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Abstract
Introduction—Intestinal atresias have long been hypothesized to result from either failure of
recanalization of the intestinal lumen or in utero vascular accidents. Recent work in animal models
is now calling for a reassessment of these widely held paradigms.

Purpose—In this review, we will examine the data that led to the original hypotheses and then
evaluate more recent work challenging these hypotheses. Furthermore, we will discuss how
defining the mechanism of atresia formation in animal models may provide insight into early
intestinal development and the mechanism of lengthwise intestinal growth.

Conclusion—Such insight will be critical in developing regenerative therapies for patients with
intestinal failure.
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Introduction
Intestinal atresia is a phrase used to describe a segmental defect of the intestine which
disrupts the luminal continuity of the intestinal tube during development. This is frequently
accompanied by a loss of the surrounding mesoderm and blood supply to the affected
region. A simple way of thinking about an atresia is that if the developing intestine is a
series of pipes connected to one another end-to-end, in atresia, one of these segments of pipe
disappears. Intestinal atresias can occur anywhere throughout the intestine, from the
duodenum to the colon, and are one of the most common causes of neonatal intestinal
obstruction, with an incidence between 0.57 and 6.6 per 10,000 live births (Table 1).1

An Early Hypothesis Based on an Interesting Observation
Intestinal atresias were first described in 1684.2 The etiology of these defects were ascribed
to any number of causes, including psychiatric fits of the mother, a lack of bile secretion,
peritonitis, improper axial rotation of the intestine, compression by the transverse mesocolon
as well as obliterative embryonic events.3 In 1900, a Viennese anatomist, Julius Tandler,
published a hypothesis on the origins of intestinal atresia based on his studies of normal
duodenal development. Tandler observed that the endoderm of the duodenum proximal to
the “umbilical loop” (or C-loop of the duodenum) undergoes, “A remarkable thickening of
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the epithelium… until finally the duodenum becomes a solid string, in which no lumen at all
is to be found.” This occlusion occurs at day 42 of development. Thereafter, the duodenum
recanalizes between days 44 to 46 by forming multiple, small channels in the epithelial
string which later coalesce into a single lumen. Tandler postulated that:

“If one keeps in mind the fact that on one hand the epithelial occlusion of the
duodenum represents a normal event, but on the other hand that it is exactly in this
place that most pathologic occlusions of the intestine occur, the question does not
appear unjustified to ask whether these processes relate to each other, that is,
whether they are causally related. It would not be impossible that in rare cases the
physiologic atresia remains and develops into a congenital atresia…. It is clear to
me that the opinion represented here does not exceed the status of a new
hypothesis, and it is not meant to exceed this.”3

In spite of a cautiously worded qualification, Tandler's hypothesis has become dogma in the
pediatric surgical community; however, researchers have begun to challenge this hypothesis
over the last two decades. In his original paper, Tandler reported that, like humans, the
duodenum of rats undergoes a similar developmental phase of luminal obliteration as a
result of proliferation. More recent histological studies in rats indicate that this species do
not undergo this developmental event.4 It remains unknown whether mice also fail to form a
proliferative endodermal solid core or plug during development; however, duodenal atresias
can be generated in mice by mutating either the gene for fibroblast growth factor receptor
2IIIb (Fgfr2IIIb) or its ligand Fgf10.5,6 If mice, like rats, fail to form a proliferative
endodermal plug, it would indicate that this developmental event is not required for
duodenal atresia formation.

Do Atresias Arise from Mechanical Events?
Fifty-five years after Tandler's work was published, surgeons J.H. Louw and Christiaan
Barnard hypothesized that a “vascular accident” was the major etiology of intestinal atresias
of the jejunum and ileum,7–9 an idea originally proposed by Spriggs in 1912.2 Their
hypothesis was based on the clinical observation that thrombi were present in vascular
arcades of the proximal intestine adjacent to the atretic region. They then tested whether
segmental occlusion of the arterial blood supply to the intestine in utero would result in
atresias. They successfully performed fetal surgery on two near-term canine fetuses, ligating
arteries in the mesentery adjacent to the small intestine. Both pups developed atresias. Based
on these observations, they concluded that interruption of the vasculature in utero (possibly
from a thromboembolic event) was a major etiology of atresia formation.7–9

Louw and Barnard's work provided experimental evidence that mechanical compression of
the arterial blood supply to the intestine can give rise to atresias, and there is clinical
evidence that some intestinal atresias may arise from this mechanism. For example,
gastroschisis and volvulus are two congenital defects that have a high association with
atresia formation. In gastroschisis, a rupture occurs on the right side at the junction of the
umbilical cord and the abdominal wall resulting in a ring-like abdominal wall defect. The
intestine then herniates through the ring into the amniotic cavity. Seven percent of these
patients will present with an atresia,10 which likely results from mechanical compression of
the intestine by the ring-like defect. In volvulus (as a result of improper rotation and fixation
or from a focal twist of the intestine around an adhesive band), intestinal blood flow is
impaired resulting in involution of the affected segment of the intestine,8,9 loss of intestinal
continuity, and atresia formation (Fig. 1). Not surprisingly, Louw and Barnard's hypothesis
was based on observing an atresia arising from a focal volvulus around an adhesive band.7
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Cystic fibrosis (CF) has a high association with intestinal atresia formation but the
mechanism is unknown. In fact, findings consistent with CF were associated with intestinal
atresia long before CF was identified as a separate, distinct disease. Tandler credited the first
description of this association to an investigator named Forer.3 Forer observed that atresia
formation was associated with a lack of bile in the meconium, giving it the white or gray
appearance commonly found in children with CF and intestinal atresias. Several studies have
demonstrated a significantly higher incidence of CF in patients with jejunal–ileal atresias
than would be expected in the general population.11,12 Cystic fibrosis with meconium ileus
is reported to account for 11% of jejunoileal atresias and 5% of all intestinal atresias.13 If CF
is included as a mechanical cause of atresia formation, together with gastroschisis and
volvulus, these conditions account for approximately 50% of jejunoileal atresias and only
20% of all atresias.13 While the mechanism by which atresias occur in the setting of CF
remains unclear, the majority of intestinal atresias (80%) do not appear to be associated with
mechanical events.

Is There Epidemiological Evidence of In Utero Thromboembolic Events as a
Cause of Intestinal Atresias?

Since the publication of Louw and Barnard's work, there has been a noticeable lack of
genetic, molecular, or developmental evidence to support a “vascular accident” as an
etiology of atresia formation. One paper was published that suggests a relationship between
a predisposition to hypercoagulable states and atresia formation. That paper reported an
associated increase in the allelic frequency of either factor V Leiden or the R353R mutation
of the polymorphic region of factor VII in 28 patients with intestinal atresias.14 Whether any
of the patients in this study were hypercoagulable at the time of their presentation was not
determined. Factor V Leiden is very rarely associated with arterial thrombosis, the putative
mechanism of the “Vascular hypothesis.” The R353R mutation results in increased levels of
factor VII leading to coronary artery thrombosis in adults; however, gestational and perinatal
levels of vitamin K-dependent clotting factors (including factor VII) are very low in infants
due to a deficiency in vitamin K.15 Therefore, it is very unlikely that the R353R allele can
result in atresia formation in utero. Finally, if either factor V Leiden or R353R were
causative in atresia formation, then populations with high allelic frequencies of these
mutations would have an increased incidence of intestinal atresias. This, however, is not the
case. The Centers for Disease Control issues a report every year on the rate of congenital
defects, including intestinal atresia, for a number of countries.1 Based on data from reporting
countries, there is no statistical correlation between the incidence of intestinal atresia and the
allelic incidence of factor V Lieden (correlation coefficient of −0.36) (Table 1; Fig. 2) or
R353R (correlation coefficient of 0.24) (Table 2; Fig. 3).1,16–39,18,40–50 This analysis
strongly suggests that neither mutation plays a role in, nor is associated with, intestinal
atresia formation.

What Does the Clinical Presentation of Intestinal Atresias Reveal About
Their Etiology?

Intestinal atresias present over a range of severity. The current categorization scheme
reflects this range with types I, II, IIIa, and IIIb, organized by the amount of tissue absent
and type IV reflecting the presence of multiple defects (Fig. 4). These five types of atresia
occur with a relatively equal incidence and distribution throughout the intestinal tube. These
characteristics are similar to other developmental defects that arise from genetic mutations
that disrupt a common developmental process (cleft palate, omphalocele, and limb
defects).51–55 Following this rationale, a type IIIb atresia would reflect an early disruption in
this common developmental process in the embryonic gut, whereas less severe defects
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would reflect a later disruption in the same developmental process. Additionally, atresias
primarily affect a limited area of intestine and are rarely hereditary.56 These clinical
characteristics argue that atresias arise from a somatic mutation that disrupts a common
developmental process in the embryonic gut.

In What Tissue Would a Disruption in a Common Developmental Process
Have to Occur for an Atresia to Develop?

Further examination of the clinical presentation of atresias points to a defect in endoderm
development as a leading event in atresia formation. This is most evident in duodenal
atresias. Duodenal atresias, in addition to having a significant association with Down
syndrome, also present with a high incidence of anomalies of other midline structures,
including the esophagus, pancreatic duct, bile duct, heart, and rectum.56,57 Like the
duodenum, these other structures initiate development in the midline of the embryo, and
with the exception of the heart, are all derived in part from endoderm. The heart is not
composed of endoderm, but cardiac myoblasts come into direct contact with the foregut
endoderm during their migration out of the heart fields prior to forming the heart tube.58 It
appears that this developmental interaction with the endoderm is critical in programming
these cells in the proper formation of the heart.58 The common thread running through all
these defects is that the endoderm plays a central role in their development. Thus,
disruptions in endoderm development would appear to be central to the etiology of these
defects.

What Do Animal Models Tell Us About Atresias?
Recent data from animal models contests the view that the leading event in atresia formation
is vascular. These data, instead, suggest that a disruption in endoderm development results
in atresia formation. For example, mutation of Fgfr2IIIb or the gene encoding its ligand
Fgf10 results in both colonic and duodenal atresias. This suggests that the mechanism of
formation of both atresias is the same.5,6,59–61 The Fgfr2IIIb gene encodes for a membrane-
bound tyrosine kinase receptor that is thought to be expressed in the endoderm, but not the
mesoderm, of the developing intestine.62 Mutation of Fgfr2IIIb or Fgf10 results in the loss
of receptor signaling function leading to atresia formation. The leading cellular events in this
model are increased in cell death and decreased proliferation specifically, and exclusively, in
the endoderm.61 These endodermal cellular events precede any changes in the vasculature
by at least a full day in the mouse (the equivalent of 4–6 days in a human). Second,
disruption of Hedgehog signaling in the results in atresia formation in mice.64 Hedgehogs
are signaling proteins that are generated by the endoderm and act on targets in the
mesoderm. Mouse embryos that are homozygous for mutation in Shh develop a stenosis of
the duodenum and a variant of imperforate anus, both of these defects fall within the
spectrum of intestinal atresias.63 Finally, it has been shown that mutation of a gene encoding
a transcription factor expressed exclusively in the colonic endoderm (Cdx-2) after
embryonic day 12 in mice also results in atresia formation.64 Taken together, these data
appear to refute the vascular hypothesis and instead point to a disruption in endoderm
development or endoderm to mesoderm signaling as the leading events in atresia formation.

A New Round of Questions
The accumulating evidence favoring a disruption in endoderm development as the leading
event in atresia formation raises a number of important questions. First, when do atresias
occur? Second, what genes are involved? Third, what are the downstream morphogenetic
events that result in the improper development of the affected intestinal segment? Finally,
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what do these defects reveal about the normal processes of intestinal growth and
development?

Based on data from mouse models, intestinal atresias begin forming very early in
development between E10.5 and E12.5 (the equivalent of days 33–48 in humans); however,
the likelihood of demonstrating similar timing of these events in humans either from existing
embryo collections or with the current prenatal imaging technologies seems remote at best.
The animal models implicate disruptions in several molecular pathways in atresia formation,
including the Fgfs and the Hedgehogs. Encouragingly, work in humans has demonstrated
that mutations in the Fgfr2 coding region are associated with duodenal stenosis.65 Work in
mice has demonstrated that mutations in a number of members of the Hedgehog signaling
pathway genes (Gli-1, Gli-2, Gli-3, Ihh, and Foxf1) do not result in intestinal atresias but in
some cases can cause variations in imperforate anus.63,66 These results suggest that
formation of atresias may require disruptions of other signaling cascades in addition to the
Hedgehog pathway. Unraveling the cellular events downstream of the initial insult to the
endoderm will be challenging because these events will involve cellular differentiation,
movement, and organization into specific tissue layers. These processes in early intestinal
development have not been well defined.

What atresias may reveal about intestinal development and lengthwise intestinal growth
could be far more profound. In mice, atresias begin forming at E10.5, the beginning of the
most rapid phase in linear intestinal growth which runs from E10.5 to E15.5 and is
equivalent to weeks 4.5 to 12 in the human.61 At the beginning of this phase, the intestinal
length is approximately one third that of the embryo. By the end of this phase, the intestine
is five to six times the length of the embryo.67 During this period, the lengthwise growth of
the intestine outpaces that of the embryo by a factor of nearly 15–1. The characterization of
cellular events during atresia formation should provide critical insight into normal intestinal
development during this most rapid phase of lengthwise growth. These insights will be
essential if we are to develop much needed novel therapies to stimulate lengthwise intestinal
growth for some 30,000 patients in the U.S.A. with intestinal failure.
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Fig. 1.
Atresia of the mid-ileum resulting from an adhesive band and subsequent volvulus. Proximal
and distal limbs are indicated. Adhesive band is marked by a white arrow. The volvulized
segment of the bowel is indicated by the white arrowhead
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Fig. 2.
Graph of the incidence intestinal atresia versus allelic incidence of factor V Leiden
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Fig. 3.
Graph of the incidence intestinal atresia versus factor allelic incidence of R353R mutation
for factor VII
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Fig. 4.
Atresias range in severity from a segmental narrowing or stenosis of the intestine to much
more severe defects where there is an absence of a segment of the intestine and its blood
supply. They are categorized based on increasing severity of the defect determined by three
factors: (1) loss on intestinal tissue, (2) disruption of the accompanying intestinal blood
supply, and (3) number of defects present. Type I atresias are a defect in which the intestinal
mesoderm remains in continuity, but the lumen is obstructed by a diaphragm of tissue. In
some cases, there is a small central opening, which allows for the restricted passage of
contents. This variant includes the defect known as intestinal stenosis. Type II atresias are a
defect wherein a small solid core of tissue connects the proximal and distal portions of the
intestine; the core of tissue entirely lacks a lumen. In type IIIa atresias, the affected segment
of intestine disappears and a V-shaped defect is visible in the adjacent mesentery or blood
supply to the intestine. Type IIIb defects have an extensive gap in the blood supply between
the proximal and distal limbs in intestine and they are frequently referred to as “apple peel
defects” or “Christmas tree defects” because the distal limb of the bowel coils around its
own mesentery. Type IV atresias have multiple points of interruption in the intestine, but the
intestinal mesentery remains largely intact
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Table 1

Incidence of intestinal atresias versus allelic incidence of factor V Leiden

Region/country Incidence of small intestine atresia Allele frequency (%) of factor V Leiden

1 Spain (2001–2005) 0.57 3.33

2 Ireland (1995–2005) 0.86 6.95

3 Norway (1974–2005) 0.9 3.7

4 Chile (2002–2005) 0.95 2.5

5 Hungary (2001–2005) 1.03 4.9

6 UK 1.04 3.61

7 Finland 1.12 4.2

8 USA–Utah (2001–2005) 1.32 4.2

9 Italy (ISMAC) (2001–2005) 1.5 2

10 N. Netherlands (1985–2005) 1.62 2.9

11 Wales 1.84 4

12 Slovak (1995–2005) 2.02 4

13 New Zealand (2001–2005) 2.27 3.8

14 Germany (Northeastern) 2.29 7

15 Sweden (2001–2005) 2.71 7.8

16 Czech Republic (1995–2002) 2.81 5.1

17 Saudi Arabia 2.88 1.3

18 Australia 3.14 3.6

19 South America (2001–2005) 3.2 1.6

20 Canada 3.84 5

21 Japan (2001–2005) 6.63 0

ICBDSR International Clearinghouse for Birth Defects Surveillance and Research
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Table 2

Incidence of Intestinal atresia versus allelic incidence of R353R mutation for factor VII

Region/country Incidence of small intestine atresia Allele frequency (%) of factor V Leiden

1 Spain (2001–2005) 0.57 3.33

2 Norway (1974–2005) 0.9 3.7

3 Chile (2002–2005) 0.95 2.5

4 UK 1.04 4.4

5 USA–Utah (2001–2005) 1.32 4.2

6 Italy (ISMAC) (2001–2005) 1.5 2

7 N. Netherlands (1985–2005) 1.62 2.9

8 Wales 1.84 4

9 Slovak (1995–2005) 2.02 4

10 New Zealand (2001–2005) 2.27 3.8

11 Germany (Saxony) 2.29 8

12 Sweden (2001–2005) 2.71 7.8

13 Saudi Arabia 2.88 2.5

14 Australia 3.14 3.6

15 South America (2001–2005) 3.2 1.6

16 Canada 3.84 5

ICBDSR International Clearinghouse for Birth Defects Surveillance and Research
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