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ABSTRACT

Several methods have been designed to infer species trees from gene trees while taking into
account gene tree/species tree discordance. Although some of these methods provide con-
sistent species tree topology estimates under a standard model, most either do not estimate
branch lengths or are computationally slow. An exception, the GLASS method of Mossel
and Roch, is consistent for the species tree topology, estimates branch lengths, and is
computationally fast. However, GLASS systematically overestimates divergence times,
leading to biased estimates of species tree branch lengths. By assuming a multispecies co-
alescent model in which multiple lineages are sampled from each of two taxa at L inde-
pendent loci, we derive the distribution of the waiting time until the first interspecific
coalescence occurs between the two taxa, considering all loci and measuring from the di-
vergence time. We then use the mean of this distribution to derive a correction to the
GLASS estimator of pairwise divergence times. We show that our improved estimator,
which we call iGLASS, consistently estimates the divergence time between a pair of taxa as
the number of loci approaches infinity, and that it is an unbiased estimator of divergence
times when one lineage is sampled per taxon. We also show that many commonly used
clustering methods can be combined with the iGLASS estimator of pairwise divergence
times to produce a consistent estimator of the species tree topology. Through simulations, we
show that iGLASS can greatly reduce the bias and mean squared error in obtaining esti-
mates of divergence times in a species tree.
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1. INTRODUCTION

Gene trees can differ dramatically from the species tree on which they evolve, complicating

the inference of species trees from genomic data. Discordance can arise from processes such as

horizontal gene transfer and gene duplication, and in a phenomenon known as incomplete lineage sorting, it

can also arise simply from randomness in the processes by which genetic lineages evolve (Maddison, 1997;

Nichols, 2001; Rannala and Yang, 2008; Degnan and Rosenberg, 2009; Liu et al., 2009a). In recent years,

several methods have been developed to infer species trees from gene trees, even in the presence of in-

complete lineage sorting. Most of these methods, however, do not estimate branch lengths or are
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computationally slow (Maddison, 1997; Rannala and Yang, 2003; Edwards et al., 2007; Ewing et al., 2008;

Degnan and Rosenberg, 2009; Kubatko et al., 2009; Liu et al., 2009b; Than and Nakhleh, 2009).

The GLASS method of Mossel and Roch (2010), which was also developed independently by Liu et al.

(2010), is appealing because it estimates branch lengths, it is computationally fast, and it is a consistent

estimator of the species tree topology when incomplete lineage sorting is taken to be the sole source of gene

tree/species tree discordance. To estimate the species tree using the GLASS method, for each pair of taxa A

and B, one first obtains an estimate t̂AB of the divergence time sAB between A and B. The estimate t̂AB is given

by the minimum interspecific coalescence time between a lineage from taxon A and a lineage from taxon B,

where the minimum is taken over all such lineage pairs and over all loci. The species tree is then constructed

from the pairwise estimates by single-linkage clustering (Gordon, 1996; Mossel and Roch, 2010).

The data for the GLASS method consist of genotypes at each of L loci for a number of individuals in

each taxon. Specifically, for a set of L loci indexed by ‘¼ 1‚ . . . ‚ L, let fa‘ig
nA‘

i¼ 1 and fb‘jg
nB‘

j¼ 1 be sets of

lineages sampled at locus ‘ from taxa A and B, respectively. Let Ta‘
i
‚ b‘

j
be an estimate of the coalescence

time between lineages a‘i and b‘j , and let T
(‘)
AB¼ mini‚ j Ta‘

i
b‘

j
. If sAB is the true divergence time between taxa A

and B, then the GLASS estimate of sAB is given by t̂AB¼ min‘ T
(‘)
AB, i.e., the shortest time to an interspecific

coalescence at some locus (Fig. 1).

The GLASS estimate Ŝ of the species tree S is then constructed by applying single-linkage clustering to

the set of estimates ft̂ABgA‚ B2S , where S is the taxon set of the species tree. Specifically, the GLASS

estimate d̂CC0 of the distance between two sets of taxa C and C0 is defined by d̂CC0 ¼ minA2C‚ B2C0 t̂AB. The

single-linkage clustering procedure involves grouping the two taxon sets with shortest distance, re-

computing the distances among groups, and repeating the process until a single cluster remains.

The quantity t̂AB is a consistent estimator of the pairwise divergence time sAB, because for any � > 0, the

probability is positive that at locus ‘, T
(‘)
AB will exceed the divergence time by no more than e time units.

Thus, as more loci are sampled, it becomes increasingly likely that an interspecific coalescence at some

locus will occur within e time units of the divergence time sAB. The GLASS estimator Ŝ is a consistent

estimator of the species tree topology, because single-linkage clustering constructs a tree with the correct

topology whenever t̂AB is close enough to sAB for all A, B 2 S.

Although the GLASS method is a consistent estimator of pairwise divergence times under the multi-

species coalescent, the GLASS estimator t̂AB systematically overestimates the divergence time sAB because

interspecific coalescences occur more anciently than the divergence time under the model. It is well known

that, at a given locus, the time of the first interspecific coalescence between a pair of taxa can greatly

exceed the actual divergence time (Edwards and Beerli, 2000; Rosenberg and Feldman, 2002). Thus,

especially when divergence times are small, the bias in GLASS estimates of divergence times can be large

relative to the true times, leading to biased estimates of species tree branch lengths.

Here, by deriving the expected waiting time until the first interspecific coalescence occurs among L

independent loci for a pair of taxa, we develop a correction to the GLASS estimator t̂AB. We show that the

FIG. 1. The GLASS estimate of the divergence time

between two taxa, A and B. Lineages a1, a2, b1, and b2

are sampled from taxa A and B, respectively, and gene

trees for these lineages are shown at two loci, Locus 1

and Locus 2. Note that the individuals sampled need not

be the same for all loci. The most recent interspecific

coalescence at each locus is marked with a red dot. The

GLASS estimate t̂AB is the minimum interspecific coa-

lescence time across loci. VAB is the difference between

the GLASS estimate and the divergence time.

Locus 1

Locus 2

a1 a2 b1 b2

tAB

VAB

AB

A B
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corrected method, which we call iGLASS for ‘‘improved GLASS,’’ remains consistent for estimating pair-

wise divergence times in a species tree when incomplete lineage sorting is taken to be the sole source of gene

tree discordance. We also show that each member in a particular class of clustering methods can be combined

with pairwise iGLASS estimates to produce a statistically consistent estimator of the species tree topology.

Through simulations, we demonstrate that in comparison with the GLASS estimator, the iGLASS estimator

greatly reduces the bias and mean squared error (MSE) in pairwise estimates of species divergence times.

2. CORRECTING THE GLASS METHOD

To reduce the bias in the GLASS method’s estimates of pairwise divergence times under the multispecies

coalescent model, we assume that lineages evolve according to the model, and we derive the expectation of the

difference VAB¼ t̂AB� sAB between the GLASS estimator and the true divergence time. We then obtain a

correction to the GLASS method by subtracting the expected difference EsAB
[VAB] from the GLASS estimate t̂AB.

Under the multispecies coalescent model (Degnan and Rosenberg, 2009), in each branch of the species

tree, the waiting time until i lineages coalesce to i - 1 lineages is exponentially distributed with mean 1= i
2

� �
coalescent time units of N generations, where N is the haploid effective size of the population in the branch.

All of the i
2

� �
pairs of lineages are equally likely to coalesce. When two populations merge backwards in

time, all lineages remaining in the two daughter populations enter the ancestral population, and the

coalescent process resumes in that branch.

To derive the distribution of the difference VAB, we model the history of each pair of species A and B

using two populations with constant haploid sizes NA and NB. These populations merge into an ancestral

population of constant size N at the divergence time sAB (Fig. 1). For simplicity, throughout this article, all

times are given in units of N generations. Furthermore, although we keep our derivations general by

allowing NA and NB to take on arbitrary values, when we consider species trees with more than two taxa, we

assume that the effective population sizes are equal in every branch of the species tree, and that the species

tree is binary.

At time 0, corresponding to the present, nA‘ and nB‘ lineages are sampled at locus ‘ (‘¼ 1‚ . . . ‚ L) from

taxa A and B, respectively. The quantities L‚ fnA‘g
L
‘¼ 1, and fnB‘g

L
‘¼ 1 are assumed to be known. We also

assume that the gene trees of sampled loci have been accurately estimated. Thus, the GLASS estimate t̂AB is

exactly equal to the time of the first interspecific coalescence between taxa A and B at some sampled locus.

We assume that for each pair of taxa A and B in the species tree, each taxon in the pair has the same

distance sAB (in units of N generations) from the common ancestor of A and B. This assumption implies that

when times are expressed in units of N generations, the species tree that we are inferring is ultrametric. In

other words, for any three taxa X, Y, and Z, two of the distances DXY , DXZ , and DYZ are equal and are greater

than or equal to the remaining distance (Semple and Steel, 2003). Ultrametricity follows from the fact that

one taxon in the triplet {X, Y, Z} is an outgroup to the other two, and we have assumed that the remaining two

taxa are equidistant from it. Ultrametricity is required for the shared divergence time between a pair of taxa to

be well-defined, and it also will be important for determining which clustering methods can be combined with

iGLASS estimates of pairwise divergence times to produce consistent estimators of the species tree topology.

Let t̂�AB denote a particular value of the GLASS estimate computed from data and let t̂AB denote the

GLASS estimator, a random variable. To correct the observed GLASS estimate t̂�AB, we find the divergence

time for which the expectation of the GLASS estimator t̂AB under the multispecies coalescent model is

equal to the observed value t̂�AB. Specifically, we solve

t̂�AB¼EsAB
[t̂AB] (1)

for sAB, and we take the solution as our estimate of the divergence time.

When the GLASS estimate t̂�AB is smaller than its smallest possible expected value E0[t̂AB], it is not

meaningful to solve Equation (1). Therefore, we define the iGLASS estimate to be zero whenever

t̂�AB < E0[t̂AB]. Defining the function g(sAB)¼EsAB
[t̂AB], our estimator ŝAB of the divergence time sAB, which

we call the iGLASS estimator, is given by

ŝAB¼
g� 1(t̂�AB)‚ if E0[t̂AB]pt̂�AB

0‚ otherwise.

�
(2)
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Because EsAB
[t̂AB] is a polynomial in e - sAB, as we will see, Equation (1) is transcendental and must be solved

numerically. We now derive the quantity EsAB
[t̂AB].

3. THE EXPECTED MINIMAL INTERSPECIFIC COALESCENCE TIME EsAB
[t̂AB]

Suppose that at locus ‘ (‘¼ 1‚ . . . ‚ L), nA‘ and nB‘ lineages are sampled at time 0 from taxa A and B,

respectively. Let KA‘ and KB‘ be random variables describing the numbers of lineages from taxa A and B

remaining at the divergence time sAB at locus ‘ (‘¼ 1‚ . . . ‚ L), and define the random vectors

KA¼ (KA1
‚ . . . ‚ KAL

) and KB¼ (KB1
‚ . . . ‚ KBL

). The expectation EsAB
[t̂AB] can be expressed as

EsAB
[t̂AB]¼ sABþEsAB

[VAB], where VAB¼ t̂AB� sAB is the random difference between the GLASS estimator

and the true divergence time. We now derive the expectation of VAB.

Let EsAB
[VABjkA‚ kB] denote the expectation of VAB conditional on the event that KA = kA and KB = kB.

Then

EsAB
[VAB]¼

X
kA‚ kB

EsAB
[VABjkA‚ kB]

YL

‘¼ 1

hnA‘
‚ kA‘

(sAB; NA)hnB‘
‚ kB‘

(sAB; NB)‚ (3)

where hn,k(s; Nj) is the well-known probability that n lineages coalesce down to k lineages in time s units of

N generations in a population of constant size Nj (Tavaré, 1984). The distribution hn,k(s; Nj) is given by

hn‚ k(s; Nj)¼
Xn

i¼ k

(2i� 1)(� 1)i� kk(i� 1)n[i]

k!(i� k)!n(i)
exp � i

2

� �
sN=Nj

� �
‚ (4)

where n[i]¼ n!
(n� i)! and n(i)¼ (n� 1þ i)!

(n� 1)! , and where the factor N/Nj comes from the fact that time is expressed

in units of N generations.

The expectation EsAB
[VABjkA‚ kB] in Equation (3) was derived in the case of a single locus by Takahata

(1989) using a recursive approach. A different recursive approach, which we present in Appendix A, can be

used to compute EsAB
[VABjkA‚ kB] in the case of multiple loci. The desired expectation is given by

EsAB
[VABjkA‚ kB]¼ 1PL

‘¼ 1
kA‘
þ kB‘
2

	 
"1þ
XL

‘¼ 1

 
EsAB

[VABjkA� e‘‚ kB]
kA‘

2

� �

þEsAB
[VABjkA‚ kB� e‘]

kB‘

2

� �!#
‚ (5)

in units of N generations, where e‘ is the ‘th standard basis vector of RL.

In addition to the mean, it is also of interest to obtain the distribution fVAB
(v) of the ‘‘overshoot’’ VAB. Because

both the unconditional probability distribution function fVAB
(v) and the conditional expectation EsAB

[VABjkA‚ kB]
can be obtained from the conditional distribution fVAB

(vjkA‚ kB), we begin by computing fVAB
(vjkA‚ kB). We first

consider the case of a single locus, and we then extend the calculation to multiple loci.

3.1. Derivation of fVAB
(vjkA‚ kB) for one locus.

Consider a single locus and let kA and kB denote the numbers of lineages from taxa A and B remaining at

the divergence time sAB. The quantity fVAB
(vjkA‚ kB) is then the distribution of the time to the first inter-

specific coalescence at the locus, measuring from time sAB.

To derive fVAB
(vjkA‚ kB), recall that the time Ti until i lineages coalesce to i - 1 lineages is exponentially

distributed with mean 1= i
2

� �
Thus, if k = kA + kB lineages remain at the divergence time, and if the first

interspecific coalescence occurs on the Mth coalescence past the divergence time, then the waiting time VAB

until this coalescence can be expressed as the summation VAB¼
PM

i¼ 1 Tk� (i� 1).

The location M in the sequence of coalescences of the first interspecific coalescence is itself a random

variable and hence, VAB has a Coxian distribution (Ross, 2007) with probability density function given by

fVAB
(vjkA‚ kB)¼

Xk� 1

m¼ 1

Pr(M¼m)
Xm

i¼ 1

ci‚ mcie
� civ: (6)
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In Equation (6), ci‚ m¼
Qm

j¼ 1‚ j6¼i cj=(cj� ci), where ci¼ k� (i� 1)
2

� �
is the parameter of the ith waiting time

Tk - (i - 1). For m = 1, we define ci,m to be unity.

The distribution in Equation (6) was derived by Takahata (1989). In Takahata’s result, the probability

Pr(M = m) is obtained recursively; however, it is possible to derive a closed-form solution. Rosenberg

(2003) derived a closed-form expression that is equivalent to the cumulative distribution function of M. In

Appendix B, we derive the closed-form of the probability mass function of M from Equation A8 of

Rosenberg (2003). We obtain

Pr(M¼m)¼ Ik�m‚ 1

2m� 1kAkBIk‚ 1

Xminfm� 1‚ kA � 1g

g¼ maxf0‚ m� kBg

m� 1

g

� �
kA

2
[gþ 1]kB

2
[m� g] (7)

whenever m £ kA + kB - 1, where k[i]¼ k!
(k� i)!, and where, as in Rosenberg (2003), Ik‚ m¼ k!(k� 1)!

2k�mm!(m� 1)! is the

number of ways in which k lineages can coalesce down to m lineages. Plugging expression (7) into (6) gives

the formula for the distribution of VAB in the case of one locus.

3.2. Derivation of fVAB
(vjkA‚ kB) for L loci.

We now extend formula (6) to multiple loci. Let V
(‘)
AB be the random variable describing the time to the

first interspecific coalescence at locus ‘ (‘¼ 1‚ . . . ‚ L). We assume that all loci are independent, conditional

on the species tree and its parameter values. Therefore, the cumulative distribution function FVAB
(vjkA‚ kB)

of the minimum interspecific coalescence time VAB¼ min‘ V
(‘)
AB is given by

FVAB
(vjkA‚ kB)¼ 1�Pr

�
V

(‘)
ABqv‚ 8‘¼ 1‚ . . . ‚ LjkA‚ kB

�
¼ 1�

YL

‘¼ 1

Pr V
(‘)
ABqvjkA‘‚ kB‘

	 

: (8)

Here, Pr(V (‘)
ABqvjkA‘ ‚ kB‘ ) is given by integrating Equation (6):

Pr(V (‘)
ABqvjkA‘‚ kB‘ )¼

Z 1
t¼ v

f
V

(‘)
AB

(tjkA‘ ‚ kB‘ )dt

¼
Xk‘ � 1

m‘ ¼ 1

Pr(M‘¼m‘)
Xm‘

i‘ ¼ 1

ci‘‚ m‘
e� ci‘

v‚ (9)

where k‘ = kA‘ + kB‘ is the total number of lineages remaining at the divergence time at locus ‘. Plugging

(9) into (8) and differentiating gives the density function fVAB
(vjkA‚ kB):

fVAB
(vjkA‚ kB)¼ d

dv

 
1�

YL

‘¼ 1

Pr(V (‘)
ABqvjkA‘‚ kB‘ )

!

¼ �
XL

‘¼ 1

YL

j¼ 1
j 6¼‘

Pr(V (j)
ABqvjkAj

‚ kBj
)

264
375 d

dv
Pr V

(‘)
ABqvjkA‘‚ kB‘

	 


¼
XL

‘¼ 1

Xk1 � 1

m1 ¼ 1

Xm1

i1 ¼ 1

� � �
XkL � 1

mL ¼ 1

XmL

iL ¼ 1

Pr(M1¼m1) � � �Pr(ML¼mL)

"

· ci1‚ m1
� � � ciL‚ mL

ci‘
e� (ci1

þ ��� þ ciL
)v

#

¼
Xk1 � 1

m1 ¼ 1

Xm1

i1 ¼ 1

� � �
XkL � 1

mL ¼ 1

XmL

iL ¼ 1

Pr(M1¼m1) � � �Pr(ML¼mL)

· ci1‚ m1
� � � ciL‚ mL

(ci1
þ � � � þ ciL

)e� (ci1
þ ��� þ ciL

)v: (10)

In the last equality, we have brought the outer summation inside.
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3.3. Closed-form expressions for fVAB
(v) and EsAB

[VAB].

Closed-form expressions for fVAB
(v) and EsAB

[VAB] can now be computed using Equation (10). The

unconditional density fVAB
(v) is given by

fVAB
(v)¼

X
kA‚ kB

fVAB
(vjkA‚ kB)

YL

‘¼ 1

hnA‘
‚ kA‘

(sAB; NA)hnB‘
‚ kB‘

(sAB; NB)‚ (11)

where the summation at a given locus ‘ (‘¼ 1‚ . . . ‚ L) in a given taxon (A or B) ranges from 1 to the

number of sampled lineages at that locus in that taxon. The conditional expected value of VAB for a

collection of L loci is obtained by integrating Equation (10). This gives

EsAB
[VABjkA‚ kB]

¼
Z 1

t¼ 0

tfVAB
(tjkA‚ kB)dt

¼
Xk1 � 1

m1 ¼ 1

Xm1

i1 ¼ 1

� � �
XkL � 1

mL ¼ 1

XmL

iL ¼ 1

Pr(M1¼m1) � � �Pr(ML¼mL)

· ci1‚ m1
� � � ciL‚ mL

1

(ci1
þ � � � þ ciL

)
: (12)

The unconditional expected value EsAB
[VAB] can be computed by plugging either Equation (12) or the

recursive Equation (5) into Equation (3), thereby completing the derivation of EsAB
[VAB].

Thus, to obtain the iGLASS estimate from the GLASS estimate t̂AB, we evaluate Equation (2), where

g(sAB)¼ sABþ
X

kA‚ kB

EsAB
[VABjkA‚ kB]

YL

‘¼ 1

hnA‘
‚ kA‘

(sAB; NA)hnB‘
‚ kB‘

(sAB; NB)‚ (13)

and where EsAB
[VABjkA‚ kB] is given by either Equation (12) or Equation (5). The product

QL
‘¼ 1

hnA‘
‚ kA‘

(sAB; NA)hnB‘
‚ kB‘

(sAB; NB) is a polynomial in e� sAB and thus, the inverse g� 1(t̂AB) must be evaluated

numerically. The iGLASS estimate of the species tree is then constructed by applying an appropriately

chosen clustering method to the distance matrix of pairwise iGLASS time estimates. We discuss the choice

of clustering method in Section 7.

4. AN APPROXIMATION

The expectation (3) is expensive to compute either when the exact formula (Equation 12) is used or when

the recursion (Equation 5) is used, due to the need to sum over all possible values of kA‘ and kA‘ . For this

reason, we introduce a deterministic approximation that amounts to an assumption that, with probability

one, the number of lineages remaining at the divergence time after coalescence along a species tree branch

is the number expected at that time under the coalescent model. Thus, in our approximation, Equation (3)

simplifies to

EsAB
[VAB] � EsAB

[VABjEsAB
[KA]‚ EsAB

[KB]]: (14)

Using the approximation (14) eliminates the need to sum over all possible values of kA‘ and kB‘ , signifi-

cantly reducing the computational cost.

However, we cannot implement this approximation using our current formulas because our expression

for EsAB
[VABjkA‚ kB], Equation (12), requires kA and kB to be vectors of integers, whereas EsAB

[KA‘ ] and

EsAB
[KB‘ ] need not be integers. Although it is an option to round each expected value, EsAB

[KA‘ ] and

EsAB
[KB‘ ] (‘¼ 1‚ . . . ‚ L), to the nearest integer, the approximation that results is somewhat imprecise. Thus,

we take a different approach and re-derive an approximation to Equation (12) in such a way that it depends

continuously on the number of lineages remaining at the divergence time.

Our approach is to treat the number of lineages as a continuous quantity. We make use of a result from

Maruvka et al. (2011), who demonstrated that if the initial number of lineages is large, the number of

lineages remaining at time t behaves almost deterministically and is well approximated by simple
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deterministic functions that approximate the expected number of lineages at time t. We wish to be as

accurate as possible, however, and we therefore approximate the number of lineages at time t by the

expected number of lineages at that time (Fig. 2), rather than by an approximation to the expectation.

Define Et
n to be the expected number of lineages at time t units of N generations, given that n lineages

exist at time t = 0. The expected number of lineages Et
n in a population of size Nj can be computed using

Equation (4), or by the following formula from Tavaré (1984):

Et
n¼

Xn

k¼ 1

(2k� 1)n[k]

n(k)
exp � k(k� 1)

2
tN=Nj

� �
: (15)

Formula (15) applies as long as the number n¼E0
n of lineages at time t = 0 is an integer. However, as it is

our goal to treat lineages as a continuous quantity, we would like to allow n to be any number greater than

or equal to one.

When n is not a integer, we can introduce an ‘‘offset’’ q such that Eq
Ønø¼ n. Then for any n ‡ 1, we define

the expected number of lineages ut
n at time t to be

ut
n¼

Et
n if n is an integer‚

Eqþ t

Ønø otherwise‚

(
(16)

where q is found by numerically solving Eq
Ønø¼ n using Equation (15). Thus, ut

n is a generalization of the

expected number of lineages at time t to the case in which n is not integer-valued, and it allows us to treat the

number of lineages as a continuous quantity. As we will see, the approximate expectation (14) computed using

the approximation (16) is quite accurate even when only one or two lineages are sampled in the population.

We now use the quantity ut
n to derive an approximation for EsAB

[VABjkA‚ kB] that depends continuously

on kA and kB. We first derive an approximation to the conditional density fVAB
(vjkA‚ kB) in the case of a

single locus, and we then generalize to many loci.

4.1. An approximation to fVAB
(vjkA‚ kB) for one locus.

As before, consider two taxa A and B. Let kA and kB be the numbers of lineages, not necessarily integers,

that enter the ancestral population at the divergence time from taxa A and B, respectively. For the remainder

of this derivation, it will simplify the notation if we measure time from a reference point at the divergence

time sAB, rather than from the present. Thus, we take ut
kA

and ut
kB

to be the numbers of lineages remaining at

time t from taxa A and B, counting from the divergence time.

Although ut
kA

and ut
kB

are deterministic quantities representing the expected numbers of lineages from taxa

A and B, we continue to assume that the interactions between lineages are random. We assume that, in a small

time interval [t, t + Dt], a coalescent event occurs with rate
ut

kA
þut

kB

2

	 

, given that no interspecific coalescence

has occurred by time t. In addition, given that a coalescent event occurs in the interval [t, t + Dt], we

approximate the probability that it is interspecific by 2
ut

kA

ut
kA
þut

kB

ut
kB

ut
kA
þut

kB
� 1

, the conditional probability that a

coalescence at time t involves one lineage from taxon A and one lineage from taxon B if the numbers of

FIG. 2. Approximation to the

coalescent process in a pair of

populations. (a) A random geneal-

ogy under the standard coalescent

process. (b) An approximation to

the coalescent process in which the

number of lineages at time t is the

expected number of lineages. Al-

though the number of lineages re-

maining from a given taxon is

deterministic in our approximation,

the number of interspecific coalescences that occur in some time interval Dt is random, and it depends on the

approximate numbers of lineages in the two taxa.

Coalescent process (discrete and random) Approximation (continuous and deterministic)

a b
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lineages are integer-valued. Thus, letting Ia‚b be the event that an interspecific coalescence occurs in the

interval [a, b], letting I c
a‚b be the event that an interspecific coalescence does not occur in the interval [a, b],

and letting Ca‚ b be the event that a coalescence of any kind occurs in the interval [a, b], we find that

Pr(I t‚ tþDtjI c
0‚ t)¼Pr(I t‚ tþDtjCt‚ tþDt‚ I c

0‚ t)Pr(Ct‚ tþDtjI c
0‚ t)

� 2
ut

kA

ut
kA
þut

kB

ut
kB

ut
kA
þut

kB
� 1

ut
kA
þut

kB

2

� �
Dt

¼ut
kA

ut
kB
Dt:

Hence, the approximate probability that an interspecific coalescence does not occur in the interval

[t, t + Dt], given that none has occurred more recently than time t, is

Pr(I c
t‚ tþDtjI c

0‚ t) � 1�ut
kA

ut
kB
Dt � e

�ut
kA

ut
kB
Dt
:

The probability that no interspecific coalescence occurs in the interval [0, t] can be approximated by the

probability that no interspecific coalescence occurs in any of J small intervals of length Dt = t/J:

Pr(I c
0‚ t) �

YJ� 1

j¼ 0

e
�ujDt

kA
ujDt

kB
Dt¼ exp �

XJ� 1

j¼ 0

ujDt
kA

ujDt
kB
Dt

( )
:

Thus, as J / N we have Dt / 0, and

Pr(I c
0‚ t)! exp �

Z t

z¼ 0

uz
kA

uz
kB

dz

� �
: (17)

We now generalize this result to the case of many loci.

4.2. An approximation to fVAB
(vjkA‚ kB) for L loci.

Let ut
kA‘

and ut
kA‘

be the deterministic approximations to the numbers of lineages remaining at time t from

taxa A and B at locus ‘. Then the probability that no interspecific coalescence occurs in any one of L

independent loci in the interval [0, t] is approximately

Pr(VABqtjkA‚ kB) �
YL

‘¼ 1

exp �
Z t

z¼ 0

uz
kA‘

uz
kB‘

dz

� �

¼ exp �
XL

‘¼ 1

Z t

z¼ 0

uz
kA‘

uz
kB‘

dz

( )
: (18)

4.3. The approximate iGLASS correction.

To get the expected time to the first interspecific coalescence at some locus, the approximation to

Equation (12), we integrate:

EsAB
[VABjkA‚ kB]¼

Z 1
t¼ 0

Pr VABqtjkA‚ kBð Þdt

�
Z 1

t¼ 0

exp �
XL

‘¼ 1

Z t

z¼ 0

uz
kA‘

uz
kB‘

dz

( )
dt: (19)

If we assume that the number of lineages remaining at the divergence time is the expected number of

lineages at this time, then the approximate iGLASS correction, the approximation to Equation (3), is

obtained by making the substitutions kA‘ ¼EsAB
[KA‘ ] and kB‘ ¼EsAB

[KB‘ ] into Equation (19):

EsAB
[VAB] � EsAB

[VABjEsAB
[KA]‚ EsAB

[KB]]

�
Z 1

t¼ 0

exp �
XL

‘¼ 1

Z t

z¼ 0

uz
EsAB

[KA‘
]u

z
EsAB

[KB‘
]dz

( )
dt

� ~EsAB
[VAB]: (20)
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This approximate expression is much faster to evaluate than Equation (3) because it does not require a sum

over all possible values of kkA‘
and kkB‘

.

Because the values obtained from the approximation (Equation 20) differ from those obtained from the

exact solution (Equation 3), we modify our definition of the iGLASS estimator (Equation 2) accordingly. We

now define the function ~g(sAB)¼ sABþ ~EsAB
[VAB], and we define the approximate iGLASS estimator ~sAB to be

~sAB¼
~g� 1(t̂�AB)‚ if ~E0[VAB]pt̂�AB

0‚ otherwise:

�
(21)

As before, the approximate iGLASS estimate Ŝ of the species tree is then constructed by applying any

suitable clustering method to the pairwise approximate iGLASS estimates.

Although Equation (20) is an approximation, it can produce values that are remarkably close to the exact

expectations. Figure 3 shows the exact survival function Pr(VAB ‡ v) of VAB (Equation 9) and the ap-

proximate survival function (Equation 18) for the case of one locus. From Figure 3, it can be seen that the

approximation is exact when one lineage is sampled per taxon, because the expected number of lineages

used in the approximation is always equal to one, the true number of lineages.

For larger numbers of sampled lineages, as the time v is increased the approximation becomes slightly

worse and then improves again. This result is a consequence of the behavior of the variability in the number

of lineages over time. For small v, with very high probability the number of lineages is close to the number

that were initially sampled, and the variance in the number of lineages is small. For intermediate v, greater

variation exists in the number of lineages, and the approximation of the stochastic process of coalescence as

a deterministic process is less appropriate. Finally, for large v, the number of lineages is equal to one with

high probability, and the variance is again small. Thus, the expectation uv
n is a better approximation to the

number of lineages for small and large v.

In practice, the approximate iGLASS correction (Equation 20) differs only slightly from the exact

iGLASS correction, except in the case of a single locus (Fig. 4). Therefore, in our implementation of the

iGLASS correction, we use the approximation (Equation 20), except in the case of a single locus, for which

it is fast to compute the exact correction.

FIG. 4. The difference between

the approximate iGLASS correction

(Equation 19) and the exact

iGLASS correction (Equation 3).

Each pixel in the heatmap shows

the difference ~EsAB
[VAB]�EsAB

[VAB]
for a given divergence time sAB, a

given number of lineages sampled

per taxon, and a given number of

loci. Within each block corresponding to a number of loci, the numbers of lineages sampled from each taxon at each locus

are, from left to right, (nA, nB) = (1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), and (4,4), where nA is the number

of lineages sampled from taxon A and nB is the number sampled from taxon B.

FIG. 3. Approximate survival function (Equation 18)

(red, dashed) and exact survival function (Equation 9)

(blue) of the quantity VAB¼ t̂AB� sAB for one locus,

conditional on the numbers of lineages kA and kB re-

maining at the divergence time from each taxon. Pr(V

‡ vjKA = kA, KB = kB) is the probability that the GLASS

estimate exceeds the divergence time sAB by more than v

coalescent units. In order from top to bottom, the num-

bers of lineages that were used to generate the curves are

(kA, kB) = (1,1), (1,2), (2,2), (2,3), (3,3), (3,5), (5,5),

(5,7), where kA is the number of lineages remaining in

taxon A at the divergence time and kB is the corre-

sponding number of lineages remaining in taxon B. For

the top curve, one lineage is sampled from each taxon

and the approximation is exact.
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5. COMPUTATIONAL COMPLEXITY OF APPROXIMATE iGLASS

The computational complexity of the approximate iGLASS method is derived in Appendix C and is

given by O(n2LQjSjþ LQ3jSj2) operations, where n is the maximal number of lineages sampled from any

taxon at any locus, L is the number of loci, jSj is the number of taxa, and Q is a tuning parameter that

affects the accuracy of the numerical computations (see Appendix C). For fixed Q, the estimation procedure

requires at most O(n2LjSjþ LjSj2) operations. In comparison, the GLASS method requires O(n2LjSj2þjSj3)
operations. Thus, in each parameter, the approximate iGLASS correction has computational complexity no

greater than that of GLASS for a given precision Q.

6. CONSISTENCY OF EXACT AND APPROXIMATE iGLASS

In this section, we show that both the exact and approximate iGLASS estimators (2) and (21) are

consistent estimators of pairwise divergence times. We then show that applying any suitable clustering

method to either exact or approximate iGLASS estimates of pairwise times produces a consistent estimator

of the species tree topology. A family of clustering methods that gives rise to consistent estimation

procedures is discussed in Section 7.

6.1. Exact and approximate iGLASS are consistent estimators of pairwise divergence times.

As we show in Theorem (D.1) in Appendix D, the GLASS method is a consistent estimator of pairwise

divergence times. The exact and approximate iGLASS estimators (Equations 2 and 21) approach the

GLASS estimator asymptotically in such a way that they are also consistent. We now prove this result.

Theorem 6.1. Given two taxa, A and B, the exact iGLASS method (Equation 2) is a consistent

estimator of the divergence time sAB as the number of loci L / N.

Proof. Let sAB be the true divergence time, and let CAB¼ t̂AB� ŝAB be the iGLASS correction to the

GLASS method. We wish to show that ŝAB¼ t̂AB�CAB converges in probability to sAB as the number of

loci L / N. It is shown in Theorem D.1 that t̂AB ! sAB in probability as L / N. Thus, since convergence

in distribution to a constant is equivalent to convergence in probability (Casella and Berger, 2002), it

follows that t̂AB ! sAB in distribution as L / N. By Corollary E.3 in Appendix E, we have that CAB £
1/L / 0 as L / N. Thus, by Slutsky’s theorem (Casella and Berger, 2002), ŝAB¼ t̂AB�CAB ! sAB in

distribution (and in probability) as L / N. -

A similar result holds for the approximate iGLASS method.

Theorem 6.2. Given two taxa, A and B, the approximate iGLASS method (Equation 21) is a consistent

estimator of the divergence time sAB as the number of loci L / N.

Proof. In Lemma E.3 we show that the approximate iGLASS correction ~CAB to the GLASS estimate

also satisfies ~CABp1=L. The rest of the proof is the same as that of Theorem 6.1. -

6.2. Exact and approximate iGLASS are consistent estimators of the species tree topology.

We now show that both the exact and approximate iGLASS methods are consistent estimators of the

species tree topology whenever the clustering procedure applied to the estimates of pairwise divergence

times has certain desirable properties. Let D be a distance matrix whose elements are pairwise distances

between taxa in the species tree S computed according to some distance measure. Let D̂ be an estimate of

D. Let kAkN denote the magnitude of the largest element in a matrix A. Following Atteson (1999), we give

the following definition.

Definition 6.3. Let e(S) denote the length of the shortest edge in a binary species tree S. Let D be the

true matrix of pairwise distances between taxa in the tree S and let D̂ be an estimate of D. Consider a

clustering method C that takes a distance matrix as input and returns a tree as output. The LN-radius ‘N of

C is the supremum over all quantities d such that, for all species trees S and all estimates D̂, C is guaranteed

to return the true topology whenever jjD̂ �Djj1 < de(S).
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In other words, clustering methods with nonzero LN-radius construct a tree with the correct topology

whenever the estimated distances D̂ are close to their true values.

In our case, we are working with pairwise estimates fŝABgA‚ B2S of divergence times rather than with

pairwise distances. For an ultrametric tree, the divergence time between two taxa A and B is linearly related

to the distance between the taxa and is equal to half the distance in the time units in which the tree

is ultrametric: in this case coalescent units, generations, or years. Thus, when the species tree S is ultra-

metric, the LN-radius of a clustering method C can be defined using divergence times instead of distances,

as the supremum over all quantities d such that C returns a tree with the correct topology whenever

maxA‚ B2S jŝAB� sABj < de(S).
We now prove that any clustering method with nonzero LN-radius, when combined with a consistent

estimator of pairwise divergence times, produces a consistent estimator of the species tree topology. This

result was assumed by Liu et al. (2010) in their proof that GLASS is consistent. The proof is straight-

forward; we include it for completeness.

Proposition 6.4. Consider a species tree S and let C be a clustering method with nonzero LN-radius ‘N.

Let ŝ be an estimator of pairwise divergence time that is consistent as L / N. Then the estimator Ŝ of the

species tree S produced by applying clustering method C to the collection fŝABgA‚ B2S of divergence time

estimates obtained from ŝ is consistent for the tree topology as L / N.

Proof. Let top S denote the topology of tree S. We wish to show that limL!1 Pr(top Ŝ¼ top S)¼ 1:
We have

Pr(top Ŝ¼ top S)qPr max
A‚ B2S

jŝAB� sABj < ‘1e(S)

� �
¼ 1�Pr

[
A‚ B2S

jŝAB� sABjq‘1e(S)

 !
q1�

X
A‚ B2S

Pr(jŝAB� sABjq‘1e(S)): (22)

In the first inequality, we have used the fact that the topology of S is correctly reconstructed whenever

maxA‚ B2S jŝAB� sABj < ‘1e(S). Since Pr(top Ŝ¼ top S) is a probability, we have 1�
P

A‚ B2S Pr(jŝAB

� sABjq‘1e(S))pPr(top Ŝ¼ top S)p1. Since ŝ is consistent, we have limL!1 Pr(jŝAB� sABjq
‘1e(S))¼ 0: Thus, limL!1 Pr(top Ŝ¼ top S)¼ 1 by the ‘‘squeeze theorem,’’ proving the result. -

It follows from results (6.1), (6.2), and (6.4) that the exact and approximate iGLASS estimators generate

consistent estimators of the species tree topology when combined with any clustering method that has

nonzero LN-radius.

7. CLUSTERING METHODS WITH NONZERO LN-RADIUS

Gascuel and McKenzie (2004) showed that any agglomerative algorithm defined by the following

procedure (excerpted from that article) has nonzero LN-radius, as long as the true species tree is

ultrametric:

1. Input a set of estimates of pairwise distances fD̂ABgA‚ B2S .

2. Choose the pair of taxa or clusters X and Y that minimize D̂AB, and combine them into a new

cluster U.

3. For each cluster C s X, Y, update the set of distances between C and the newly-formed cluster U according

to D̂CU ¼ kUCD̂CX þ (1� kUC)D̂CY , where kUC 2 [0‚ 1]. Leave all other distances unchanged.

4. Repeat (2) and (3) until one cluster remains.

Gascuel and McKenzie (2004) reported that the class of clustering methods that follow this procedure

includes single-linkage clustering (Sneath, 1957), complete-linkage clustering (Sørensen, 1948), UPGMA

(Sokal and Michener, 1958), and WPGMA (Sokal and Michener, 1958). These methods differ in the choice of

kUC, which is allowed to depend on U and C. For instance, Gascuel and McKenzie (2004) noted that for
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single-linkage clustering, kUC = 1 when D̂CXpD̂CY and kUC = 0 when D̂CX > D̂CY (note that it is arbitrary

which inequality is strict); for UPGMA, kUC = rXr/(rXr + rYr), where rXr is the number of taxa in cluster X.

Atteson (1999) showed that the neighbor-joining method of Saitou and Nei (1987), which does not

strictly follow the procedure of Gascuel and McKenzie (2004), also has nonzero LN-radius even when the

true species tree is not ultrametric. Therefore, because we have assumed that the true species tree is

ultrametric, by Proposition (6.4) we can combine neighbor-joining, or any method satisfying steps 1-4

above, with the iGLASS estimates of pairwise divergence times to produce a consistent estimator of the

species tree topology.

8. A VERSION OF THE iGLASS ESTIMATOR OF PAIRWISE DIVERGENCE TIMES
THAT IS UNBIASED WHEN ONE LINEAGE IS SAMPLED PER TAXON

Recall that in Equation (2), we forced the iGLASS estimates to be nonnegative. We will show that

relaxing this requirement yields an unbiased estimator of pairwise divergence times in the case in which

one lineage is sampled from each taxon.

Theorem 8.1. Consider two taxa A and B. If a single lineage is sampled from each taxon at each locus

‘ (‘¼ 1‚ . . . ‚ L), then the estimator defined by ŝAB¼ g� 1(t̂AB) for all t̂AB 2 R is an unbiased estimator of the

divergence time sAB.

Proof. Let kA‘ and kB‘ be the numbers of lineages remaining at locus ‘ (‘¼ 1‚ . . . ‚ L) from taxa A and B

at the divergence time. When one lineage is sampled from each taxon at each locus, kA‘ and kB‘ equal one

for all ‘¼ 1 . . . ‚ L. Therefore, letting 1 be the vector of length L with all entries equal to 1, Equation (5)

gives E[VABrKA = 1, KB = 1] = 1/L, and Equation (3) simplifies to EsAB
[VAB]¼ 1=L. The function g(sAB) is

then given by g(sAB) = sAB + 1/L, and its inverse by g� 1(t̂AB)¼ t̂AB� 1=L. Hence, g - 1(t) is defined for all

t 2 R and it is linear. Thus, by the linearity of the expectation operator, EsAB
[g� 1(t̂AB)]¼ g� 1(EsAB

[t̂AB])¼
g� 1(sABþEsAB

[VAB])¼ g� 1(g(sAB))¼ sAB: -

This result implies that the iGLASS estimator defined by Equation (2) is also unbiased for most values of

sAB whenever one lineage is sampled per taxon. Specifically, as we have assumed that gene trees are

inferred with certainty, the GLASS estimate t̂AB always exceeds the true divergence time sAB. Therefore,

when one lineage is sampled per taxon at each locus and the true divergence time is greater than or equal to

1/L, it follows that t̂AB � 1=L and the iGLASS estimator is defined by ŝAB¼ g� 1(t̂AB)¼ t̂AB� 1=L. Thus, by

Theorem 8.1, the iGLASS estimator will be unbiased in this case.

Note that when more than one lineage is sampled from either taxon, the probabilityQL
‘¼ 1 hnA‘

‚ kA‘
(sAB; NA)hnB‘

‚ kB‘
(sAB; NB) in Equation (3) contains terms of the form e� sAB , and thus, the

quantity EsAB
[VAB] is no longer linear in sAB. In this case, g� 1(t̂AB) is not linear in t̂AB and therefore, we

cannot use the relationship EsAB
[g� 1(t̂AB)]¼ sAB when more than one lineage is sampled per taxon.

However, as we will see from simulations, the bias is still very small.

9. COMPARISON OF METHODS

We used simulations to compare the performance of iGLASS to that of GLASS, evaluating each method

on the basis of bias and mean squared error (MSE). We first evaluated the methods for estimating pairwise

divergence times, and we then applied them to larger trees.

9.1. Simulations

We simulated gene trees under the multispecies coalescent model for various species trees S, for various

numbers of loci, and for various numbers of lineages sampled per taxon. In all simulations, all population

sizes were equal to the same value N across the branches of the species tree.

To simulate a gene tree from a given species tree, we used a method similar to that of Rosenberg and

Feldman (2002). Let branch i refer to the branch above node i in the species tree. Let ti be the time at node i,

and let �ti be the time at the node ancestral to node i. Here, we extend our numbering to external branches,

with ti = 0 when i corresponds to a leaf node.
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Let ni be the number of lineages entering branch i at time ti. If branch i is internal, then ni is the sum of

the numbers of lineages entering from its left and right daughter branches. If branch i is external, then ni is

equal to the number of lineages sampled from the corresponding taxon.

In each branch i, with the enumeration beginning with the external branches and proceeding towards the

root in such a way that daughter branches have lower numbers than their parental branches, we first

sampled the waiting time Tni
until the first coalescence from an exponential distribution with mean 1= ni

2

� �
. If

the sampled time Tni
exceeded �ti� ti, then we let the set of lineages exiting branch i equal the set that

entered. Otherwise, we chose two lineages at random without replacement and allowed them to coalesce.

We continued in this way, at each coalescence sampling the time to the next coalescence from an expo-

nential distribution with mean 1= q
2

� �
, where q was the number of lineages remaining after the previous

coalescence, until the sum of waiting times in the branch exceeded �ti� ti. The set of lineages remaining

after the last coalescence to occur within branch i was then merged into the set of lineages entering its

ancestral branch, along with the set of lineages entering from its sister branch, and the process was repeated

in the ancestral branch. Simulations were run until all lineages coalesced to a single lineage. For trees with

more than two taxa, the simulations were carried out using the software program ms (Hudson, 2002).

Let nX‘ denote the number of lineages sampled from taxon X at locus ‘ (‘¼ 1‚ . . . ‚ L). For a given

species tree S together with a set of parameters consisting of a number of loci L and numbers of lineages

fnX‘gX2S , we first sampled r independent sets Lj of L gene trees (j¼ 1‚ . . . ‚ r). For each set Lj, we

computed the GLASS estimate t̂
(j)
AB for all pairs of species A‚ B 2 S using the GLASS algorithm (Section 1),

without applying the single-linkage clustering step. From each observation t̂
(j)
AB, we then computed an ob-

servation ŝ(j)
AB of the exact iGLASS estimate, and an observation ~s(j)

AB of the approximate iGLASS estimate.

We thus obtained the sets of pairwise estimates ft̂(j)
ABgA‚ B2S , fŝ(j)

ABgA‚ B2S , and f~s(j)
ABgA‚ B2S , for each set of

gene trees Lj (j¼ 1‚ . . . ‚ r). For species trees with more than two taxa, only ft̂(j)
ABgA‚ B2S and f~s(j)

ABgA‚ B2S
were computed.

For each set ft̂(j)
ABgA‚ B2S (j¼ 1‚ . . . ‚ r), we computed the GLASS estimate Ŝ(j) of the species tree by

single-linkage clustering, and for each internal node i in this estimated species tree, we estimated the height

t̂
(j)
i of the node i by the distance between the two clusters combined on the step of the clustering method that

produced the node. The clustering procedure was omitted for trees with two taxa because the estimates

t̂
(j)
AB (j¼ 1‚ . . . ‚ r) already provide estimates of the divergence time sAB. We then compared each estimated

node height t̂
(j)
i to its true value ti, and we computed the average difference B(j)(t̂)¼

PjSj � 1
i¼ 1 (t̂(j)

i � ti)=

(jSj� 1) and the average squared difference M(j)(t̂)¼
PjSj � 1

i¼ 1 (t̂(j)
i � ti)

2=(jSj� 1).
Average bias in the GLASS method was estimated by dbiasavg(t̂)¼ 1

r

Pr
j¼ 1 B(j)(t̂), and average MSE

by dMSEavg(t̂)¼ 1
r

Pr
j¼ 1M

(j)(t̂). The average bias and MSE in the exact and approximate iGLASS

methods were estimated by the same procedure (using single-linkage clustering), but using the times

fŝ(j)
ABgA‚ B2S;j¼ 1‚ ...‚ r and f~s(j)

ABgA‚ B2S;j¼ 1‚ ...‚ r.

We denote the average bias and MSE in the exact iGLASS method by dbiasavg(ŝ) and dMSEavg(ŝ), and we

denote the average bias and MSE in the approximate iGLASS method by dbiasavg(~s) and dMSEavg(~s).

9.2. Estimating pairwise divergence times.

To evaluate the performance of the three methods for estimating pairwise divergence times, we simu-

lated gene trees under the multispecies coalescent from a species tree with two taxa, for various values of

the parameters sAB, L, fnA‘g
L
‘¼ 1, and fnB‘g

L
‘¼ 1, and for r = 50,000 replicates. In varying the parameters

fnA‘g
L
‘¼ 1 and fnB‘g

L
‘¼ 1, we maintained the relationships nA‘ ¼ nA and nB‘ ¼ nB for all ‘.

We considered values of 1, 5, 10, and 50 for L. However, because the exact iGLASS estimate is difficult to

compute in the case of both multiple loci and large numbers of lineages, only the GLASS estimate and approximate

iGLASS estimate were computed when both the number of loci and the number of lineages were large.

9.2.1. Bias. Figure 5 indicates that especially for small divergence times, the bias in the GLASS

estimate can be large relative to the divergence time. Whenever a single lineage is sampled from each

taxon, the bias in the GLASS method is 1/L in coalescent units of N generations, regardless of the

divergence time. One lineage always remains at the divergence time from each taxon at each locus, and

therefore, the expected time to the first interspecific coalescence is the expectation of the minimum of L

independent exponentially distributed random variables, each with a mean of one coalescent time unit. For
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example, in a haploid population with an effective size of N = 10, 000, if the GLASS estimate is based on

a single lineage sampled from each population at each of 20 loci, then the bias in the GLASS estimate is

10,000/20 = 500 generations.

Although sampling multiple lineages from each population can greatly reduce the bias for low diver-

gence times, it does not reduce the bias for larger divergence times. As noted by Mossel and Roch (2010),

when sAB is measured in units of generations, the probability that a single lineage remains at the top of the

branch corresponding to taxon A is bounded below by 1� 3e� sAB=NA and the probability that a single

lineage remains at the top of the branch corresponding to taxon B is bounded below by 1� 3e� sAB=NB

(Tavaré, 1984). This bound can be made arbitrarily close to one by increasing the divergence time and, as

the divergence time increases, the GLASS estimate approaches the value of the GLASS estimate when one

lineage is sampled per taxon, or 1/L coalescent units.

To compare the estimated bias in the exact and approximate iGLASS methods to the estimated bias in the

GLASS method, we computed the ratios dbias(ŝAB)=dbias(t̂AB) and dbias(~sAB)=dbias(t̂AB) (Fig. 5). For most

values of the divergence time, the bias in the approximate iGLASS method is negligible compared to the bias

in the GLASS method; although it is considerably larger in magnitude for small values of sAB, the bias ratio

continues to be less than 1. The bias is not entirely negligible in this case because we define the exact and

approximate iGLASS estimates to be zero whenever the GLASS estimate is lower than its smallest possible

expected time (Equations 2 and 21). Thus, when the GLASS estimate is small, instead of subtracting a

positive quantity from the GLASS estimate to produce the iGLASS estimate, we estimate the divergence time

to be zero, resulting in an iGLASS estimate (exact or approximate) that is biased upwards. This truncation

prevents the iGLASS estimators from completely eliminating the bias, but it also leads to a decrease in

variance, which ultimately leads to a lower mean squared error at these divergence times. The decrease in

MSE due to lower variance can be seen by the yellow bars across the tops of the MSE graphs in Figure 5.

9.2.2. Mean squared error. The ratios dMSE(ŝAB)= dMSE(t̂AB) and dMSE(~sAB)= dMSE(t̂AB) are shown in

Figure 5 for various values of sAB, nA, and nB. From these plots, we can see that dMSE(ŝAB)= dMSE(t̂AB) anddMSE(~sAB)= dMSE(t̂AB) are roughly 1/2, and that they appear to approach 1/2 as sAB increases.

To see why this is reasonable, consider the case in which a single lineage is sampled per taxon at each

locus. In this case, the ‘‘overshoot’’ in the GLASS estimate, VAB¼ t̂AB� sAB, is distributed exponentially

with mean 1/L. Thus, the bias in the GLASS estimator is EsAB
[VAB]¼ 1=L, its variance is Var(VAB) = 1/L2,

and its MSE is MSE(t̂AB)¼ 2=L2. The variance in the GLASS estimator then accounts for half of the mean

squared error when one lineage is sampled per taxon.

FIG. 5. Comparison of bias and

mean squared error for the GLASS,

exact iGLASS, and approximate

iGLASS methods for two taxa and

one locus. All values were com-

puted using 50,000 simulation rep-

licates. In each of the fourteen

small heatmap panels, the diver-

gence time between two taxa A and

B is given in coalescent units on the

y-axis. In each heatmap, the diver-

gence times are, from top to bot-

tom, sAB = 0, 0.1, 0.5, 1, 2, and 4

coalescent units. In each heatmap,

the numbers of lineages sampled

from each taxon are given on the x-

axis in the format (nA, nB), where

nA is the number of lineages sam-

pled from taxon A, and nB is the

number sampled from taxon B.

From left to right, the numbers of

lineages in each column are (nA, nB) = (1,1), (1,3), (1,5), (1,10), (1,15), (1,20), (3,3), (3,5), (3,10), (3,15), (3,20), (5,5),

(5,10), (5,15), (5,20), (10,10), (10,15), (10,20), (15,15), (15,20), (20,20).
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When one lineage is sampled per taxon, the iGLASS correction to the GLASS estimator is computed by

subtracting a constant quantity 1/L from the GLASS estimate, except when t̂AB is in the region 2 [0‚ 1=L),
which decreases in size as L / N. Thus, the variance of the (exact or approximate) iGLASS estimator is

nearly equal to the variance of the GLASS estimator. As Theorem 8.1 indicates, when a single lineage is

sampled per taxon, the iGLASS estimator is almost unbiased. Thus, when a single lineage is sampled per

taxon, the MSE in the (exact or approximate) iGLASS estimator is approximately equal to the variance in

the GLASS estimator, which is half the MSE in the GLASS estimator. Because kA‘ and kB‘ approach one in

probability as sAB / N, we expect that MSE(ŝAB) will approach MSE(t̂AB)=2 as sAB increases to infinity.

9.3. Exact versus approximate iGLASS

In the majority of our simulations, we have used the approximate iGLASS correction rather than the exact

method because the exact correction is difficult to compute. However, consider the panels in the first row of

Figure 5 that correspond to the case of one locus. It can be seen that the bias and MSE in the approximate

iGLASS method are very similar to the bias and MSE in the exact iGLASS method. This result indicates that

making the approximation EsAB
[VAB] � ~EsAB

[VAB] (Equation 20) has little effect on the performance of the

iGLASS estimator in the case of one locus. Because Figure 4 indicates that the approximation is least accurate

in the case of a single locus, the similarity of the bias and MSE for the exact and approximate methods in the

case of one locus suggests that making the approximation EsAB
[VAB] � ~EsAB

[VAB] generally has little effect on

the performance of the iGLASS method relative to that of GLASS.

9.4. iGLASS for larger trees

Figure 6 shows the ratios dbiasavg(~sAB)=dbiasavg(t̂AB) and dMSEavg(~sAB)= dMSEavg(t̂AB) computed over

r = 50,000 replicates for two different five-taxon species trees similar to those used by Liu et al. (2010) to

evaluate the performance of the GLASS method. One internal branch of the tree is short enough that the

most likely gene tree given the species tree does not have the topology of the true tree. In other words, the

tree is in the anomaly zone of Degnan and Rosenberg (2006).

From Figure 6, we see that the average bias in the iGLASS estimate is often considerably less than that of

the GLASS estimate. The improvement in the bias is best for small numbers of loci and decreases as the

number of loci increases. However, the bias in the GLASS method itself decreases quickly as the number of

loci is increased.

Note that although the iGLASS correction improves the bias and MSE in the estimates of species tree

node heights, it does not improve the accuracy in estimating topologies. For both species trees ((((E:0.5,

FIG. 6. Comparison of mean

squared error and bias in the ap-

proximate iGLASS and GLASS

methods for two five-taxon species

trees used in Liu et al. (2010) to

evaluate the GLASS method. In

Newick format, the tree in (a) and

(b), a caterpillar, is given by

((((E:0.5, D:0.5):0.025, C:0.525):

0.025, B:0.55):10.0, A:10.55). The

tree in (c) and (d), another 5-taxon

caterpillar, is ((((E:0.5, D:0.5):0.2,

C:0.7):1, B:1.7):10.0, A:11.7). The

first tree is in the anomaly zone; the

second tree is not. All values were

computed using 50,000 replicates.

The clustering method applied to

the approximate iGLASS estimates

was single-linkage. (a) and (c): The

ratio dbiasavg(~sAB)=dbiasavg(t̂AB). (b)

and (d): The ratio dMSEavg(~sAB)=dMSEavg(t̂AB).
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D:0.5):0.025, C:0.525):0.025, B:0.55):10.0, A:10.55) and ((((E:0.5, D:0.5):0.2, C:0.7):1, B:1.7):10.0,

A:11.7) that we considered, the GLASS and iGLASS methods have identical accuracies for estimating the

topology. However, for the case in which only one lineage is sampled at only one locus, the GLASS

method has slightly higher accuracy for inferring the topology (Fig. 7).

The reduction in accuracy for the case of one lineage and one locus was due to the fact that in this case,

the iGLASS method estimated more than one pairwise divergence time in the species tree to be zero,

resulting in ties that were sometimes resolved to produce a clade that was not on the true species tree.

Multiple estimates of zero were produced in this case because the smallest possible expected value E0[t̂AB]
of the GLASS estimate for a pair of taxa was equal to one, which was greater than at least two of the node

heights in each tree that we considered (0.5 and 0.525 for the first tree, and 0.5 and 0.7 for the second tree).

For all other parameter values we considered, E0[t̂AB] was smaller than all of the node heights in either

tree, and no estimates of zero were produced. For example, when two lineages were sampled per taxon, the

smallest possible expected GLASS estimate was E0[TAB] = 0.39, which is smaller than 0.5, the smallest

node height in either tree. Similarly, when one lineage was sampled per taxon at 5 loci, the smallest

expected interspecific coalescence time was E0[TAB] = 0.2. Consequently, for all cases we considered

except for the case of one sampled lineage per taxon at one locus, the accuracy of the iGLASS method for

estimating topologies was the same as that of the GLASS method.

10. DISCUSSION

For two taxa, A and B, we have derived a closed-form expression for the distribution of

VAB¼ min‘ t̂
(‘)
AB� sAB, the waiting time to the first interspecific coalescence across L loci, measuring from

the divergence time sAB. By computing the expectation EsAB
[VAB], we constructed a correction to the

GLASS estimator t̂AB¼min‘ t̂
(‘)
AB of pairwise divergence times, which we call the iGLASS estimator.

Maruvka et al. (2011) have demonstrated that simple functions of time t in a population of constant size

can provide useful deterministic continuous approximations of the number of lineages remaining at time t

under the standard coalescent model. By approximating the number of lineages at time t by ut
x, the

expected number of lineages remaining at time t when x lineages are sampled at time t = 0 and when x is

not necessarily an integer, we derived an approximation ~sAB to the exact iGLASS estimator ŝAB that is faster

to compute than the exact value, and that is quite accurate even when the number of lineages is small.

Through simulations, we have shown that the exact and approximate iGLASS estimators reduce the bias

in the GLASS estimates of pairwise divergence times. In addition, the exact iGLASS estimator ŝAB and its

approximation ~sAB generally reduce the mean squared error in the GLASS estimate of pairwise divergence

times by approximately one half. This reduction accords with a theoretical prediction in the case in which a

single lineage is sampled per taxon.

In our simulations, the accuracy of the iGLASS method for estimating topologies was similar to that of

the GLASS method. In the case in which one lineage was sampled per taxon at one locus, iGLASS was

slightly poorer, due to the fact that iGLASS produces divergence time estimates of zero whenever the

GLASS estimate is smaller than its smallest possible expected value, E0[t̂AB]. Because E0[t̂AB] is smaller

when the number of sampled lineages or loci is larger, divergence time estimates of zero are less likely

FIG. 7. The fraction of tree to-

pologies correctly inferred by the

approximate iGLASS and GLASS

methods for two different five-taxon

species trees. The tree in (a) is the

same tree considered in Figure 6a,b.

The tree in (b) is the same tree

considered in Figure 6c,d. Plots

show the fraction of 50,000 simu-

lated data sets in which the species

tree topology was correctly in-

ferred by GLASS and approximate

iGLASS.
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when more lineages or loci are sampled. Therefore, the accuracy of the topology estimates produced by

iGLASS are likely to be the same as those produced by GLASS whenever sufficiently many lineages or loci

are sampled.

We have shown that the exact iGLASS estimator and its approximation are consistent estimators of the

pairwise divergence time between a pair of taxa. Further, we have proven that applying any clustering

method with nonzero LN-radius to the pairwise iGLASS estimates produces a statistically consistent

estimator of the species tree topology.

Assuming that gene trees have been correctly inferred, the bias in the GLASS method itself decreases

to zero quickly as the number of loci increases. Thus, our correction produces the greatest improvement

when information is available for relatively few loci. As we have seen, however, the approximate

iGLASS correction is fast to compute even for large numbers of loci, requiring only O(n2LjSjþ LjSj2)
operations for a given level of precision, compared to O(n2LjSj2þ jSj3) operations for GLASS. Con-

sequently, our new estimator provides a method that is reasonable to implement even when information is

available at many loci.

11. APPENDIX A

A recursive formula for EsAB
[VABjkA‚ kB]

In Appendix A, we derive Equation (5), the expected value of the difference VAB¼ t̂AB� sAB, conditional on the

numbers of lineages that remain at each locus at the divergence time. Let C‘ be the event that the first coalescence

occurs in locus ‘ (‘¼ 1‚ . . . ‚ L). We then recursively consider what happens on the next coalescent event:

EsAB
[VABjkA‚ kB]

¼
XL

‘¼ 1

EsAB
[VABjkA‚ kB‚ C‘]Pr(C‘)

¼
XL

‘¼ 1

"
1PL

k¼ 1
kAk
þ kBk
2

	 
 þEsAB
[VABjkA� e‘‚ kB]

kA‘
2

	 

kA‘
þ kB‘
2

	 

þEsAB

[VABjkA‚ kB� e‘]

kB‘
2

	 

kA‘
þ kB‘
2

	 
#Pr(C‘)

¼ 1PL
‘¼ 1

kA‘
þ kB‘
2

	 
 þXL

‘¼ 1

("
EsAB

[VABjkA� e‘‚ kB]

kA‘
2

	 

kA‘
þ kB‘
2

	 

þEsAB

[VABjkA‚ kB� e‘]

kB‘
2

	 

kA‘
þ kB‘
2

	 
# kA‘
þ kB‘
2

	 

PL

k¼ 1
kAk
þ kBk
2

	 
)

¼ 1PL
‘¼ 1

kA‘
þ kB‘
2

	 
"1þ
XL

‘¼ 1

h
EsAB

[VABjkA� e‘‚ kB]
kA‘

2

� �

þEsAB
[VABjkA‚ kB� e‘]

kB‘

2

� �i#
:

Above, k is a ‘‘dummy’’ summation variable. The second equality can be understood as follows. Because

the time to the first coalescent event at locus ‘ is exponentially distributed with mean 1= kA‘
þ kB‘
2

	 

(‘¼ 1‚ . . . ‚ L), the time to the first coalescence at some locus is distributed as the minimum of L such

random variables. Therefore, the expected time to the first coalescent event is 1=
PL

k¼ 1
kAk
þ kBk
2

	 

coa-

lescent units. We must always wait this long on average before the first interspecific coalescent event.

Given that the first coalescence occurs at locus ‘, if the coalescence occurs among lineages from taxon A, an

event that occurs with probability
kA‘
2

	 

= kA‘

þ kB‘
2

	 

, we must wait on average an additional
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EsAB
VABjkA� e‘‚ kB½ � time units. Similarly, with probability

kB‘
2

	 

= kA‘

þ kB‘
2

	 

, we must wait an additional

EsAB
VABjkA‚ kB� e‘½ � time units on average. Finally, if the first coalescence at locus ‘ is interspecific, an

event that has probability
kA‘

kB‘
kA‘
þ kB‘
2

� �, no further waiting is necessary.

In the third equality, the term 1=
PL

k¼ 1
kAk
þ kBk
2

	 

does not depend on ‘ and can be brought outside.

Additionally, because the time to the first coalescence at locus ‘ is exponentially distributed with mean

1= kA‘
þ kB‘
2

	 

, the first coalescence occurs at locus ‘ with probability Pr(C‘)¼ kA‘

þ kB‘
2

	 

=
PL

‘¼ 1
kA‘
þ kB‘
2

	 

.

12. APPENDIX B

Derivation of Equation (7)

In Appendix B, we rely on results from Rosenberg (2003) to derive the probability distribution of M, the

number of coalescent events up to and including the first interspecific coalescence, counting backwards in

time from the divergence time.

Suppose that kA and kB lineages from taxa A and B, respectively, remain at time sAB. Equation (A8) of

Rosenberg (2003) gives the probability FA‚ B
w (kA‚ kB) that an interspecific coalescence occurs among these

lineages on or before the (k - w)th coalescence, where k = kA + kB. This probability is

FA‚ B
w (kA‚ kB)¼

XkA

x¼ max (1‚ wþ 1� kB)

XkB

y¼ max (1‚ wþ 1� x)

IkA‚ xIkB‚ y

IkA þ kB‚ w

W(kA� x‚ kB� y)xyIxþ y� 1‚ w‚ (B:1)

where In,k = [n!(n - 1)!]/[2n - kk!(k - 1)!] (Rosenberg, 2003) is the number of ways in which n lineages can

coalesce down to k lineages, and W(i‚ j)¼ iþ j
i

� �
(Rosenberg, 2003) is the number of ways of ‘‘inter-

weaving’’ the coalescent events among lineages only from taxon A with the coalescent events among

lineages only from taxon B.

Each term in the summation (B.1) is the joint probability that the first interspecific coalescence occurs

when the kA and kB lineages have x and y ancestors, respectively, and that the first interspecific coalescence

occurs on or before the (k - w)th coalescence. If w = 1, then each term is just the probability that the first

interspecific coalescence occurs when the kA and kB lineages have x and y ancestors.

Since different choices of x and y (say, (x1, y1) and (x2, y2) where x1 s x2 or y1 s y2, or both) correspond

to mutually exclusive events, and since the sum x + y specifies M through the relationship x + y = k -
M + 1, to derive the probability that the first interspecific coalescence is the Mth coalescence (Equation 7),

we can set w = 1 and sum over all x and y such that x + y = k - M + 1, i.e., over all mutually exclusive

events corresponding to the case in which the first interspecific coalescence is the Mth coalescence.

To determine the values of x and y corresponding to the case M = m, we can write x = k - m + 1 - y. Note

that x is at most kA and at least 1, and thus, 1 £ x £ min{k - m, kA}. Similarly, by symmetry in x and y,

1 £ y £ min{k - m, kB}, giving x = k - m + 1 - y ‡ k - m + 1 - min{k - m, kB} = max{1, kA - m + 1}.

This inequality yields the constraint max{1, kA - m + 1} £ x £ min{k - m, kA}. Thus, we obtain

Pr(M¼m)

¼
Xminfk�m‚ kAg

x¼ maxf1‚ kA �mþ 1g

IkA‚ xIkB‚ k�mþ 1� x

IkA þ kB‚ 1

W(kA� x‚ kB� y)x(k�mþ 1� x)IkA þ kB �m‚ 1:

Making the change of variables g = kA - x and noting that kB - y = m - 1 - g because kA + kB -
m + 1 = x + y, we get

Pr(M¼m)

¼ IkA þ kB �m‚ 1

IkA þ kB‚ 1

Xminfm� 1‚ kA � 1g

g¼ maxf0‚ m� kBg
W(g‚ m� 1� g)IkA; kA� g IkB; k

B�mþ 1þ g

· (kA� g)(kB�mþ 1þ g):

Using In,k = [n!(n - 1)!] / [2n - kk!(k - 1)!] and W(i‚ j)¼ iþ j
i

� �
, we get
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Pr(M¼m)

¼ IkA þ kB �m‚ 1

IkA þ kB‚ 1

Xminfm� 1‚ kA � 1g

g¼ maxf0‚ m� kBg

m� 1

g

� �
kA!(kA� 1)!

2kA � (kA � g)(kA� g)!(kA� g� 1)!

·
kB!(kB� 1)!

2kB � (kB �mþ 1þ g)(kB�mþ 1þ g)!(kB�mþ g)!

· (kA� g)(kB�mþ 1þ g)

¼ IkA þ kB �m‚ 1

IkA þ kB‚ 1

Xminfm� 1‚ kA � 1g

g¼ maxf0‚ m� kBg

m� 1

g

� �
kA!2

kA(kA� g� 1)!2
kB!2

kB(kB�mþ g)!2
1

2m� 1

¼ IkA þ kB �m‚ 1

2m� 1kAkBIkA þ kB‚ 1

Xminfm� 1‚ kA � 1g

g¼ maxf0‚ m� kBg

m� 1

g

� �
k2

A[gþ 1]
k2

B[m� g]
‚ (B:2)

where k[i] = k!/(k - i)!.

When either kA = 1 or kB = 1, Equation (B.2) has a particularly simple form. Without loss of generality,

suppose that kB = 1. Then max{0, m - kB} = m - 1 because m ‡ 1, and min{m - 1, kA - 1} = m - 1

because m £ kA + kB - 1 = kA. Therefore, using k = kA + 1, Equation (B.2) simplifies as follows:

Pr(M¼m)¼ 1

kA2m� 1

2kA þ 1� 1

(kAþ 1)!kA!

(kAþ 1�m)!(kAþ 1�m� 1)!

2kA þ 1�m� 1
k2

A[m]1
2
[1]

¼ 2(kAþ 1�m)

kA(kAþ 1)

(kA�m)!(kA�m)!

kA!kA!

kA!2

(kA�m)!2

¼ 2(k�m)

k(k� 1)
:

(B:3)

13. APPENDIX C.

Computational complexity of approximate iGLASS

We now compute the computational complexity of the approximate iGLASS method, Equation (21).

To compute the iGLASS correction for each pair of taxa X and Y in S, we first evaluate Equation (20) for many

different values of sXY. In particular, to numerically obtain the inverse in Equation (21), we compute Equation

(20) for each divergence time estimate sXY in the set fiDtgGXY

i¼ 0, where Dt is a fixed time-step and GXY ¼ Øt̂XY=Dtø.

We then estimate sXY by the value s 2 fiDtgGXY

i¼ 0 that minimizes the quantity jsþ ~Es[VXY ]� t̂XY j.
To evaluate the integral in Equation (20), we assume that numerical integration is carried out by computing

the Riemann sum with fixed step-size Dt. We truncate the outer integral at PDt, where P is large enough that

the tail of the outer integral in Equation (20) is smaller than some predefined value e > 0. For a given value of

e, a sufficiently-large value of P can be found by bounding the integral in Equation (20). The bound can be

obtained by noting that uz
nq1 for all n and z in Rþ , and thus, the integrand in Equation (20) is smaller than

exp{ - Lt}, which is easily integrated. Converting the integrals in Equation (20) to summations gives

~EsXY
[VXY ] �

XP

a¼ 0

Dt exp �
XL

‘¼ 1

Z aDt

z¼ 0

uz
EsXY

[KX‘
]u

z
EsXY

[KY‘
]dz

( )

�
XP

a¼ 0

Dt exp �
XL

‘¼ 1

Xa

b¼ 0

Dt ubDt
EsXY

[KX‘
]u

bDt
EsXY

[KY‘
]

( )
: (C:1)

Once ubDt
EsXY

[KX‘
] and ubDt

EsXY
[KY‘

] have been pre-computed and stored for all values at which they are evaluated

in the summation, the exponent in Equation (C.1) requires O(La) operations, where a is the index in the

outermost summation. Thus, we have the following result:

After pre-computing the terms in the summand, the summation (C.1) requires O(LP2) operations.
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For each taxon X 2 S, let GX ¼ maxY2S‚ Y 6¼X GXY ; in other words, GXDt is, to precision Dt, the max-

imum pairwise divergence time between taxon X and any other taxon. For each ‘¼ 1‚ . . . ‚ L and for each

X 2 S, we must ultimately compute Es[KX‘ ] for each s 2 fiDtgGX

i¼ 0, and we must compute ut
Es[KX‘

] for

each t 2 fiDtgP
i¼ 0 and for each s 2 fjDtgGX

j¼ 0. However, note that utþDt
n ¼uDt

ut
n
, and note that

us
nX‘
¼Es[KX‘ ] by definition (Equations (15) and (16)). Therefore, we have uiDt

Es[KX‘
]¼uiDt

us
nX‘

¼usþ iDt
nX‘

for

all i 2 Zþ , and thus, it suffices to pre-compute us
nX‘

for all s 2 fjDtgGX þP
j¼ 0 for each X 2 S and for each

‘ (‘¼ 1‚ . . . ‚ L).
Let n¼ maxX2S max‘2f1‚ ...‚ Lg nX‘ be the maximal number of lineages sampled from any taxon, and let

Q¼Pþ maxX2S GX . Then for a given taxon X 2 S and for a given ‘ (‘¼ 1‚ . . . ‚ L), the amount of time

needed to compute us
nX‘

for all s 2 fjDtgGX þP
j¼ 0 is bounded by the time needed to compute ut

n for all

t 2 fiDtgQ
i¼ 0.

Because the summand in Equation (15) requires O(n) operations, (a rising factorial and a falling

factorial totaling n multiplications), computing Equation (15) for a given value of t requires O(n2)

operations. Therefore, evaluating (15) for each time t in fiDtgQ
i¼ 0 requires O(n2Q) operations, and

pre-computing ut
n for all t 2 fiDtgQ

i¼ 0 also requires O(n2Q) operations. This gives the following

result:

Pre-computing us
nX‘

for all s 2 fjDtgGX þP
j¼ 0 for all X 2 S and for all ‘ (‘¼ 1‚ . . . ‚ L) requires

O(n2QLjSj) operations.

Once all values of us
nX‘

have been pre-computed and stored, Equation (C.1) must be computed for each

s 2 f0‚ 1‚ . . . ‚GXYg for each pair of taxa X‚ Y 2 S. Equation (C.1) requires O(LP2) operations for each

value of s. Therefore, because GXY £ Q, computing (C.1) for a pair of taxa requires O(LP2Q) operations.

Because P £ Q, this simplifies to O(LQ3) operations. Therefore, computing (C.1) for all jSj
2

	 

pairs of taxa

requires O(LQ3jSj2) operations. Combining this quantity with the number of operations necessary to pre-

compute the values of us
nX‘

gives the following result:

Including all pre-computations, the total number of operations required to compute Equation (C.1)

for all jSj
2

	 

pairs of taxa is O(n2QLjSjþ LQ3jSj2).

Note that once all values of us
nX‘

have been pre-computed and stored, the cost of computing (C.1) does

not depend on the magnitude of the nX‘ , only on the number of terms in the summation. Thus, the

complexity only depends on n through the pre-computation step.

The only other computations needed to compute the approximate iGLASS correction are those associ-

ated with finding arg mins jsþ ~Es[VAB]� t̂ABj and those associated with the single-linkage clustering step.

We must perform jSj
2

	 

searches to find the value of s that minimizes jsþ ~Es[VAB]� t̂ABj for each of the

jSj
2

	 

pairs of taxa. An exhaustive search is bounded by the number of values of s, which is always less than or

equal to Q. Thus, correcting the GLASS method requires O(QjSj2) operations. Finally, single-linkage clus-

tering requires at most O(jSj2) operations (Gordon, 1996). Thus, the entire correction procedure requires

O(n2QLjSjþ LQ3jSj2þQjSj2þ jSj2) operations. Terms can be combined to get the following result:

The entire approximate iGLASS correction procedure requires O(n2QLjSjþ LQ3jSj2) operations.

It is useful to compare the complexity of approximate iGLASS to the complexity of GLASS for a

given precision. The choices of Dt and P determine the precision in computing the approximate iGLASS

correction, in other words, the error between the outcome of the numerical steps that we have just

outlined, and the outcome of exactly computing Equation (20) and exactly solving Equation (21).

Together, Dt and P determine Q¼Pþ Ø maxXY2S t̂XY=Dtø. Thus, Q is a tuning parameter that affects the

precision in our numerical steps. For fixed Q, the complexity of approximate iGLASS is

O(n2LjSjþ LjSj2). In comparison, a similar analysis demonstrates that the GLASS method requires

O(n2LjSj2þ jSj3) operations.
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14. APPENDIX D

Consistency of GLASS for divergence times

Mossel and Roch (2010) proved that the GLASS method is a consistent estimator of the species tree

topology as the number of loci approaches infinity. Liu et al. (2010) proved that the GLASS estimator is

consistent for pairwise divergence times in the case in which a single lineage is sampled per taxon.

Here, we prove that GLASS is a consistent estimator of pairwise divergence times in the case in which

arbitrarily many lineages are sampled per taxon. Our argument is a minor extension of the consistency

proof in Liu et al. (2010).

Theorem D.1. Consider two taxa, A and B, with divergence time sAB. The GLASS estimator t̂AB is a

consistent estimator of sAB.

Proof. At each locus ‘ (‘¼ 1‚ . . . ‚ L), consider a lineage a‘ sampled at random from taxon A and a

lineage b‘ sampled at random from taxon B. The time V ‘
AB to the first interspecific coalescence at locus ‘ is

less than or equal to the coalescence time between a‘ and b‘, which we denote by Va‘‚ b‘ . Therefore, using

the fact that the GLASS estimate is given by t̂AB¼ sABþVAB, and following Liu et al. (2010), we obtain

Pr(jt̂AB� sABj > �)¼Pr(VAB > �)¼Pr( min‘ V‘
AB > �)pPr( min‘ Va‘‚ b‘ > �)¼

QL
‘¼ 1 Pr(Va‘‚ b‘ > �)¼ e� L�.

Here, to obtain the last equality, we have used the fact that Va‘‚ b‘ is exponentially distributed with mean 1

coalescent unit of N generations. Thus, we have

0pPr(jt̂AB� sABj > �)pe� L�‚

from which it follows that Pr(jt̂AB� sABj > �)! 0 as L / N by the ‘‘squeeze theorem.’’ -

15. APPENDIX E

iGLASS and approximate iGLASS are consistent estimators of pairwise divergence times

Here, we prove that the expectation EsAB
[VAB] of the difference VAB¼ t̂AB� sAB between the GLASS

estimate t̂AB and the divergence time sAB is bounded above by 1/L. Thus, EsAB
[VAB]! 0 as L / N. Using

Equation (1), we then show that the difference between the GLASS estimator and the iGLASS estimator is

bounded above by 1/L. Thus, the difference goes to 0 as L / N. A similar result is proven for the

expectation ~EsAB
[VAB] used in the approximate iGLASS correction (Equation 21).

Since GLASS is a consistent estimator of pairwise divergence times, these results can be used to show

that exact iGLASS and approximate iGLASS are consistent estimators of pairwise divergence times, as

they converge to the same limit as the GLASS estimator in the limit L / N.

Lemma E.1. For taxa A and B, let EsAB
[VAB] be the expectation of the difference VAB¼ t̂AB� sAB

between the GLASS estimate t̂AB and the divergence time sAB. Then EsAB
[VAB]p1=L.

Proof. In Theorem D.1, we saw that 0pPr(jt̂AB� sABj > �)pe�L� for all � > 0. Thus,

EsAB
[VAB]¼

Z 1
v¼ 0

Pr(VAB > v)dv

¼
Z 1

v¼ 0

Pr(jt̂AB� sABj > v)dv

p
Z 1

v¼ 0

e�Lvdv

¼ 1

L
;

proving the result. -

Lemma E.2. The approximation ~EsAB
[VAB] satisfies ~EsAB

[VAB]p1=L.
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Proof. For any n and t, the expected number of lineages ut
n remaining at any given time t is at least 1.

Therefore, for any ‘ (‘¼ 1‚ . . . ‚ L) Z t

z¼ 0

uz
EsAB

[KA‘
]u

z
EsAB

[KB‘
]dz � t:

Consequently,

~EsAB
[VAB]¼

Z 1
t¼ 0

exp �
XL

‘¼ 1

Z t

z¼ 0

uz
EsAB

[KA‘
]u

z
EsAB

[KB‘
]dz

( )
dt

p
Z 1

t¼ 0

exp �
XL

‘¼ 1

t

( )
dt

¼
Z 1

t¼ 0

e�Ltdt

¼ 1

L
;

proving the result. -

The following corollary proves that after the correction procedure (Equation 2), both the ex-

act and approximate iGLASS estimates differ from the GLASS estimate by at most 1/L coalescent units.

Corollary E.3. For two taxa A and B, let CAB¼ t̂AB� ŝAB and ~CAB¼ t̂AB�~sAB be the differences

between the GLASS estimate and the exact and approximate iGLASS estimates, respectively. Then CAB £
1/L and ~CABp1=L.

Proof. Using Equation (2), if E0[VAB]pt̂AB, then the iGLASS estimate is obtained by solving

sAB¼ t̂AB�EsAB
[VAB] for sAB. In this case, the difference CAB is at most 1/L by Lemma E.1. On the other

hand, if t̂AB 2 [0‚ E0[VAB]), then the iGLASS estimate is given by ŝAB¼ 0. Since [0, E0[VAB]) 4 [0, 1/L) by

Lemma E.1, we have jt̂AB� ŝABj < 1=L. Thus, in both cases, CAB £ 1/L.

The same argument using Lemma E.2 and Equation (21) rather than Lemma E.1 and Equation (2)

establishes ~CABp1=L, proving the result. -
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