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We construct a descriptive toy model that considers quantum effects on biological evolution starting from
Chaitin’s classical framework. There are smart evolution scenarios in which a quantum world is as favorable
as classical worlds for evolution to take place. However, in more natural scenarios, the rate of evolution
depends on the degree of entanglement present in quantum organisms with respect to classical organisms. If
the entanglement is maximal, classical evolution turns out to be more favorable.

E
ver since its development by Darwin1, the theory of evolution stands up as the landmark of fundamental
knowledge in life sciences. In this sense, it is a theory of everything that unifies all species with a common
origin. The driving principle of evolution is the ’survival of the fittest’. This leads to a common origin to all

species and biological diversity. Before it, biology was conceived as static through history. After it, biological
effects are given a dynamical framework.

As it stands, evolution is now considered the basic principle of biology and has the same character as a physical
law: it is true as long of all pieces of experimental evidence support it. However, this does not preclude raising the
fundamental question as to why living organism evolve. This question also arises in physical laws and the
underlying issue is the search for more fundamental principles.

In a recent work, G. Chaitin2–4 has challenged the status of evolution and asked the question: is it possible to give
a mathematical proof of evolution? As well as why is it that living organisms evolve.

It is apparent that in addressing such deep questions one cannot take into account all the details that are present
in a living organism, whether it is highly evolved or not. One needs to abstract the basic features and come up with
a toy model in order to be able to work with it. Chaitin has followed this method and he uses a very basic definition
of what a living organism is and a remarkable notion of a mutation. His model and insight are inspired by his
earlier works on Algorithmic Information Theory (AIT)5,6. We will refer to it as the Chaitin model and we shall
describe it in Sect. I A.

A natural and challenging problem is how to introduce quantum effects in the classical model of Chaitin, and
then try to evaluate its consequences. This is the purpose of this paper. Related to this, an interesting questions is:
What is more favorable, to evolve in a quantum world or in a classical world?

The answer to this question is relevant in several ways since it could shed some light to other fundamental
questions:

i/ Biological evolution was formulated as a basic feature of classical living organisms for our world is classical at
the macroscopic level. However, there could have been an earlier time previous to our current ‘classical era’ in
which quantum effects may have played a role in evolution. Thus, was there a quantum evolution epoch
before classical evolution took place?

ii/ Alternatively, there is also the possibility that classical and quantum evolution coexists at different scales. Is
this possible or favorable?

A basic assumption of our quantum model for biological evolution will be the Turing barrier: a quantum
computer can not compute a problem that is uncomputable for a classical computer, i.e. for a Turing machine
(TM). For example, the Turing halting problem7 is also uncomputable for a quantum Turing machine. In his
famous paper on quantum simulators, Feynman’s argues that this barrier is unsurmountable8 and this is the
widely accepted status on these quantum limits9, despite several attempts to beat the Turing barrier10,11. We leave
for the Discussion section the interesting analysis on the possible consequences of beating the Turing barrier for
the quantum Chaitin model of biological evolution.

It is very deep and insightful the use of non-computability as something positive as opposed to how it is
appreciated in more pragmatical approaches to the foundations of the theory of computation. In mathematics,
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there is also intrinsic randomness, and Chaitin uses non-comput-
ability as a resource to have an appropriate fitness function to chal-
lenge organism to evolve, thereby improving and becoming more
advanced. This is elaborated further in the Discussion section, Sec.II.

Schrödinger was the precursor of studying quantum effects in
DNA12 and he thought about the possibility that mutations were
originated by some sort of quantum fluctuations. The notion of
mutation introduced here, Sec.I C, is far more general.

When addressing the issue of quantum effects in Chaitin bio-
logical evolution, it is crucial to bear in mind the following fact:

i/ Complexity classes are affected by quantum effects and they are
different than in the classical case.

ii/ Computability remains the same for both quantum and classical
cases (this is the Turing barrier).

Thus, as the Chaitin model is based on non-computability as a
resource for driving evolution, then apparently there should not be
any quantum effects. However, the key point is that Chaitin defines
an organism as a finite-size program software. Once its size N is fixed,
thus being finite, it is also computable, thereby becoming a complex-
ity problem. Thus, the way out to this apparent paradox is to realize
that for finite N-size problem, there is no computability issue. What
it is true is that ;N, it is not possible to compute the fitness functions
of Chaitin based on non-computability.

The version of algorithmic complexity introduced by Kolmogorov
is not prefix-free (self-delimiting programs) and does not allow to
formulate halting probabilities as in Chaitin’s version of algorithmic
complexity. This is why we use the latter.

This paper is organized as follows: in Sect.I A we review the clas-
sical model introduced by Chaitin to study classical evolution scen-
arios using the formalism and results of AIT; in Sect.I C the quantum
versions of organisms, mutations and fitness functions are formu-
lated on very general grounds; in Sect.I D a choice of quantum
algorithmic complexity has to be made and we review the known
results for entangled and separable quantum states; in Sect.I E we
introduce quantum V numbers which play a central role in defining
mutations in a quantum world; in Sect.I F we analyze the total evolu-
tion time and its scaling with the number of time-steps, for several
quantum evolution scenarios and quantum organisms; Sect.II is
devoted to discussion, prospects and further explanations. The
Methods section III explains some basic notions of AIT and in par-
ticular, prefix-free bit-strings and its coding that are necessary to
compute the complexity of quantum mutations.

Results
A. Classical chaitin model. 1. The model. The fundamental notion in
Chaitin model is to consider life as evolving software. This will be
specified below. To this end, let us recall some basic notions from
AIT that are needed to define the model. Let : ~ L,0,1,f
00,01,10,11,000, . . .g be the set of finite strings of binary bits, with
L denoting the blank space symbol. The size or number of bits is jxj.
The set of infinite bit-strings is denoted as ?. A classical computer
is an application C : | ? that takes an input data q [ and a
program p [ and acts on the input to produce an output string
C p,qð Þ~x [ which is the result of the computation, assuming it
halts. The concrete structure and functioning of C is given by the
classical Turing Machine5,6. When the input data is empty, we simply
write C(p) 5 x and when the output is simply stopping the computer
with no output, we write C(p) : halts. A universal Turing Machine
(UTM) U is one that can simulate the functioning of any other TM C.

The notion of complexity is basic in computability theory. It tells
us whether a program p [ or input/output data q, x [ have a
simple structure or not. Throughout this paper, we shall be using the
notion of algorithmic complexity H(x) of a generic string of bits
x [ . It was studied independently by Solomonoff13,
Kolmogorov14 and Chaitin15, and sometimes is referred to as

Kolmogorov complexity. It is defined as the shortest program that
can reproduce a given string x in a universal TM:

H xð Þ :~min pj j:

p : U pð Þ~x
ð1Þ

This notion of complexity grasp the concept that the information
content of a string is more related to its intrinsic computational
structure rather than to its mere size. For example, a string like x
5 0101010101010101… may be very large, but its structure is very
simple; x 5 (01)n, for a certain integer n. The same goes for other
periodic strings or structured strings. Its complexity is bounded by a
constant; H(x) , c. On the other side of the complexity are the
random strings xr that are those without internal structure. This is
represented by a complexity H(xr) $ jxrj, for the best thing a TM can
do is to output the same input string xr.

A remark is in order. The algorithmic complexity H(x) is not
computable because of the existence of the Halting problem and it
is defined through a optimization process. Nevertheless, this is no
obstacle to produce good and rigorous upper bounds that are enough
to quantify the complexity of programs, data etc.

The classical Chaitin model is characterized by a triplet of ele-
ments , ,

� �
, whose definitions are:

i/ Living Organism : it is a classical program, i.e., a piece of
software that can be fed in a universal Turing Machine and
produce a certain output, or just halt or even not halt. If the
program halts, then the output is a string of classical bits x.
In the theory of classical computation, a program can also be
characterized by a certain bit-string whose size is denoted as j j.
Thus, [ .

The rationale behind this choice is an abstract process that reduces
an organism to pure information encoded in its DNA. The rest of the
organism such as its body, functionalities etc are disregarded as far as
being essential to evolution is concerned. This is an oversimplifica-
tion that is inherent to this toy model and so far it is necessary in
order to be able to apply tools from classical information theory
(AIT).

ii/ Mutation : it is a classical algorithm that transforms a given
organism into a mutated organism ’ :~ ð Þ. Thus, it
represents a transformation of the DNA by the action of external
agents to the classical code. Thus, : ? .

This notion of mutation is an algorithmic mutation as opposed to
other more typical mutations called point-wise mutation that are
common to population genetics studies. What is remarkable is that
an algorithmic mutation is far richer than other notions of mutations
considered thus far, and in this context, it appears as the most general
change that we can consider on a given living organism (classical
code).

Consider the following two very different mutations acting on a n-
string in bitwise notation x~x1x2 . . . xn [ . One is a point-wise
mutation no defined as

no : x1x2 . . . xno . . . xn?x1x2 . . . xno+1 . . . xn, ð2Þ

and the other is a bit-wise mutation

: x1x2 . . . xn?x1+1x2+1 . . . xn+1: ð3Þ

While no represents a local change in the classical code (DNA),
affects globlally to a all the code. no is a typical mutation in popu-
lation genetics since it is more likely to change one single base of the
genetic code than multiple changes which are exponentially unlikely.
On the contrary, the bit-wise mutation produces a drastic change
in the genetic code. It turns out to be useful since it may lead to a
change of specie for example. Both mutations are necessary and they
find a common framework in the algorithmic treatment of evolution.

They have similar amounts of complexity H no

� �
~O log nð Þð Þ and
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Hð Þƒc. In fact, for conditional complexities we also have

H no nj
� �

ƒc. Therefore, having a big mutation is not penalized

during the whole history of evolution.
The evolution is a process that starts with the simplest organism

1 and it evolves towards more complex organisms N after the
action of a series of mutations k, k 5 1, 2, …, N. The algorithmic
complexity H k

� �
measures how the new successful organisms are

becoming more advanced.
It is the action of a mutation what defines the notion of time in this

model and it is given by the time-step k. The total evolution time
would be N.

iii/ Fitness Function : this is a cost function that evaluates whether
a mutated organism has improved with respect to the original.
Thus, : ?R.

Let k be a given organism and time-step. Then, in the next step the
organism is mutated to ’k : ~ k k

� �
. The fitness function

selects whether the new organism survives or fails:

kz1 : ~
’k if ’k

� �
w k

� �
;

k if ’k
� �

ƒ k

� �
:

(

Chaitin’s deep insight into the problem of biological evolution is
the choice of the fitness function from AIT. The idea is to see life as
evolving software, such that a living organism is tested after a muta-
tion has occurred. The idea is to use a testing function that is an
endless resource. This way, evolution will never be exhausted, will
ever go on. In AIT there are several functions with this remarkable
property that make them specially well-suited for this task: quantities
that are definable but not computable. One example is the Busy
Beaver function16

P
. Another example is Chaitin’s V number6,17,18

that represents the halting probability of self-delimiting TMs.
For the Busy Beaver function

P
there are several variants which are

equally good for the purposes of fitness function, that measures the rate
of evolution. For instance,

P
can be defined as the maximum number

of 19s output by a TM U after it halts starting from a blank input data q
5 L. To work with

P
it is convenient to specify the maximum size N

that the programs p [ operated by U and define the output as the
largest integer k [ in binary form that is computed after halting U.
Thus, a N-th Busy Beaver function is denoted

P
N and definedX

N : ~max k,

H kð ÞƒN
ð5Þ

where the algorithmic complexity (1) is defined for programs p that
compute k 5 U(p) without input and halting. This is a well-defined
function

P
N : N R N but it is noncomputable: it grows faster than any

computable function f(N),
P

N . f(N) for sufficiently large N.
Therefore,

P
N cannot be bounded in the form of

P
N 5 O(f(N)).

This is the property that makes
P

N a good candidate for fitness
function since it is an endless source of creativity that enable us to test
a new organism, a program , and see whether it is smarter by
checking whether it can name a bigger number. Thus, we can use
(4) with ~

P
N and ask how the total mutation time TN behaves

as N grows. Let us mention in passing that naming increasingly bigger
numbers requires lots of creativity in the form of new functions and
ways to name new numbers bigger and bigger.

A more manageable and systematic choice for fitness function is
Chaitin’s V number. To define it, it is convenient to introduce the
notion of universal probability PU(x) of a given string x [ :

PU xð Þ :~
X

p:U pð Þ~x

2{ pj j, ð6Þ

which is the probability that a program randomly drawn as a
sequence of fair coin flips p 5 p1p2… will compute the string x.

That this is a well-defined probability distribution is a central result
in AIT. It relies on some technical details: a) the programs p are not
arbitrary, but self-delimiting; b) convergence of the series is guar-
anteed by the Kraft inequality19. A self-delimiting program is a pro-
gram that knows when to stop by itself, without additional stopping
symbols. It is constructed from a set of prefix-free strings of bits:
strings that are not prefix of any other string in the set (see Methods
section III). In AIT, the algorithmic complexity and the universal
probability of strings are related by a Shannon type of equation:

H xð Þ~{logPU xð ÞzO 1ð Þ: ð7Þ

The V number can be defined from the universal probability once we
drop any reference to any particular output string:

V :~
X

p:U pð Þ~halts

2{ pj j, ð8Þ

It is considered as the halting probability in the theory of TMs. It
measures the probability that a randomly chosen program p will halt
when run in a UTM that halts. Thus, it is defined on the set of prefix-
free halting programs, not for arbitrary programs. Interestingly
enough, Chaitin proved that universal TM exist for self-delimiting
programs. This technical condition guarantees that 0 , V , 1: there
are always programs that halt, but not all of them will halt due to the
halting problem. Again, V is well-defined and noncomputable. It
hosts an inexhaustible amount of knowledge and it is thus suited
for a fitness function. In short, if V were computable it would imply
that there is no halting problem, which is false. Like

P
, it is con-

venient to truncate Chaitin’s number up to programs of size N com-
puted in time less than N:

VN :~
X

p: pj jvN,TvN

2{ pj j: ð9Þ

These VN are lower bounds to the actual V. This truncation also
produces an unbounded function VN that reflects its non-comput-
ability.

Chaitin uses Vk to define an organism k and a mutation k at
time-step k, as well as the fitness function . Namely, an organism is
defined by means of the first N(k) binary digits vi of Vk:

k :~v1v2 . . . vN kð Þ: ð10Þ

To complete the construction of the organism k from the proto-
organism k, we need two more ingredients. One is to make it a self-
delimiting program by including a prefix string 1N(k)0 (see Methods
section III) and the other one is to prefix a program pV to read the
fitness of the resulting organism. Altogether, the organism looks like:

k :~pV 1N kð Þ0 k: ð11Þ

The mutation acts on the organism by trying to improve the lower
bounds on V. According to AIT, a natural move is

k : Vk?V’k~Vkz
1
2k
: ð12Þ

Notice that this mutation induces, in turn, a mutation in the organism

k? ’k by the rules specified in its construction above. These muta-
tions represent challenging an organism to find a better a better lower
bound of V which amounts to an ever increasing source of knowledge.
To this end, the fitness function ~V is introduced as follows:

kz1 : ~
’k if V’kvV;

k if V’k§V:

�
ð13Þ

To understand this selection, notice that no truncation Vk can be greater
that the real V and thus, this represents a failure. On the contrary, if the
new truncation V’k is still less than V, we have increased our knowledge
of how many programs will halt upon running a UTM V’kwVkð Þ. As
Chaitin notices, this implies the use of an oracle2–4.

www.nature.com/scientificreports
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It is possible to define a variant of the Busy Beaver function ~P
k in

terms of VN as the least N for which the first k bits of the binary string
of VN are correct. In AIT it can be proved that both Busy Beavers are
approximately equal,

~X
N
~
X

NzO log Nð Þð Þ : ð14Þ

B. Chaitin’s Evolution Scenarios. Let us denote TN the total
mutation time, i.e., the number of mutations tried in order to
evolve an initial organism 1 up to a certain more fitted organism

N . Depending on the strategy followed by Nature, Chaitin
considers three scenarios and computes the scaling of TN with N.
In this way, one can assess which is the best evolutionary scenario.
The results are the following:

. Scenario I: Exhaustive Search.
This scenario represents that there is no strategy in Nature and

every possible organism is tested regardless which was the previous
organism that originated it. Thus, there is no effective application of a
fitness function but Nature explores all possible codes available in the
phase space. As from AIT we know that in a given set of strings N of
length up to N there are 2N 2 1 strings, then the order of the evolution
time is

TN~O 2N
� �

: ð15Þ

It takes an exponential time to reach a certain organism N .

. Scenario II: Intelligent Design.
This scenario is the opposite to the previous one. Now, Nature is

not dumb but assumed to be intelligent enough so as to know about
AIT and this model of evolution. The initial proto-organism is 1~0.
The best strategy is to apply a process of interval halving to track
down better lower bounds to O by applying mutations k, k 5 1, 2,
…, N in this increasing order. Thus the mutation time takes of the
order of N trials:

TN~O Nð Þ ð16Þ

Thus, by selecting intelligently the order of the mutations, since we
assume that Natures knows the structure of V, then the total evolu-
tion time for an organism grows linearly in N.

. Scenario III: Cumulative Evolution at Random.
A more natural assumption is that Nature choses randomly the

mutations k among the set of possible mutations. It is a random
walk in the space of mutations. Remarkably enough, the evolution
time grows in between quadratic and cubic in N:

TN~O N2zd
� �

, 0vdv1: ð17Þ

Although this is worse than scenario II, it is still a polynomial growth
and far from the exponential growth of scenario I.

C. Quantum Chaitin Model. The following definitions are we
well-motivated when trying to bring concepts from Quantum
Information Theory (QIT) into Chaitin’s classical model. They can
be made even more general as discussed in Sect.II.

i/ Quantum Organism q: it is a pure quantum state in a Hilbert
spaceH of infinitely countable qubits: q:~j i [ H. In prac-
tice, we shall be dealing with a finite truncation to a number of
qubits N denoted as HN .

The meaning of this choice is motivated by the notion of classical
organism as a program for a TM. Now, the quantum version is a pure
state that encodes the information of a quantum program. This is
meaningful since we have adhered to an abstraction process in which
a living organism is divested of everything except its genetic code that
is represented by a classical program. Thus, a quantum organism is
not a form of quantum life, but represents quantum effects in the
classical code of DNA.

ii/ Quantum Mutation q: it is a quantum algorithm that trans-
forms the original quantum organism q into a mutated
quantum organism ’q:

q : q ? ’q: ð18Þ

iii/ Quantum Fitness q: it is a cost function that selects a mutated
organism when it is fittest than the original.

The traditional characters of Quantum Information20,21 Alice A
and Bob B, can be adapted to the quantum evolution scenario:
Alice is the organism before the mutation A~

q and Bob is the
mutated organism B~ ’q. Then, q will success or fail depending
on the fitness of the pair (A, B).

In order to complete the above quantum definitions we need to
specify how to choose a triplet q, q,

q� �
in the quantum case.

We shall follow the classical model and try to find a quantum version
of organisms as lower bounds to some V number to be specify. Once
this is done, the quantum notions of mutation and fitness function
will also follow. All this can be done by defining a notion of quantum
algorithmic complexity.

D. Quantum Algorithmic Complexity. The quantumness of the V
number that we are searching for our definition of quantum
organism will depend on the notion of quantum algorithmic
complexity Hq that we decide to use. In fact, there are several
versions of Hq

22–25 and not all of them are equivalent. We shall
choose the definition of Mora and Briegel25 that is called network
complexity Hnet because of the following properties25–27:

a/ Hnet is a classical algorithmic complexity associated to a
quantum state. It describes how many classical bits of informa-
tion are required to describe a quantum state of N qubits. Being
classical, it will allow us to compare to previous evolution rates
on equal footing.

b/ Hnet has the special property that it requires an exponential
number of classical bits for the description of generic quantum
states. In particular, it detects a sharp difference between mul-
tipartite entangled states and separable states.

The network complexity is a description that Alice does of a
quantum state j æN she has and she wants to send this information
to Bob through a classical channel so that Bob could eventually
reproduce that state on his side. It describes the classical effort Bob
would have to do. In order to define network complexity, we need
several operational elements: a) a universal set of quantum gatesS; b)
an alphabet to code circuit operations , and c) a fidelity or degree of
precision g (0,1). With the aid of these elements, we can construct
a mapping from quantum states inHN to finite strings , such that

cl : j iN?x , ð19Þ

and then,

Hq j ið Þ~Hnet j ið Þ : ~H xð Þ: ð20Þ

The first equality represents our choice of quantum algorithmic com-
plexity while the second is the definition of network complexity (1).

The mapping cl (19) is constructed from the elements a)-c) as
follows: let us select a universal finite set of gates for example, the one

generated by the gatesS~ UH,UK,UCnotf g28, i.e., the Hadamard gate,
the p/8-phase gate and the Cnot gate, respectively. Then, Alice sets
up a quantum circuit of gates called U by concatenating gates fromS,
and constructs a state, namely, Uj0æN, from an initialization state j0æN

:5 j0ævN. This prepared state can approximate the desired state j æN

with precision given by

N Uj j0h iN§1{ : ð21Þ

In all what follows, will be a fixed parameter once and for all from
the beginning.
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Next, Alice needs to use the alphabet in order to code all the
operations in the circuit U and preparation of the state with

-precision (21). This is represented by a certain string of bits
U ,ð Þ : ~a1a2 . . . aM , where M is the length of the resulting bit-

string and is a certain function of the number of qubits N. Then, the
mapping (19) is given by

cl j iN
� �

~xY : ~ U ,ð Þ: ð22Þ

With this, the network complexity (20) is well-defined. An additional
minimization process is assumed in (1) since the circuit U is not
unique and it is natural to request to use the minimal circuit that
prepares the state with the desired precission.

Our choice of quantum algorithmic complexity has very import-
ant consequences for studying quantum effects in biological evolu-
tion:

1/ According to this definition of quantum algorithmic complex-
ity in terms of a classical network complexity, we realize that the
set of quantum states is mapped onto the set of bit-strings.
Thus, while the former is uncountable, the latter is infinitely
denumerable.

2/ By virtue of this mapping we are complying with the Turing
barrier.

3/ The fact that the network complexity is classical will make that
our quantum Vq will be also real numbers and not quantum
states or operators. However, we can make classical definitions
of V numbers that represent different types of quantum states
(see later).

4/ In a traditional quantum information scenario, Bob needs to
agree with Alice on which alphabet to use in order to commun-
icate. In a quantum evolution scenario, there is no need to agree
on a common language for the description since there are not
two observers, but a single organism that evolves.

We shall use the following fundamental results from network
complexity and quantum states25. As a consequence of the
Solovay-Kitaev theorem20,29,30, the number of gates (bit-string) M
of the circuit needed to construct a given multipartite state j æN

grows exponentially with N for a fixed accuracy .

Hnet j iN
� �

2N log
1
: ð23Þ

Furthermore, the network complexity quantifies very differently the
complexity of separable and entangled states25:

. Separable States j æS:

Hnet j iS
� �

N log
1
: ð24Þ

. Maximally Entangled States j æE:

Hnet j iS
� �

N 2N log
1
: ð25Þ

. Generic States:

Hnet j ið Þ N 2Es Yj ið Þ log
1
: ð26Þ

where Es(j æ) is the Schmidt measure which quantifies the
degree of entanglement in the multipartite pure state31.

The fact that separable states are less complex than entangled
states means that separable states are more likely: If we type a random
bit-string at a computer, most likely it will correspond to a separable
state. This raises a fundamental question: can we use the higher
complexity of entangled states to accelerate the rate of biological

evolution? To answer this question we need to introduce the corres-
ponding quantum V numbers and different scenarios for mutations
evolution in which evolution will develop.

E. Quantum Omega Numbers. In order to describe different types
of quantum organisms we need to define different types of V
numbers associated to quantum states. Thus, we shall use the basic
results on network complexity Hnet. However, we can define Omega
numbers associated to selected classes of states. As we know from the
geometry of the Hilbert space of states that the set of separable states
does not intersect the set of truly entangled (maximally) states, we
can define V numbers by restricting the sum on the programs
originated by the mapping (19) to those yielding either separable
or entangled states. By construction, these sets are discrete since
we are using a discrete set of universal quantum gates S.

. Separable ~VS number:
~VS :~

X
pS:U pSð Þ~halts

2{ pSj j, ð27Þ

where pS is a program that describes the network complexity of a
separable state j æS. To do this sum, we construct all possilble
separable states and apply the mapping (19) to perform the sum.
As the method is constructive, the separable states are obtained
on demand.

. Entangled (maximally) ~VE number:
~VE :~

X
pE:U pEð Þ~halts

2{ pEj j, ð28Þ

where pE is a program that describes the network complexity of a
maximally entangled state j æE. To do this sum, we fix the
accuracy which behaves as an overhead factor, then we con-
struct all posilble maximally entangled states and apply the map-
ping (19) to perform the sum. The decision problem of whether a
given constructed state is maximally entangled is solved by com-
puting its Schmidt measure and testing that it is maximal. We
take this as an operational definition of maximally entangled
state in this context.

In both sums, the programs pS and pE are assumed to be prefix-free
in order to guarantee their convergence. The typical behaviour of

their general terms are 2N and 2N2N
, repectively. We drop off the

overhead factor from now on. From the viewpoint of AIT, we may
use another equivalent definitions in terms of the network complex-
ity explicitly:

VS :~
X

xS:U xSð Þ~halts

2{Hnet Yj iSð Þ, ð29Þ

VE :~
X

xE:U xEð Þ~halts

2{Hnet Yj iEð Þ: ð30Þ

The above quantum V numbers are introduced relying on the choice
of quantum algorithmic complexity in terms of network complexity.
Other choices of quantum complexity may lead to different defini-
tions of quantum V numbers that may become quantum states32,33 or
even quantum operators.

F. Quantum Evolution Scenarios. We want to compare quantum
evolution in a world of maximally entangled quantum organisms
w.r.t. a classical world both in intelligent design and cumulative
evolution scenarios.

In order to study quantum effects in evolution scenarios as in
Sect.I A, (15) (16) (17), we need to define a triplet { q

k, q
k, q

k}.
This is achieved by introducing truncated versions of the quantum V
numbers in (29), as follows. For separable states, we have
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VS
N :~

X
nvN

2{Hnet Yj iSnð Þ, ð31Þ

where the sum runs over truncations up to N qubits,
Yj iSn [ Hn n~1,2, . . . ,N{1, corresponding to the construction

process described in (27), (29). The quantum separable organism
is a lower bound to (31). The key distinctive feature is that the typical
behaviour of one element in this truncated sum decreases as 22k.
Thus, the corresponding mutation is defined such as to produce a
significant change in the organisms as

q
k : VS

k?V’Sk~VS
kz

1
2k
: ð32Þ

Therefore, the analysis of the evolution rates for the quantum evolu-
tion scenarios dealing with separable states are similar to those with
classical organisms in (15), (16), (17). A classical state is a state that
can be prepared classically, thus it can evolve classically. The same
treatment as with the classical scenarios in Sect.I A reproduces the
same evolution rates.

A different result will be obtained with maximally entangled organ-
isms. Now, let us introduce the truncated entangled V number as

VE
N :~

X
nvN

2{Hnet Yj iEnð Þ, ð33Þ

This allows us to obtain a quantum version of the triplet
{ q

k, q
k, q

k}. In particular, the quantum entangled organism q
k

at time step k is defined by the same process in Sect.I A, (11) of
producing lower bounds but now with the truncated quantum V

number (33). q
k yields a lower bound to V’EN defined above (33).

Next, we introduce a mutation q
k that tries to make this

quantum organism q
k to progress. A significative progress will

occur if we try to increase the form of the quantum V number (33)
according to the typical behaviour of its terms in the sum. This is

given by 2{N2N
for spaces up to N qubits. Thus, now we define an

entangled version of the mutation as
q
k : VE

k?V’Ek ~VE
kz

1

2k2k : ð34Þ

Notice that this choice of move in the space of quantum organisms is
motivated by the typical behaviour of quantum circuits representing
quantum algorithms acting on quantum states. This is the natural
scale for quantum mutations to occur at the level of quantum organ-
isms.

The fitness function is determined by the oracle of VE which
decides whether the mutated organism ’qk with (34) succeeds or
fails according to the criteria (13).

Now, we have all the ingredients to analyze the rates for different
quantum evolution scenarios, mainly with entangled organisms.

1. Quantum Exhaustive Search. As indicated by its name, this strat-
egy is defined by searching all classical possible programs that can be
generated quantum states available in the Hilbert space HN of N
qubits by means of the mapping (19). For a strings of length M we
know this grows as 2M. In turn, the length of these strings is related to
the number of qubits as M < 2N. Thus, as in this evolution scenario
each mutation is exhaustive, i.e., it tries every possible quantum
organism regardless which original organism may be, then the evolu-
tion rate behaves as

TN~O 22N
� �

: ð35Þ

2. Quantum Intelligent Design. This strategy is like climbing a hill via
the optimal path, knowing such a path before hand. In such a way
that each step is always better than the previous one. There is no
backtracking. A more proper name would be Quantum Optimal
Evolution.

Now, we have to use the quantum mutations (34). If we produce an
optimal ordered sequence of these mutations Mq

k as follows: k 5 1, 2,
…, N we shall reach the first N valid digits of VE

N , by construction,
and then the evolution rate is:

TN~O Nð Þ ð36Þ

Thus, quantum intelligent design behaves linear in the number of
trials N in a maximally entangled world. This behaviour is equal as
the intelligent design in a classical world (16). Notice that the
quantum mutations have a different growth rate than classical muta-
tions, but nevertheless the evolution time is the same: they are
optimal.

3. Quantum Cumulative Evolution. This strategy is like climbing a
hill, but now we do not have a priori knowledge of the best strategy to
improve the lower bounds of the quantum number. Thus, a natural
strategy is to mutate by means of a random walk in the space of
quantum mutations given by (34). In this case, the quantum muta-
tions must be drawn at random and often enough so as to produce
the same final quantum organism.

The quantum mutation is characterized by the growth k2k. For
simplicity, we shall take it as the leading behaviour 2k. As the we have
chosen the network complexity as our measure for quantum algo-
rithmic complexity, we can now use classical formulas and Methods
section III, (45) to estimate the complexity of a quantum mutation
associated to a maximally entangled state:

H q
k

� �
log 2kz2 log log 2kzO 1ð Þ<kz2 log k: ð37Þ

Its probability is 2{H 2kð Þ~1
	

2kk2
� �

and its frequency is k22k. The
total evolution time TN is of the order of

TN~
X

k~1,...,N

k22k, ð38Þ

which grows exponentially up to polynomial factors,

TN~O 2N
� �

: ð39Þ

Thus, quantum cumulative evolution in a maximally entangled
world behaves exponentially worse than cumulative evolution in
a classical world. Quite likely, it is more favorable to evolve in a
classical world than in a quantum world. This may explain why
we live in a classical world at the macroscopic level. We should
remark that this conclusion does not contradicts the fact that
quantum algorithms can be more efficient than classical algo-
rithms since our conclusions refer to algorithmic complexity,
while quantum algorithms deal with computational complexity
(time and space resources for computation).

Discussion
We have studied quantum effects on biological evolution by means of
a descriptive toy model based on quantum algorithmic complexity.
This is an adequate option when studying biological evolution from a
broad perspective and in a very large time scale, so large that any type
of quantum mutation (18) can take place and not just point-wise
mutation that only affect a base in the DNA code. In quantum
evolution terms, the quantum complexity is a measure of how dif-
ficult has been for Nature to ‘prepare’ the quantum organism. The
results obtained in Sect.I F for the rates in quantum evolution scen-
arios are based not on the notion of runtime complexity, but on the
notion of mutation time, as well as what a typical quantum mutation
move is.

The halting problem and other noncomputable functions are pre-
ceded by an aura of being a pathology, a nuisance … eventually,
something negative. This is the perspective of non-specialists. On
the contrary, we may consider this undecidability as a sort of intrinsic
randomness in Mathematics. This is analogous to the intrinsic
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randomness that quantum theory brought to Physics even earlier in
the history of Science. Now we know from Quantum Information
Theory (QIT) that this randomness can be used to our benefit, in a
large variety of ways. Similarly, It is very remarkable how Chaitin
turns the problem of non-computability in algorithmic complexity
into a source of creativity in order to challenge living organisms to
evolve by becoming increasingly more advanced. This process of
challenging by means of mutations is endless precisely because the
fitness function employed is non-computable and cannot be
bounded when truncated, as we learn from AIT. Thus, non-comput-
ability is given a positive role in a descriptive version of biological
evolution.

We have adopted the same perspective when formulating a
quantum version of an algorithmic model for biological evolution.
This has motivated us to use a quantum notion of complexity based
on the network complexity. In this way, We can still work with lower
bounds of quantum V numbers as prototype of quantum effects in
DNA code. This perspective is non-trivial in the quantum case since
it implicitly assumes the existence of the Turing barrier also in the
quantum realm. This is still an open problem. While a classical
Turing Machine works with data and programs that are infinite
but countable, a quantum Turing Machine works with non-counta-
ble sets like complex numbers. Thus, we could argue that the classical
halting problem does not apply since now the number of quantum
TMs is uncountable. However, let us recall that Turing’s halting
problem is just one instance, very remarkable, of Gödel’s incomple-
teness theorem. Thus, if we believe that Gödel’s incompleteness the-
orem applies beyond Arithmetic, we may accept that there are
uncomputable problems in quantum TMs also, and likely something
equivalent to a quantum Turing halting problem. Moreover, in our
case, we have employed a finite set of universal quantum gates and a
transformation to bit-strings from network complexity. This implies
that we are not considering a quantum TM as a continuous system,
but we are dealing effectively with a countable set of gates up to a
fixed precision . T his seems the simplest generalization of the
classical scenario.

It is interesting to realize that the Turing barrier has important
consequences in a quantum evolution scenario of this kind. In case
that barrier could be beaten by quantum effects, that would imply
that we cannot use real quantum non-computability as a source of
creativity in quantum evolution as in the classical Chaitin model. We
could not justify quantum effects on biological evolution on the same
theoretical grounds.

The evolution rates in quantum scenarios are understood up to an
overhead factor arising from the accuracy factor that we want to use.
This is fixed and thus removed from the expressions for simplicity.
However, this parameter is new in the quantum evolution case and
does not exist in the classical case. Something similar could be intro-
duced in a classical evolution by invoking the existence of classical
errors during evolution, but this is not standard in AIT. The reason
for the existence of is because the universal gate set S is finite. With
a continuous universal gate set20,21,34 it is possible to get rid of it, but
that would imply that Nature would had an infinite amount of
resources, something which we do not consider reasonable. The
fundamental origin of this difference is the fact that the set of classical
strings is countable while the set of quantum states is uncountable.
Thus, working with a classical universal set of gates does not need an

parameter. In this regard, the quantum complexity is more ‘natural’
than the classical where something like is absent at the very fun-
damental level. In other words, the classical universal Turing
machine and the finite universal quantum gate set are not on equal
footing, but the quantum case is more ‘natural’ since Nature can also
make errors.

Alternatively, we can think of this parameter as a grid or lattice
spacing but in the space of quantum states, rather than in real space.
It is a discretization. In this sense, we always work with a finite lattice

or grid, and that is why we drop this dependence. We never take the
continuum limit.

The network complexity is formulated in terms of a finite univer-
sal gate set S, instead of a quantum Turing Machine which would
seem more natural if we see how the classical algorithmic complexity
is defined explicitly in terms of a classical Turing Machine. However,
this is not an obstacle since we are using the Solovay-Kitaev theorem
to reconstruct arbitrary quantum unitary gate to a given precision.
Furthermore, we also know that the quantum circuit model is equi-
valent to the quantum Turing Machine model due to the Yao the-
orem35. Moreover, we have also identified that the choice of a coding
language in network complexity to transform a quantum circuit in a
bit-string (19) is irrelevant for quantum evolution, since Alice and
Bob are replaced by the original organism and the mutated organism,
respectively.

The simple quantum toy model of Sec.I C can be thought of as a
first step towards more realistic models and it does not exhaust all
necessary ingredients to describe quantum effects in biological evolu-
tion, even from a algorithmic information viewpoint. For example,
we can mention a series of extensions that this model still allows:

Fitness Functions: instead of using lower bounds to quantum V
numbers, there are other options considered by Chaitin in his clas-
sical model that it is worthwhile to find its instance in the quantum
model.

Creation of Hierarchies: classical evolution favors the formation of
hierarchies of living organisms. Are they compatible with quantum
evolutions?

Mixed States: in all our analysis, quantum organisms have been
represented by means of pure quantum states and mutations by
quantum algorithms. There is a natural extension to mixed quantum
states where the lack of purity here may represent the action of an
external environment on the organism, i.e., its genetic code. This
degree of freedom may influence the evolution rates and it is also a
way to model the presence of errors during evolution.

Continuous Variables (CV): we may also choose the Hilbert space
of states not to be represented by qubits, but for continuous variable
states36, like Gaussian states. This is still a well-defined model for
quantum computation and it remains a challenge to study its prop-
erties from the algorithmic complexity perspective and in the context
of evolution.

Quantum Complexity: as we have mentioned, there are other
notions of quantum algorithmic complexity that are not equivalent
to network complexity. It is still possible to keep a version of this toy
model in Sect.I C and investigate the consequences in quantum
evolution of these other choices. In particular, quantum V numbers
can be replaced by quantum states or even quantum operators. This
may affect the evolution rates. However, it is important to justify
conceptually these other choices.

Methods
Size of Self-Delimiting Bit-Strings in Algorithmic Complexity Theory (AIT). The
size of an integer k g N is defined as

size kð Þ :~1zqlog 1zxð Þr, ð40Þ

where x [ is the finite bit-string representation of k.
In AIT, it is technically necessary to work with self-delimiting, i.e., prefix-free

strings of bits in order to have a well-defined halting probability V that be convergent.
Let x denote a n-bit string: x 5 x1x2…xn. The set of x [ strings is not self-
delimiting. For example, for n 5 2 then ~ 0, 1, 00, 01, 10, 11f g has a 0 that is a
prefix of 00 and 01 and so on.

Given a set of strings we can make them into a set of self-delimiting strings by
the following procedure:

x.0n1 x~: x ð41Þ

i.e., we put n 0s before the string and use a 1 to separate it from the given n-bit string x.
In the context of evolution, this is called a proto-organism. As the Turing Machine has
to read the input string bit by bit, then this way we are telling the TM the length of the
string x ahead of time (before the TM reads it). Another example for n 5 3 bit-strings
is
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0.010, 00.00100, 10.00110,

1.011, 01.00101: 11.00111,
ð42Þ

and now we do not have prefix strings anymore.
The size of self-delimiting strings enters in the definition of the Chaitin numbers

and we need to compute its size. Denote jxj the size in bits of a string x [ . In our
case, jxj 5 n. Then, the size of its self-delimiting extension (41) is

xj j~2nz1: ð43Þ

However, we realize that the coding of the size of the string x in the above self-
delimiting procedure is highly inefficient since we are using the unary code. We can
improve this coding by using the fact that an integer like jxj can be coded with log n
bits, for x large (40). Thus, let us define a better encoded self-delimiting string x9 as
follows

x’ :~ xj jred x, ð44Þ

where xj jred here is the string of bits representing the log of the size of x , and appears
before x. Now, its size is (43)

x’j j~nz2 log nz1: ð45Þ
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