee [Gibbons et al., 2004]. Consistently, we were unable to
detect the studied WNKI AluYbS8 insertion in chimpanzee, gorilla,
and orangutan (Fig. 1). As AluYb8 elements are relatively mobile
Alu repeats, they represent together with AluYa5 subfamily ~58%
of the polymorphic Alu-s in the human genome [Bennett et al,
2008]. The increased carrier frequency of WNK1 AluYb8 insertion
out of Africa is consistent with recent studies showing that the allele
frequencies of polymorphic Alu insertions tend to be lowest in Sub-
Saharan populations (Table 2) [Watkins et al, 2001, 2003]. In
Africa, the fraction of carriers of polymorphic Alu-s increase with
sharp cline in the north of Sahara compared to the populations
living south of the desert [Comas et al., 2000].

Our study identified a significant association between WNKI
AluYb8 insertion and BP in the Estonian HYPEST cohort and
confirmed this finding in the meta-analysis across three
independent European study samples (n=3,494; HYPEST,
BRIGHT, CADCZ). The carriers of the WNKI Alu insertion had
a consistent tendency for higher blood pressure (Table 3). Notably,
when the analysis was performed using samples stratified by
gender, the WNKI AluYb8 insertion was associated with BP only
among women (meta-analysis: SBP, P=1.99 x 107% DBP,
P=3.64x10""% and no association was detected in men.
Consistent with our findings, a sex-specific effect on BP
determination was recently shown for a WNKI SNP in intron 1
(rs10774461), which was also associated with BP only in females
[Padmanabhan et al., 2010]. Similar gender-specific effects have
been reported for the polymorphic Alu insertion (rs4646994)
located in intron 16 of the ACE (angiotensin converting enzyme)
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gene [Rigat et al., 1990]. Three independent studies showed that
ACE Alu 1/D variant is associated with the hypertension risk only
in men and not in women [Higaki et al., 2000; O’Donnell et al.,
1998; Stankovic et al., 2002]. These differential effects on BP may
reflect the differences in male and female physiology. Sex
hormones have an important role in regulating a variety of renal
transport functions and may contribute to gender differences in
several kidney-related traits. Clinical observations in humans
and experimental animals have shown that renal structure and
functions under various physiological, pharmacological, and
toxicological conditions are different in males and females,
and that these differences may be related to the sex-hormone
regulated expression and action of transporters in epithelial cells
of nephrons [reviewed by Sabolic et al., 2007].

Previously, BP variation in the BRIGHT and the HYPEST
subjects has been associated with the WNKI SNP rs765250
[Newhouse et al., 2009]. We detected low allelic association
between AluYb8 and rs765250 in both samples, which may
indicate independent effects of WNKI intron 1 and intron 10
polymorphisms on BP. Interestingly, strong LD (r*>0.8) between
AluYb8 and three previously studied WNKI SNPs in the BRIGHT
study alone (rs11064527, rs12816718, 1s956868) positioned
AluYb8 on the WNKI haplotype, was reported to show borderline
associations with SBP and DBP (P<9x1072) and a strong
association with 24-hr urine potassium (P<1 x 10™*) [Newhouse
et al,, 2009]. Although this haplotype includes a nonsynonymous
change (rs956868; Exon 13, Thr1316Pro, NP_001171914), P-values
for the association with BP were the lowest for the AluYb8
insertion compared to SNPs in LD. Previously, rs956868 has
been shown to exhibit suggestive effect on ambulatory SBP in
Europeans (P<9 x 107%) [Tobin et al., 2005, and a significant
association with SBP in Japanese (P<5 x 107%) [Osada et al.,
2009]. The current and previous studies consistently report the
highest BP levels in homozygotes for the minor allele of these
polymorphisms (rs956868: Thr/Thr in LD with AluYb8: +/+).
Functional assays should bring understanding whether the
detected association with BP is driven by one primary variant or
by a combinatory effect of the haplotype-forming alleles.

The design of the current study did not allow us to draw any
conclusion about the contribution of the WNKI AluYb8 insertion
to the risk for developing hypertension. The initially observed but
not confirmed higher proportion of AluYb8 carriers among
hypertensives may have resulted from nonoptimal selection of
HYPEST controls (biased to too young), and/or different
recruitment strategies of hypertensive patients among studies
(HYPEST, essential hypertension; BRIGHT, extreme family-based
hypertension; CADCZ, hypertension in CAD patients).

Although a majority of Alu elements are considered to be
neutral residents of the human genome, an inserted copy of an Alu
repeat could interrupt structurally or functionally important
genomic regions and consequently affect the expression of a locus
[Batzer and Deininger, 2002; Callinan and Batzer, 2006]. Alu
elements may alter gene expression through modulating alter-
native splicing, RNA editing, epigenetic regulation, and transla-
tion regulation [Cordaux and Batzer, 2009; Hasler and Strub,
2006]. So far, 33 diseases directly caused by novel Alu insertions
have been identified [Belancio et al., 2008]. Our study using
mRNA extracted from human leucocytes indicated a potential
effect of the presence of the AluYb8 insertion in WNKI intron 10
on the expressional profile of WNKI alternative transcripts.
Splicing is an incompletely understood process carried out by
large macromolecular complex spliceosome and directed by
numerous regulatory elements located within exonic and intronic



sequence [Black, 2003]. The size of the WNKI intron 10 (human
wild-type 1,211 bp) is remarkably increased by the ~300 bp AluYb8
insertion (human variant >1,500bp). Thus, we hypothesize that
the presence of the AluYb8 insertion may disrupt the spatial
intronic structure and/or disarrange the possible splicing regulatory
sequences within WNK intron 10. Consequently, it may affect the
splicing efficiency of the down-stream exons 11 and 12. As
alternative splicing tends to be a tissue and developmental stage
specific process [Xu et al., 2002], the impact of AluYb8 insertion on
the expressional profile of WNKI may vary in different tissues. The
current study design was limited to addressing the effect of AluYb8
insertion on WNKI expressional profile in leucocytes using a small
number of samples. Further in vitro and in vivo studies using renal
tissues would reveal the potential effect of this Alu-insertion on
WNKI expressional profile in kidneys, where it plays an important
role in contributing to the regulation of ion transport.

In summary, we identified a novel human-specific polymorphic
AluYb8 insertion in WNKI. This AluYb8 insertion showed
significant replicated association with blood pressure and a
potential effect on the expressional profile of alternative WNK1
transcripts in leucocytes.
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