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Classifier Assessment and Feature Selection

for Recognizing Short Coding Sequences of Human Genes
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ABSTRACT

With the ever-increasing pace of genome sequencing, there is a great need for fast and
accurate computational tools to automatically identify genes in these genomes. Although
great progress has been made in the development of gene-finding algorithms during the past
decades, there is still room for further improvement. In particular, the issue of recognizing
short exons in eukaryotes is still not solved satisfactorily. This article is devoted to assessing
various linear and kernel-based classification algorithms and selecting the best combination
of Z-curve features for further improvement of the issue. Eight state-of-the-art linear and
kernel-based supervised pattern recognition techniques were used to identify the short
(21–192 bp) coding sequences of human genes. By measuring the prediction accuracy, the
tradeoff between sensitivity and specificity and the time consumption, partial least squares
(PLS) and kernel partial least squares (KPLS) algorithms were verified to be the most
optimal linear and kernel-based classifiers, respectively. A surprising result was that, by
making good use of the interpretability of the PLS and the Z-curve methods, 93 Z-curve
features were proved to be the best selective combination. Using them, the average recog-
nition accuracy was improved as high as 7.7% by means of KPLS when compared with what
was obtained by the Fisher discriminant analysis using 189 Z-curve variables (Gao and
Zhang, 2004). The used codes are freely available from the following approaches (im-
plemented in MATLAB and supported on Linux and MS Windows): (1) SVM: http://
www.support-vector-machines.org/SVM_soft.html. (2) GP: http://www.gaussianprocess.org.
(3) KPLS and KFDA: Taylor, J.S., and Cristianini, N. 2004. Kernel Methods for Pattern
Analysis. Cambridge University Press, Cambridge, UK. (4) PLS: Wise, B.M., and Gallagher,
N.B. 2011. PLS-Toolbox for use with MATLAB: ver 1.5.2. Eigenvector Technologies, Manson,
WA. Supplementary Material for this article is available at www.liebertonline.com/cmb.
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1. INTRODUCTION

W ith the explosive development of synthetic biology and genome-sequencing projects, there

is an urgent need for developing gene prediction and genome annotation methods. A variety of
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gene-finding algorithms have been improved significantly, and many algorithms have been developed, such

as GeneMark (Besemer and Borodovsky, 2005; Borodovsky and McIninch, 1993), GeneID (Guigo et al.,

1992), MZEF (Zhang, 1997a, Zhang, 2000), Genscan (Burge and Karlin, 1997), GeneMark.hmm (Lukashin

and Borodovsky, 1998), and many others (Salzberg et al., 1998). At the core of most of these gene-finding

algorithms are coding measures (feature extraction) (Gao and Zhang, 2004) and classifiers.

For a given window of sequence, feature extractions calculate a scalar or a vector intended to measure the

‘‘codingness’’ of the sequence. The extracted features can be applied to both supervised and unsupervised

learning algorithms as the input variables. Many new methods have been researched in recent years (Gao and

Zhang, 2004; Bernal et al., 2007; Liu and Yu, 2005; Saeys et al., 2007; Varshavsky et al., 2006). Saeys et al.

(2007) used complementary sequence features and compared them with several models in coding protein

prediction (CPP) of animals, plants, Fungi, and Apicomplexa. Gao and Zhang (2004) evaluated 19 feature

extraction algorithms, such as the methods of Markov models with orders of 1–5, codon usage, hexamer usage,

codon preference, amino acid usage, codon prototype, Fourier transform, and eight Z-curve methods with

various numbers of parameters. Consequently, considering both the recognition accuracy and the computational

simplicity, they showed appreciation for an analysis on short human sequences using the Z-curve methods.

Although the recognition of short coding sequences is considered an important issue (Catherine et al.,

2002; Gotoh, 2008), up to now a large-scale analysis of the problem has not been performed. Hence, in this

study, we have focused on the problem of supervised classifier assessment and feature selection for the

identification of short coding sequences, where the class labels are known beforehand. Our aim is twofold:

First, to find the best data-driven classifiers, various state-of-the-art algorithms have been extensively as-

sessed according to the accuracy as well as tradeoff between sensitivity/specificity and the time require-

ments. Second, from the interpretability of the PLS technique and the Z-curve methods, the best combination

of features has been selected for improving recognition accuracy and for further understanding of short

exons. These works are promising for accelerating the development of gene-finding algorithms.

2. DATABASES AND METHODS

2.1. Databases

For comparison, we chose the same databases used by Gao and Zhang (2004). The databases consisted of

dataset-1 and dataset-2, which contained two subsets (i.e., coding and noncoding fragments of the human

DNA sequences, respectively). The coding fragments were used as positive samples, whereas the non-

coding fragments were used as negative samples. Each subset of dataset-1 included 4,000 sequences with

length longer than 210 bp. The coding sequences were extracted from the file 4813_Hum_CDS.fa (avail-

able at http://www.fruitfly.org/seq_tools/datasets/Human/coding_data/4813_hum_CDS.fa). The coding

fragments with various window lengths were extracted from the beginning of the sequences. However, the

coding fragments with various window lengths in dataset-2 were extracted from the short exons matched

with known mRNAs. These exons were derived from the Exon-Intron Database (EID), which is based on

GenBank (release 112) (Saxonov et al., 2000). The exons were divided into nine classes according to their

length: 21–30, 30–42, 42–63, 63–87, 87–108, 108–129, 129–162, 162–192, and > 192 bp. These nine

classes of dataset-2 consisted of 206, 343, 977, 1840, 1865, 1937, 2538, 1590, and 2484 exons, respec-

tively. The noncoding sequences were extracted from the files in the directory intron_v105 at the afore-

mentioned website, including complete intron sequences of 462 human genes. The noncoding fragments

used as negative samples of these two datasets were randomly extracted from the intron files with length

longer than 200 bp. For the detailed procedure to construct the databases, see Gao and Zhang [2004].

2.2. The Z-curve methods

Considering the superiority of the Z-curve methods in feature extraction problems of short exons, they

were adopted to extract features as the input variables of the classifiers.

Z-curve. The Z-curve is a powerful tool for visualizing and analyzing DNA sequences (Zhang and

Zhang, 1991; Zhang, 1997b). For convenience, the phase-specific mononucleotide Z-curve parameters are

briefly introduced here. The derivations of other parameters such as phase-specific/phase-independent

di-nucleotides and tri-nucleotides parameters were illustrated in detail by Gao and Zhang (2004).
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The Z-curve parameters for frequencies of phase-specific mononucleotides (3 · 3 = 9). The

frequencies of the bases A, C, G, and T occurring in an open reading frame (ORF) or a fragment of DNA

sequence at the first, second, and third codon positions are denoted by ai, ci, gi, and ti, where i = 1, 2, 3,

respectively. Based on the Z-curve methods, ai, ci, gi, and ti are mapped onto a point Pi in a three-

dimensional space Vi, where i = 1, 2, 3, which are denoted by xi, yi, zi (Gao and Zhang, 2004).

xi = (ai + gi) - (ci + ti)
yi = (ai + ci) - (gi + ti)
zi = (ai + ti) - (ci + gi)

xi‚ yi‚ zi 2 [ - 1‚ + 1]‚ i = 1‚ 2‚ 3

8><
>:

(1)

By a selective combination of n variables or features derived from the Z-curve methods, an ORF or a

fragment of DNA sequence can be represented by a scalar or a vector in an n-dimensional space V. In our

study, n = 69, 93, 930, 189, 252. For more details, see Gao and Zhang (2004) and the Supplementary

Material (which is available at www.liebertonline.com/cmb).

2.3. Supervised classification methods

Although there are many pattern recognition algorithms, here we assess only supervised pattern recognition

algorithms. The four linear classifiers used in our case are Fisher discriminant analysis (FDA), least squares

(LS), partial least squares (PLS), and ridge regression (RR). For reference, the FDA used by Gao and Zhang

(2004) must be included; LS, the most fundamental linear algorithm, was selected. Being a typical space

compression technique, PLS was reasonably selected. Then RR was included as an example of the commonly

used regularization methods for ill-posed problems. FDA defines the separation, in which the points are

maximally separated in the sense that the ratio of between-classes variances to within-classes variances is

maximized (Zhang and Wang, 2000; Mika, 2002). ‘‘Least squares’’ means that the overall solution minimizes

the sum of the squares of the errors between observed values and the fitted values provided by a model.

Instead of finding hyperplanes of maximum variance between the input variables and the labels, PLS creates

orthogonal latent variables (LVs) that are linear combinations of the original variables. Thus, by the pro-

jection of the PLS algorithm, the n-dimensional X-space is compressed into the v-dimensional LV-space

(v << n in common cases) to remove the noise and the multi-colinearity of the original variables (Geladi and

Kowalski, 1986; Hoskuldsson, 1988). Ridge regression technique is the most commonly used method of

regularization of ill-posed problems. To give preference to a particular solution with desirable properties, the

regularization term is included in the objective function of RR. This regularization improves the conditioning

of the problem, thus enabling a numerical solution (Hoerl, 1962; Hoerl and Kennard, 1970; Ghosh, 2003).

The four kernel-based classifiers were kernel fisher discriminant analysis (KFDA), kernel partial least

squares (KPLS), support vector machine (SVM), and Gaussian process (GP). Among nonlinear supervised

pattern recognition algorithms, up to now, SVM and neural networks are most widely used algorithms. Due

to the limited space and the bad prediction performance, neural networks were not included. Unlike other

learning algorithms, SVM is a structural risk minimization principle-based classification algorithm.

Moreover, the use of a kernel in the SVM can be interpreted as an embedding of the input space into a high-

dimensional feature space, where the classification is carried out without explicitly using this feature space

(Vapnik, 1995; Cortes and Vapnik, 1995). KFDA and KPLS are kernel-based generalized algorithms of

FDA and PLS, respectively (Taylor and Cristianini, 2004). For comparison with PLS, FDA, and SVM, they

were selected for the current study. Gaussian Process (GP) is the comparatively newer method and can

optimize parameters automatically; thus, it was selected to provide information for biologists. For GP, the

training set Z is assumed to be drawn i.i.d. from an unknown, but fixed, joint probability distribution p(x, l).
Following a Bayesian approach, the prediction of a label for a new observation xnew is obtained by

computing the posterior probability distribution over labels and selecting the label that has the highest

probability (Rasmussen and Williams, 2006; Williams and Barber, 1998).

For more detailed mathematical descriptions of the aforementioned eight classifiers, please refer to the

Supplementary Material (which is available at www.liebertonline.com/cmb).

2.4. The performance of various classifiers

To evaluate the performance of an algorithm, we used the same measurements used by Gao and Zhang

(2004). The sensitivity Sn is the proportion of coding sequences that have been correctly predicted as
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coding, Sn = TP/(TP + FN). The specificity Sp is the proportion of noncoding sequences that have been

correctly predicted as noncoding, Sp = TN/(TN + FP). TP, TN, FP, and FN are fractions of true positive,

true negative, false positive, and false negative predictions, respectively. The accuracy a is defined as the

average of Sn and Sp. Thus, the goal in this study was to maximize the prediction accuracy a of the testing

set as well as make a good tradeoff between Sn and Sp.

The cross-validation tests were adopted to ensure the validation of the results. For dataset-1, twofold

cross-validation test was performed 10 times. The coding and the noncoding sequences were randomly

divided into two identical parts: parts 1 and 2. Part 1 was taken as the training set, and part 2 was taken as

the testing set. The sensitivity, the specificity, and the accuracy of the algorithms based on part 2 were

calculated. This random division procedure was repeated 10 times for the sequences with various window

lengths. Accounting for the comparatively smaller size of dataset-2, a 10-fold cross-validation procedure

was performed, in which dataset-2 was divided into 10 parts and tested on the 10 different one-tenths, while

trained on the remaining nine-tenths.

3. RESULTS AND DISCUSSION

3.1. Comparison of the four classic linear classifiers

3.1.1. Comparing the prediction accuracy of the four classic linear classifiers. Owing to

computational simplicity, linear classifiers are still widely used methods. Moreover, owing to their inter-

pretability, they are always used to find key variables in pattern recognition. In the current study, FDA was

evaluated as a baseline classifier to be compared with other linear classifiers. As exemplified by Gao and Zhang

(2004), good results were achieved with FDA using 69 and 189 Z-curve variables. Therefore, in this article, we

used their results as a reference. In addition, to find the optimal combination of features, all 252 Z-curve

variables (the variable description is available in Table S1, Supplementary Material, which is available at

www.liebertonline.com/cmb) were used together to carry out pattern analysis to evaluate their contributions

fairly. As the Z-curve methods could extract features of any length fragments, the fragments with 30- and 21-bp

length were also included to investigate the performance of linear classifiers. The exon prediction results using

different linear classifiers for fragments with lengths of 192, 42, 30, and 21 bp of dataset-2 are listed in Table 1.

Due to limited space, fragments with other lengths of dataset-2 and the corresponding results of dataset-1 are

listed in Tables S2 and S3 (Supplementary Material is available at www.liebertonline.com/cmb)

The real lengths of the exons of dataset-1 were found to be longer than 210-bp, and the fragments were

extracted from their beginning. In other words, only a part of the sequence information was used in pattern

recognition. Using the 69 and the 189 Z-curve variables, the prediction performances of the linear clas-

sifiers were quite similar to each other. Only by using all 252 Z-curve variables were the accuracies of PLS

of different length fragments slightly better than that of other methods, as shown in Table S3 (Supple-

mentary Material is available at www.liebertonline.com/cmb). On the other hand, the coding fragments

with various lengths in dataset-2 were extracted from the short exons of CDSs. For example, the 63-bp

fragments were extracted from the exons of size 63–87 bp. The results in Tables 1 and S2 showed that the

accuracy of PLS was higher than that of other classifiers, regardless of the length class and the Z-curve

variables. Additionally, for a given set of the Z-curve variables, the shorter the fragment, the larger the

difference between the PLS performance and that of others. Furthermore, the highest accuracy was

achieved unexceptionally by PLS using the 252 Z-curve variables.

According to the definition of the phase-independent and the phase-specific mononucleotide variables of

the Z-curve methods, the following equation could be deduced (Zhang and Zhang, 1991).

x = (x1 + x2 + x3)=3

y = (y1 + y2 + y3)=3

z = (z1 + z2 + z3)=3

8<
: (2)

A similar linear relationship between the phase-independent and the phase-specific di-nucleotides/

tri-nucleotides variables of the Z-curve methods can be deduced easily. In other words, there are strong

multi-collinear relationships among the 252 Z-curve variables.

It is well known that the multi-colinearity among variables is the main factor limiting the performance of

ordinary data-driven techniques, namely, FDA and LS. However, PLS could overcome this interference by
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extracting an appropriate number of orthogonal latent variables from the original data space. Meanwhile,

the idea behind ridge regression (RR) is at the heart of the ‘‘bias-variance tradeoff’’ issue. It is an

illustration of the fact that a biased estimator may outperform an unbiased estimator, provided its variance

is small enough (Hoerl, 1962; Hoerl and Kennard, 1970; Ghosh, 2003). Consequently, in this case, the

prediction results of PLS and RR turned out to be more accurate than those of LS and FDA.

It is worthwhile pointing out that the basic methodology of the PLS modeling procedure is that the

weights used to determine the linear combinations of the original variables are proportional to the maxi-

mum covariance among input variables and labels (Helland, 1988; Wold et al., 1999; Burnham et al.,

1999). Comparing the results across different combinations of the Z-curve variables and different lengths of

fragments, the PLS was found to perform consistently extremely well.

3.1.2. The PLS-based feature selection of Z-curve variables. Apart from feature extraction, in

pattern recognition, feature selection, also known as variable selection, is another important aspect for

improving the recognition results. Although the prediction accuracies of linear supervised classification

algorithms are usually lower than that of nonlinear classifiers, but benefiting from the comparatively simple

methodologies, they have satisfactory interpretability of their models which could be used for feature

selection.

To select a proper set of features, the contribution of each Z-curve variable to pattern recognition models

must be estimated quantitatively. For univariate regression problem, the value of the regression coefficient

of each variable is the reasonable quantitative measurement of its contribution. Considering the predom-

inant performance, the regression coefficients of PLS model were selected to estimate the contributions of

Z-curve variables.

The absolute values of regression coefficients corresponding to the 252 Z-curve variables in the PLS

model of dataset-2 are shown in Figure 1 and Figures S1–S3 (Supplementary Material is available at

www.liebertonline.com/cmb). According to the results shown in these figures, it is clear that irrespective of

the length of the fragments, only a few variables’ regression coefficients are remarkably larger than the

others. Consequently, 930 Z-curve variables (denoted as 930 to differentiate from the 93 Z-curve variables

used by Gao and Zhang [2004]) were chosen by means of the feature selection power of PLS algorithm.

The descriptions of the 930 Z-curve variables are shown in Table 2. The prediction results of the two

Table 1. Prediction Results of Dataset-2 Using Various Linear Classifiers

Number of Z curve variables

69 189 252

Length Classifiers �Sn
�Sp �a Std �Sn

�Sp �a Std �Sn
�Sp �a Std

192 bp FDA 96.36 96.74 96.55 / 96.09 96.99 96.54 / 88.93 85.41 87.17 0.47

PLS 98.52 95.49 97.01 0.89 98.40 96.23 97.31 0.90 98.64 96.39 97.52 0.90

LS 98.23 95.16 96.70 0.89 98.32 95.65 96.98 0.90 91.43 89.38 90.4 1.19

RR 98.23 95.12 96.68 0.89 98.52 95.57 97.05 0.90 98.56 96.02 97.29 0.90

42 bp FDA 90.84 80.74 80.79 80.18 81.50 80.84 77.31 73.39 75.35 0.56

PLS 87.61 78.75 83.18 0.70 87.82 81.95 84.88 0.75 88.44 82.46 85.45 0.78

LS 87.20 76.38 81.79 0.71 85.65 78.54 82.10 0.77 82.67 77.00 79.83 1.09

RR 89.78 74.22 82.00 0.69 89.78 74.53 82.15 0.72 89.78 75.66 82.72 0.74

30 bp FDA 82.83 68.17 75.50 77.26 71.10 74.18 73.74 67.00 70.37 0.41

PLS 82.83 73.16 77.99 0.65 81.07 74.33 77.70 0.84 81.36 76.38 78.87 0.79

LS 81.95 69.93 75.94 0.68 71.98 69.64 70.81 0.84 71.40 64.95 68.17 1.19

RR 87.81 60.55 74.18 0.59 82.53 62.90 72.72 0.70 78.43 65.53 71.98 0.75

21 bp FDA 71.29 71.78 71.53 68.81 69.80 69.30 63.86 62.87 63.37 0.28

PLS 74.26 79.70 76.98 0.64 76.73 79.70 77.22 0.82 78.71 79.70 79.21 0.79

LS 73.28 71.29 72.28 0.71 71.78 69.80 70.79 1.04 70.30 66.34 68.32 1.41

RR 80.20 55.94 68.07 0.57 80.69 64.36 72.52 0.75 75.74 71.78 73.76 0.92

The average accuracies of PLS models, which were the best ones among the algorithms evaluated here, are shown in boldface. The

results of FDA calculated by Gao and Zhang (2004) are shown in italics. Std, standard deviations of prediction results; FDA, Fisher

discriminant analysis; LS, least squares; PLS, partial least squares; RR, ridge regression.
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datasets using PLS and the 930 Z-curve variables are listed in Tables 3 and S4, respectively. It is obvious

that the performance of the PLS classifier is improved by the selected 930 Z-curve variables.

From the descriptions of the Z-curve variables, we could see that the frequencies of ‘‘TT,’’ ‘‘TG,’’ and

‘‘GG’’ di-nucleotides were much more important than those of other di-nucleotides. Additionally, the most

important variable was the phase-specific parameter of tri-nucleotides transformed from the Z-curve

methods:

x1
TA = [p1(TAA) + p1(TAG)] - [p1(TAC) + p1(TAT)], where ‘‘TAA (ochre)’’/‘‘TAG (amber)’’ are both

stop codons and ‘‘TAC’’/‘‘TAT’’ are both Tyrosine codons. Thus, x1
TA means the difference between the

frequencies of stop codons and Tyrosine codons. Meanwhile, ‘‘TGT’’ and ‘‘TGC’’ are both Cysteine

codons, ‘‘TGA (opal)’’ is the stop codon, and ‘‘TGG’’ is the Tryptophan codon. Hence, the definitions of

the first, sixth, seventh, and twelfth Z-curve variables indicated that the frequencies of the three kinds of

stop codons, Tyrosine codons, and Cysteine codons were the key features for discriminating coding and

noncoding gene sequences.

3.2. Comparison of the four kernel-based classifiers

The performance of the kernel-based classifiers was evaluated by prediction accuracy, tradeoff between

sensitivity and specificity, time requirements, etc. There are multiple widely used kernels for SVM, KPLS,

and other kernel based methods such as linear, quad, and sigmoid kernels. But according to our practice, the

prediction performance of the rbf kernel was much higher than that of other kernels. Thus, due to the

limited space and for fair comparison, we used the rbf kernel for SVM, KPLS, and KFDA.

FIG. 1. The absolute values of

regression coefficients of the 252 Z-

curve variables in the PLS model

(fragments with 192-bp length of

dataset-2). In order to identify key

variables that characterize different

patterns, the contribution of each

variable to pattern recognition

models is necessary to estimate

quantitatively. And for univariate

regression problems, the regression

coefficient of each variable is the

reasonable quantitative measure-

ment. According to the results, it is

clear that only a few variables’ co-

efficients are remarkably larger

than other variables’.

Table 2. Descriptions of the Selected 930 Z-Curve Variables

Variables Descriptions

x1, y1, z1, x2, y2, z2, x3, y3, z3, Phase-specific parameters of mononucleotide

x1
A‚ z1

A‚ x1
T‚ y1

T‚ z1
T‚ y1

C‚ z1
C‚ x2

A‚ z2
A‚ x2

T‚ z2
T‚ y2

C‚ x3
T‚ z3

T Phase-specific parameters of di-nucleotides

x1
AT‚ z1

AT‚ z1
AC‚ y1

AG‚ x1
TA‚ x1

TT‚ y1
TT‚ x1

TG‚ y1
TG‚ z1

TG‚ x1
CA‚

z1
CC‚ z1

GG‚ z2
AA‚ z2

AT‚ z2
AG‚ x2

TA‚ x2
TT‚ z2

TT‚ x2
TG‚ y2

cA‚ x2
CT‚ x2

CC‚

z2
CC‚ y2

GG‚ z2
GG‚ x3

TT‚ x3
TC‚ y3

TC‚ y3
TG‚ z3

TC‚ x3
CT‚ y3

CT‚ x3
CC‚

y3
CC‚ x3

GT

Phase-specific parameters of tri-nucleotides

x, y, z Phase-independent parameters of mononucleotide

xA, yA, zA, xT, yT, zT, xC, yC, yG Phase-independent parameters of di-nucleotide

xAT, zAT, yAG, xTA, zTA, xTT, yTT, zTT, xCA, xCT, zCT, xCC,

zCC, xCG, yCG, zGA, xGT, xGC, yGC, zGC, yGG, zGG

Phase-independent parameters of tri-nucleotide
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The prediction results of the two datasets using different sets of the Z-curve variables and the four kernel-

based classifiers are listed in Tables S5 and S6 (Supplementary Material is available at www.liebertonline

.com/cmb):

) Comparing the accuracies of the kernel-based classifiers:

The results listed in Tables S5 and S6 show that, for each length class, the highest accuracy was almost

achieved by KPLS model using the 930 Z-curve variables. The results prove that the 930 Z-curve variables

are the optimal features for recognition of short exons.

The highest accuracies calculated by the four kernel-based classifiers are shown in Table 4. It shows that,

for shorter fragments, the accuracy superiority of KPLS was much more remarkable over other kernel-

based classifiers. For example, for 42-bp fragments of dataset-2, the highest prediction accuracy obtained

by KPLS was 88.54%, which was 0.77% higher than that of SVM, 2.58% higher than that of GP, and

1.55% higher than that of KFDA; for 30-bp fragments of dataset-2, the highest accuracy obtained by KPLS

Table 3. Prediction Results of Dataset-2 Using 930 Z-Curve Variables by Means of the PLS Method

Fragment length (bp)

Variables Results (%) 192 162 129 108 87 63 42 30 21

252 �Sn 98.64 98.97 96.85 96.94 93.51 90.26 88.44 81.94 80.20
�Sp 96.39 95.51 94.86 92.33 90.26 86.93 82.46 74.62 76.24

�a 97.52 97.24 95.85 94.63 91.88 89.62 85.45 78.28 78.22

930 �Sn 98.85 98.97 97.41 97.20 93.56 91.77 88.64 84.59 84.16
�Sp 96.72 96.34 94.42 92.48 90.42 85.80 81.02 76.38 79.21

�a 97.78 97.65 95.91 94.84 91.99 88.78 84.83 80.48 81.68

Table 4. Best Prediction Results of FDA, PLS, and the Four Kernel-Based Classifiers

Dataset-1 results (%) Dataset-2 results (%)

Length of fragments Length of fragments

Classifiers Results (%) 192 bp 42 bp 30 bp 192 bp 42 bp 30 bp

FDA �Sn 96.28 82.99 82.82 96.36 80.18 82.83
�Sp 96.20 83.83 77.94 96.74 81.50 68.17

�a 96.24 83.41 80.38 96.55 80.84 75.50

PLS �Sn 98.40 86.59 82.91 98.85 88.44 84.59
�Sp 95.27 81.18 79.48 96.72 82.46 76.38

�a 96.83 83.89 81.19 97.78 85.45 80.48

KPLS �Sn 98.36 87.09 84.99 99.50 89.78 86.64
�Sp 97.98 86.08 81.67 98.52 87.30 84.59

�a 98.16 86.59 83.33 99.01 88.54 85.61

SVM �Sn 96.86 85.84 83.25 98.65 89.26 87.52
�Sp 97.16 85.78 81.94 98.63 86.27 80.48

�a 97.51 85.81 82.59 98.64 87.77 84.00

GP �Sn 97.88 86.58 83.74 98.89 88.75 80.48
�Sp 97.67 82.80 79.91 97.13 83.18 73.45

�a 97.78 84.69 81.82 98.01 85.96 76.97

KFDA �Sn 96.50 84.74 87.88 96.43 90.19 77.55
�Sp 96.32 86.62 76.64 99.22 83.80 79.60

�a 96.43 85.68 82.26 97.82 86.99 78.58

For comparison, the results obtained by Gao and Zhang (2004) with FDA and the best results of the four linear classifiers that were

achieved by the PLS method are shown. The results of FDA calculated by Gao and Zhang (2004) are shown in italics. The average

accuracies, which were the best ones among the algorithms evaluated here, are shown in boldface. FDA, Fisher discriminant analysis;

PLS, partial least squares; KFDA, kernel Fisher discriminant analysis; KPLS, kernel partial least squares; SVM, support vector

machine; GP, Gaussian process.
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was 85.61%, which was 1.61% higher than that of SVM, 8.64% higher than that of GP, and 7.03% higher

than that of KFDA.

) Comparing the accuracies of linear and kernel-based classifiers:

Because of limited space, only the best results of the four linear classifiers which were achieved by PLS

method are shown in Table 4. For comparison, the results obtained by Gao and Zhang (2004) with FDA are

also shown. It is obvious that the shorter the fragment, the higher the superiority of KPLS. In particular,

using KPLS and the 930 Z-curve variables, the prediction accuracy for 42-bp fragments of dataset-2 was

improved as high as 7.7% compared with the results obtained by Gao and Zhang (2004) using FDA.

On the other hand, for other kernel-based classifiers, there existed some cases in which the prediction

accuracies were not higher than that of PLS.

) Comparing the tradeoff between sensitivity and specificity of kernel-based classifiers:

One thing to be noted is that comparing classifiers only based on accuracy often does not provide a fair

comparison. A better solution to this problem is to compare the classifiers both by the average accuracy of

prediction and by the tradeoff between sensitivity and specificity. More attention should be paid when

recognizing short coding sequence. Similar to PLS, KPLS can also avoid over-/under-study, and can

overcome multi-colinearity of variables by selecting an appropriate number of latent variables (Rosipal and

Trejo, 2001; Rosipal, 2003). Thus, KPLS is capable of making good tradeoff between Sn and Sp by the

optimization of the number of LVs. For instance, by taking the results of 30 bp shown in Table 4, the

differences between Sn and Sp of the four kernel-based algorithms were 2.05% (KPLS), 7.04% (SVM),

7.03% (GP), and 2.05% (KFDA). The results made it clear that considering both the accuracy and the

tradeoff between Sn and Sp, the performance of KPLS was better than that of KFDA, GP, and SVM.

) Comparing the time requirements of kernel-based classifiers:

Through the so-called kernel trick mapping, it is ‘‘only’’ necessary to handle an m · m (m is the number

of observations) kernel matrix, and the kernel-based technique limitations are much more related to the

number of observations than to the number of variables (Cortes and Vapnik, 1995). However, the CPU time

of calculating the inner product of the 930 variables is much shorter than that of the 189 or 252 variables.

For example, when using the KPLS method as a classifier, for 2000 positive samples and 2000 negative

samples, the computing time of one operation of the 930 variables was 1839.4 s, of the 189 variables was

3359.9 s, and of the 252 variables was 4300.5 s. (All algorithms were operated in MATLAB R2009a; the

operation system was a 64-bit Windows 7, and the personal computer had Intel Core 2 Quad processor

Q8200 2.33 GHz with 8-GB memory.)

To find the optimum parameters, it is necessary to run the program dozens of times for each set of data.

The computing time could be expanded to be a heavy load when using 189/252 variables. Thus, accounting

for both the prediction performance and the time consumption, KPLS with the 930 Z-curve variables was

the best choice for short exon recognition. The corresponding results of fragments with various window

lengths of dataset-1 and dataset-2 are listed in Table S7 (Supplementary Material is available at www

.liebertonline.com/cmb).

In summary, for short coding sequence recognition, PLS can be used to obtain the necessary knowledge

and preliminary results as soon as possible, and then KPLS becomes the first choice for further research.

4. CONCLUSION

This study did not aim to add another algorithm to the existing collection of supervised classification

tools. Our approach was to facilitate the selection of more sophisticated methods and highlight optimum

combinations of Z-curve parameters for successful implementation of classification-based studies. Based

on the databases constructed here and with considerations of accuracy as well as the tradeoff between

sensitivity/specificity and computing time, PLS and KPLS were recommended as linear and kernel-based

classifiers for recognizing short coding sequences of human genes.

Other main conclusions drawn from our analyses were that the 930 Z-curve variables were verified to be

the best features for short exon recognition. With the use of these 930 variables, the performances of the

classifiers were improved remarkably without increasing computing time. According to the mechanism of

the Z-curve methods of the 930 variables, the frequencies of three kinds of stop codons, Tyrosine codons,

Cysteine codons, and ‘‘TT’’/‘‘TG’’/‘‘GG’’ di-nucleotides, were found to be the most essential peculiarities

for distinguishing short coding and noncoding gene sequences.
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