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Abstract
Theoretical work focused on microsatellite variation has produced a number of important results, including the expected
distribution of repeat sizes and the expected squared difference in repeat size between two randomly selected samples. How-
ever, closed-form expressions for the sampling distribution and frequency spectrum of microsatellite variation have not been
identified. Here, we use coalescent simulations of the stepwise mutation model to develop gamma and exponential approx-
imations of the microsatellite allele frequency spectrum, a distribution central to the description of microsatellite variation
across the genome. For both approximations, the parameter of biological relevance is the number of alleles at a locus, which
we express as a function of θ, the population-scaledmutation rate, based on simulated data. Discovered relationships between
θ, the number of alleles, and the frequency spectrum support the development of three new estimators of microsatellite θ.
The three estimators exhibit roughly similar mean squared errors (MSEs) and all are biased. However, across a broad range
of sample sizes and θ values, the MSEs of these estimators are frequently lower than all other estimators tested. The new
estimators are also reasonably robust to mutation that includes step sizes greater than one. Finally, our approximation to the
microsatellite allele frequency spectrum provides a null distribution of microsatellite variation. In this context, a preliminary
analysis of the effects of demographic change on the frequency spectrum is performed. We suggest that simulations of the
microsatellite frequency spectrum under evolutionary scenarios of interestmay guide investigators to the use of relevant and
sometimes novel summary statistics.
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Introduction
Microsatellite data are commonly employed in modern
methods of population genetic inference. Their use in this
context is recommended by several advantageous proper-
ties, including high mutation rates that facilitate inference
on very recent events and relative ease of data acquisi-
tion in nonmodel organisms. In addition, some microsatel-
lites may be targets of natural selection (e.g., Rockman and
Wray 2002; Fondon andGarner 2004; Hammock and Young
2005; Vinces et al. 2009; Kozlowski et al. 2010). Both the
microsatellite-based inference and the detection of func-
tional microsatellites should benefit from an improved un-
derstanding of expected patterns of neutral microsatellite
variation. For example, the equilibrium frequency spectrum
of single nucleotide polymorphisms (SNPs)provides thenull
distribution for several influential tests for natural selec-
tion (Tajima 1989; Fu and Li 1993; Fay and Wu 2000). This
suggests that the microsatellite frequency spectrum might
prove similarly useful in a variety of inferential contexts.
However, theoretical work has not produced a microsatel-
lite analog to the SNP frequency spectrum.

The Microsatellite Allele Frequency Spectrum
To explore equilibrium expectations of microsatellite data,
a mathematical model of microsatellite evolution is first
required. Such a model enables forward and backward sim-
ulation of data as well as derivation of theoretical formulas.

First proposed byOhta andKimura (1973) for allozyme vari-
ation, the stepwise mutation model (SMM) has since been
co-opted as a common model of microsatellite evolution.
The SMM posits that each mutation at a microsatellite lo-
cus is equally likely to increase or decrease repeat number
by one step. Complications such as multistepmutation and
biases in the direction of mutation are not incorporated in
the SMM, though empirical evidence supports their occur-
rence (DiRienzo et al. 1994; Rubinstein et al. 1995; Ellegren
2000; Xu et al. 2000).

Despite its relative simplicity, the SMM leads to patterns
of variation that are more difficult to interpret than those
of sequence data. Most importantly, recurrent mutation at
a microsatellite locus generates homoplastic alleles that are
identical by state but not identical bydescent. This contrasts
with sequence evolution under the infinite alleles (Kimura
and Crow 1964) and infinite sites (Kimura 1969) models,
where eachSNPreflects the underlying genealogywithcom-
plete fidelity. Unlike microsatellites, closed-form solutions
for the sampling distribution and allele frequency spec-
trum of SNPs quickly followed the introduction of the mod-
els that described their evolution (Ewens 1972; Watterson
1975).

Nevertheless, a number of important analytical results
have been obtained for microsatellites. Moran (1975)
showed that under the SMM the ordered distribution of
allele frequencies at a locus, {pi} = . . . , p2, p3, p4, . . .,
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does not have a limiting distribution. Mean allele type
changes with time and {pi}moves up and down the i axis.
However, if mean allele type is set to size zero and other
types are adjusted accordingly, {pi} has a symmetric expo-
nential form at equilibrium (Beder 1988; Valdes et al. 1993)
and someof itsmoments have limitingdistributions (Moran
1975). The moment Cj = E [

∑
i pi pi+j ], in particular, has

been investigated in detail and specifies the probability that
two randomly chosen alleles are separated by j steps (Ohta
and Kimura 1973; Brown et al. 1975; Moran 1975). Numer-
ous studies have explored the relationship between diver-
gence time and genetic distance at a microsatellite locus,
leading to the important result that this relationship is linear
for certain genetic distances (Goldstein et al. 1995a,1995b;
Zhivotovsky and Feldman 1995; Sun et al. 2009). Pritchard
and Feldman (1996) investigated the divergence measure s ,
which is the difference in repeat number between two indi-
viduals, providing formulas for the expected value of s2 and
its variance under a variety of conditions including struc-
tured and bottlenecked populations.

Despite these and other theoretical advances, a closed-
from solution for the microsatellite frequency spectrum re-
mains unknown. In contrast to the relatively well-studied
frequency distribution of allele types at a single locus
(the previously described {pi}), the microsatellite allele
frequency spectrum (the frequency distribution of allele
frequencies across the genome) has received little analyt-
ical attention. Kimura and Ohta (1975, 1978) provided a
frequency spectrum for alleles evolving under the SMM,
which they noted as possessing high frequencies of low-
frequency alleles compared with the infinite sites model.
However, their formula was derived under the assump-
tion of small θ. This assumption is violated by the highly
mutable microsatellites that are commonly analyzed. Re-
cently, using both theory and empirical microsatellite data,
Rosenberg and Jakobsson (2008) demonstrated the tight
correspondence between the expected homozygosity and
the frequency of the most frequent allele. This impor-
tant relationship is a fundamental characteristic of the mi-
crosatellite frequency spectrum. Yet, a broadly applicable
function for the allele frequency spectrum itself remains
unavailable.

Estimating θ
Existingmethods for estimating the scaledmutation param-
eter (θ = 4Neμ, where Ne is effective population size and
μ is the per-locus mutation rate) exhibit variable perfor-
mance. For example, two moment estimators of θ are easily
calculated from summary statistics. The first is

θ̂AS = 2VAS, (1)

where VAS is variance in allele size (Moran 1975; Wehrhahn
1975). θ̂AS exhibits exorbitant variance (Xu and Fu 2004) but
is unbiased and frequently employed in empirical studies.
The second moment estimator is

θ̂H = 0.5

(
1

H 2
− 1

)
, (2)

where H is the unbiased estimate of homozygosity (Ohta
and Kimura 1973; Kimmel et al. 1998). Though biased, θ̂H
exhibits considerably reduced error relative to θ̂AS (Roy-
Choudhury and Stephens 2007). In addition to moment
estimators, several likelihood and Bayesian approaches to
the estimation of microsatellite θ have been implemented
(Nielsen 1997; Wilson and Balding 1998; Stephens and
Donnelly 2000; Beerli and Felsenstein 2001; RoyChoudhury
and Stephens 2007). These methods use more of the data
and require increased computation time.

Here, we report our approximate approach to deriving
the microsatellite allele frequency spectrum and three new
estimators of θ. We first develop a gamma approximation
to the microsatellite allele frequency spectrum based on
coalescent simulations. In the course of its development,
we note the fundamental interrelationshipof the frequency
spectrum, θ, and na, the number of alleles sampled at a lo-
cus: 1) themicrosatellite frequency spectrumcan be param-
eterized by θ alone, 2) the expected allele frequency of any
frequency spectrum is 1/na, and 3) na may be expressed as
a function of θ. We then map observed na to an estimate of
θ using a simulation-derived formula for na. Two additional
estimators—onebased on observed allele frequencies x and
one based on their mean, x̄—are developed using an expo-
nential approximation to the frequency spectrum. All three
estimators are biased. Despite this bias, across a broad range
of θ values, these new estimators frequently outcompete
existing methods in terms of mean squared error (MSE).
In addition to θ estimation, our gamma approximation of
the microsatellite frequency spectrum may facilitate infer-
ence on other quantities of interest including demographic
parameters.

Methods and Results
We begin by developing approximations to the mi-
crosatellite frequency spectrum, demonstrating the central
parametric role of na to the spectrum. We then move on
to the development of θ estimators and a brief exploration
of demographic change and the microsatellite frequency
spectrum.

The Microsatellite Allele Frequency Spectrum and
Expected Number of Alleles as Functions of θ
Frequency spectrawere generatedby simulating1,000 inde-
pendent samples of 1,000 chromosomes (500 diploid indi-
viduals) each according to the standard coalescent model
(Hudson 1990). We initially examined θ values of 0.8, 10,
50, and 100. For each θ value, we added mutation to each
of the 1,000 sample genealogies. The number of muta-
tions along a single branch was Poisson distributed, with
parameter λ = θt , where t is the branch length in
units of 4Ne generations. Following a symmetrical SMM,
a mutation was equally likely to increase or decrease al-
lele size by one step. For each θ value, allele frequencies
from each of the 1,000 simulated samples were calculated
and added to bins of width 0.001 to produce a frequency
spectrum.
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FIG. 1. The microsatellite allele frequency spectrum. Simulated frequency spectra (open dots) compared with the gamma approximation of the
frequency spectrum (solid lines) and the frequency distribution specified by Kimura and Ohta (1975; dashed lines). θ and sample size, n , are listed
in the legend of each panel. (B ) only shows the exponential approximation (dotted line) for comparison. Note the changes in scale of the x and
y axes in (E ) and (F ).

Each simulated distribution appeared to have an expo-
nential or gamma form (fig. 1; simulated data are open cir-
cles). Based on the observation that E (X )2 and Var(X ) of
each simulated distribution were roughly equal, we first at-
tempted to fit an exponential distribution to the simulated
spectra. In this case, exponential parameter λ = na, the
number of alleles, because E (X ) = 1/λ for an exponen-
tial distribution and mean allele frequency is equal to 1/na.

Using the definition of the density function for an exponen-
tial distribution, the exponential approximation to the mi-
crosatellite frequency spectrum is then

fX (x) = na e
−nax , 0 < x � 1. (3)

The exponential approximation fit simulated frequency
spectra in many respects but did not match simulated
spectra at allele frequencies less than 0.01 (e.g., fig. 1B ,
dotted line).
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In search of a better fit to simulated spectra, wenext tried
the gamma distribution with density function

fX (x) =
βα

Γ (α)
xα−1 e−βx , x � 0,

where Γ (α) is the gamma function,α and β are the shape
and scale parameters, and E (X ) = α/β. Assuming a
gamma distribution and using the definition of mean allele
frequency, x̄ , the expected number of alleles (na) for a locus
is equal to β/α:

x̄ =
1

na
=
α

β
, (4a)

na =
β

α
, (4b)

and the microsatellite allele frequency spectrum with pa-
rameters α and na is approximated by

fX (x) =
(αna)α

Γ (α)
xα−1 e−αnax , 0 < x � 1. (5)

Furthermore, for a given value of θ, na may be approximated
using the ratio of homozygosity to mean allele frequency:

H

x̄
=

(
1√
1+2θ

)
(

1
na

) ,

na =
H

x̄

√
1 + 2θ, (6)

where the expression for homozygosity (H ) is taken
from Kimura and Ohta (1975; eq. 3). Clearly, substitut-
ing 1/

√
1 + 2θ for H reduces (6) to (4a). However, our

goal was to express na as a function of θ. To this end,
we plotted average H/x̄ versus ln(θ) using data sets
simulated under a large number of θ values for n = 25,
50, 100, 150, 200, 250, 500, and 1, 000 and performed curvi-
linear regression (fig. 2A ; 106 simulated data sets per point).
For each value of n , the resulting curve described the ratio
of interest as a function of θ and

E (na) = (c0 + c1ln(θ) + c2ln(θ)
2)
√
1+ 2θ, (7)

where the coefficients c0, c1, and c2 are specific to n and
listed in supplementary table 1, SupplementaryMaterial on-
line. Figure 2B is based on the same simulated data as figure
2A ; it plots E (na) versus θ for a variety of n . Independent
simulations of na for a variety of θ and n confirmed that the
curves based on (7) and depicted in figure 2B are predic-
tive of E (na). Figure 2 also illustrates the intuitive result that
fewer unique alleles are uncovered with each doubling of
sample size. In particular, the n = 500 and n = 1, 000 lines
are nearly coincident. It follows that na (n=1,000) ≈ νa for all
values of θ simulated here, where νa is the number of alleles
in the population rather than the sampled number of alleles.

Finally, to express the microsatellite frequency spectrum
as a function of θ only, it was necessary to find the relation-
ship between θ and the shape parameter, α. Using (7) and
the results of independent simulations, for each value of θ,

we found the value of α that minimized the difference be-
tween the frequency of x = 0.001 simulated alleles and the
frequency predicted by the approximation. We then plot-
ted the best values of α versus ln(θ) for a variety of n and
fit a line with formula

α = a0 + 0.0875 ln(θ). (8)

Intercept a0 is specific to n and listed in supplementary
table 1, Supplementary Material online. A final formula-
tion of the microsatellite frequency spectrum is obtained
by applying n -specific versions of equations (7) and (8) to
equation (5).

Next, we examined the correspondence between the
gamma approximation to the frequency spectrum and em-
pirical spectra. When multiplied by δx = 0.001 (simulated
spectra were generated using bins of this width when n =
1, 000), the gamma approximation of the microsatellite fre-
quency spectrum provided excellent fit to frequency spec-
tra simulated with n = 1, 000 (fig. 1A–D , solid lines). We
also observed good agreement between the gamma approx-
imation and empirical spectra for other sample sizes (fig. 1E ,
n = 100 and fig. 1F , n = 25). For comparison, the distribu-
tion specified by equation (15) of Kimura and Ohta (1975)
fit the simulated data poorly for large values of θ (fig. 1,
dashed lines). It is important to emphasize that the spectra
shown in figure 1 are expected forms averaged over many
thousands of homogeneous loci. As evident in figure 1A–D ,
a predominant feature of the microsatellite frequency spec-
trum is that the frequencies of low-frequencyalleles increase
greatly with θ, whereas alleles with frequencies >0.20 be-
come extremely rare. One exception to this general trend is
that very low θ values produce an abundance of the most
rare alleles (allele frequencies� 0.01; fig. 1A ). Although the
distributions presented in figure 1 do not integrate to ex-
actly 1 on the interval (0, 1], they are very nearly 1 and are
therefore good approximations of probability distributions.
Finally, given frequency spectrum f (x), the probability that
a randomly drawn allele will have a frequency on the inter-
val [x , x + δx ) is equal to xf (x)δx (Ewens 1972). Plotting
this quantity against allele frequency, using the gamma
approximation for f (x), clearly demonstrates the effect of
increasing θ on microsatellite variation (fig. 3).

Estimation of θ Using the Number of Alleles
Sampled, na
Equation (7) may be used to compute the expected na for
any value of θ. An observed na at a locus may then be
matched to the most likely value of θ—an estimate that
we refer to as θ̂NA. Although it seems self-evident to use
the version of equation (7) specific to the actual sample
size (fig. 2B ; supplementary table 1, Supplementary Ma-
terial online), we observed that this practice resulted in
large inflated error (supplementary table 2, Supplementary
Material online). An illustration of why this might be the
case is presented in supplementary figure 1, Supplementary
Material online. Unfortunately, the identity of the best
regression curve to use for estimation depends on the
true value of θ (supplementary table 2, Supplementary
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A B

FIG. 2. The microsatellite sampling distribution. (A ) Average value of H/x̄ versus θ for seven different sample sizes. Each point represents the
average of 106 simulations. Dashed lines are second-order curvilinear regressions. (B ) The expected number of alleles E (na) versus θ for five different
sample sizes. Curves were derived from the same simulated data as in (A ), using the formula E (na) = H

√
1+ 2θ/x̄ .

Material online), which is obviously unknown in practice.
We decided that the most practical course was to use the
version of equation (7) specific to n = 1,000, which yields
estimates relatively low in error regardless of n or θ. It is
worth noting that the only estimates of θ possible are those
that yield near-integer values whenplugged into (7)because
observed na is itself an integer. We also note that simu-
lated values of na may be used to place confidence intervals
on θ̂NA.

Estimation of θ Using the Vector of Sampled Allele
Frequencies, x
Given a value of θ, the probability of observing an allele fre-
quency in the interval (a , b ] is found by taking the definite

FIG. 3. For three values of θ, plots of the expression xf (x)δx , which
represents the probability that a randomly drawn allele will have a fre-
quency in the interval [x , x+δx ). Here, f (x) is our gamma approxima-
tion of themicrosatellite allele frequency spectrum. The jaggedness of
the plots at higher allele frequencies results when x is increasing but
f (x) is the same for multiple, sequential values of x .

integral of fX(x), which is the exponential (3) or gamma (5)
approximation to the frequency spectrum:

Pr(a � x � b ) =

∫ b

a
fX (x)dx , 0 < x � 1.

If 1) allele frequencies were independent, 2) sampled allele
frequencies were the actual allele frequencies, and 3) the ob-
servedallele typeswere the only types present in thepopula-
tion, we could define the likelihood of observed allele counts
as multinomial

S (θ) =

(
n !

n1!n2!, . . . , nk !

)
xn11 xn22 · · · xnkk

×
k∏

i=1

Pr(a � xi � b ), (9)

where k is the number of alleles sampled, xi is the fre-
quency of the i th allele, and ni is the count of the i th allele.
Clearly, none of the three assumptions hold for real samples,
and S (θ) is therefore not the likelihood of observed allele
counts. However, we suspected this statistic might still be
useful in the estimationof θ because it directly incorporates
knowledge of the frequency spectrum. The interval of inte-
gration defined by a and b was centered on the observed
frequencywithwidth 1/n . This interval reflects the fact that
observed allele frequencies are necessarily multiples of 1/n .

The frequency spectrum–based estimate (θ̂FS) was iden-
tified by employing (9) in a grid search of potential θ val-
ues. θ̂FS was simply the θ value that maximized S (θ). In this
maximization procedure, the multinomial coefficient in (9)
is a constant for each value of θ tested and may be ignored.
Thus, S (θ) in this context is more simply expressed as:

S (θ) ∝ Pr(x) ≈
k∏

i=1

Pr(a � xi � b ). (10)

We used both approximations to the frequency spec-
trum to estimate θ in this way. Despite its relatively poor
fit to simulated spectra, we found that the exponential
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approximation (3) produced more accurate estimates and
therefore only report values of θ̂FS specific to the exponen-
tial approximation, which we refer to more specifically as
θ̂EFS. An illustration of why use of the exponential approx-
imation may yield slightly better performance is presented
in supplementary figure 2, SupplementaryMaterial online.

Estimation of θ Using the Mean of Sampled Allele
Frequencies, x̄
Replacing the quadratic portion of equation (7) with a con-
stant value of 2, and using the identity in (4a), we solved
(7) for θ to obtain an estimator in terms of mean allele
frequency:

θ̂x̄ =
1

8x̄ 2
− 1

2
, (11)

where x̄ is the mean of sampled allele frequencies and θ̂x̄
is the estimate obtained by simply supplying the observed
value of x̄ . For a particular value of n , the constant value
used is only exact for a specific value of θ. Despite the inac-
curacy introduced by the use of this constant, θ̂x̄ fares well
across a broad range of θ.

Estimation by na, x, and x̄ Compared with Other
Estimators
We compared the performance of θ̂NA, θ̂EFS, and θ̂x̄
with a variety of existing estimators. 40,000 simulated
data sets were generated for each combination of θ
(1, 5, 10, 25, 50, 75, and 100) and n (25, 50, 100, 150, 200, and
250). In addition to θ̂NA, we estimated θ for each data
set using θ̂AS, θ̂H, and a form of the homozygosity esti-
mator reported to correct its bias (θ̂F ; Xu and Fu 2004,
eqs. 7 and 8). We also estimated θ on the first 150 simu-
lated data sets for a smaller set of θ values using a prod-
uct of approximate conditionals (PAC) approach (Roy-
Choudhury and Stephens 2007) and the full-likelihood
Markov chain Monte Carlo approach implemented in
MIGRATE (Beerli and Felsenstein 2001). PAC (θ̂PAC) and
MIGRATE (θ̂MIG) estimates were obtainedusing default set-
tings with the following exceptions: 1) θ̂PAC was the aver-
age estimate across ten permutations, rather than one, and
2) in response to the observation that MIGRATE was per-
forming poorly on data sets with high θ and/or n , burn-
in was increased to 10,000 and the number of short and
long chains was increased to 100 and 25, respectively, for all
MIGRATE runs. Comparisons between θ̂NA, θ̂PAC, and θ̂MIG

were based on 150 simulated data sets due to the greater
run time required to obtain MIGRATE and PAC estimates.
Finally, results indicated that θ̂NA and θ̂PAC exhibited biases
that were roughly equivalent in magnitude but opposite in
sign. Therefore, we also made comparisons to an estimator
that was simply the average of θ̂NA and θ̂PAC: θ̂NA+PAC.

For each estimation method and each tested combina-
tion of θ and n , we used the i estimates to calculate Var(θ̂),
bias

Bias(θ̂) =
1

i

∑
i

(θ̂ − θ),
and MSE

MSE(θ̂) = Variance(θ̂) + Bias(θ̂)2.

To eliminate the possibility that our formulation of
the microsatellite frequency spectrum was specific to our
simulation algorithm, we performedmany of the same com-
parisons using test data sets generatedwith the programms
and the accessory program microsat (Hudson 2002). This
alternative approach produced nearly identical results. Ad-
ditionally, forward-in-time simulations (2Ne= 10, 000)
starting with an invariant microsatellite locus produced
equilibrium values of νa for each tested value of θ near
identical to those expected under (7), n = 1, 000 (data not
shown).
θ̂x̄ , θ̂NA, and θ̂EFS consistently underestimated the true

value of θ by roughly equivalent amounts (table 1). In the
case of small n and large θ, this bias was very large: as
much as −78% of true θ for θ̂x̄ at θ= 100 and n = 25.
With the exception of θ̂x̄ , at higher θ values, the lowest ob-
servedMSE of each estimator occurredwhen n� 150 (table
1). Again, results in supplementary table 2, Supplementary
Material online indicate that an optimal version of (7) ex-
ists but depends on the true value of θ and n . Because
users of our methods would not know the true value of θ,
we reiterate our choice to only present results that use the
n = 1, 000 version of (7). This is a safe choice, particularly
for n � 250, but does not always produce the best pos-
sible performance (supplementary table 2, Supplementary
Material online).

Assuming the n = 1, 000 version of (7) is used, all three
of our estimators are statistically inconsistent: their vari-
ances increase with sample size. We explored the possibility
that subsampling might yield statistically consistent esti-
mates. Specifically, for n � 100, we generated 100 random
subsamples of n = 100 each, estimated θ on each of the
subsamples, and retained the average of these estimates
as the final estimate. This method can lead to significant
improvements in MSE for our estimators (supplementary
table 3, SupplementaryMaterial online). However, whether
or notMSE is improved by the subsamplingmethod is again
dependent on the (unknown) true value of θ. For large
values of θ, subsampling can in fact lead to large increases in
MSE of θ̂x̄ (supplementary table 3, SupplementaryMaterial
online).

Despite statistical inconsistency and large bias when n
was small, all three of our proposed estimators exhibited
much lower MSE than θ̂AS, θ̂H, or θ̂F (table 1). θ̂NA and θ̂EFS
produced nearly identical results across all combinations
of θ and n . θ̂x̄ exhibited somewhat different behavior, fre-
quently achieving the lowest MSE of any estimator listed in
table 1 (italic) and demonstrating a less rapid decay of vari-
ance with increasing sample size. Of the remaining three es-
timators presented in table 1, θ̂F exhibited the lowest MSE.
As reported previously (Xu and Fu 2004), this estimator cor-
rects the bias of θ̂H, though it does begin to exhibit minor
bias when θ � 50 and n � 50. θ̂AS and θ̂H exhibit extraor-
dinary error when θ is large and θ̂H appears truly biased as
its decline in bias seems to plateau at n � 150 (table 1).

For θ = 5 and regardless of n , θ̂NA also exhibited lower
MSE than θ̂PAC or θ̂MIG (table 2). For θ = 10, 50, 100 and
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Table 1.MSE and (Bias) of Six θ Estimators for a Variety of θ Values and Sample Sizes (n ). Results Presented in Each RowAre Based on 40,000
Simulated Data Sets.

θθθ n θ̂θθθθθθθθx̄ θ̂θθNA θ̂θθEFS θ̂θθAS θ̂θθH θ̂θθF

1 25 0.58 (−0.48) 0.52 (−0.45) 0.58 (−0.48) 1.40 (−0.05) 3.46 (0.63) 1.12 (−0.02)
50 0.60 (−0.20) 0.58 (−0.18) 0.57 (−0.31) 1.91 (0.09) 2.79 (0.60) 1.09 (0.03)
100 0.66 (−0.08) 0.66 (−0.06) 0.62 (−0.18) 1.57 (0.01) 2.52 (0.58) 1.06 (0.05)
150 0.73 (0.03) 0.75 (0.04) 0.65 (−0.14) 1.78 (0.06) 2.57 (0.61) 1.10 (0.08)
200 0.77 (0.09) 0.80 (0.10) 0.66 (−0.14) 1.64 (0.03) 2.41 (0.56) 1.05 (0.05)
250 0.78 (0.09) 0.81 (0.10) 0.68 (−0.11) 1.56 (0.00) 2.40 (0.57) 1.05 (0.05)
500 0.75 (0.10) 0.84 (0.11) 0.69 (−0.07) 1.67 (−0.01) 2.36 (0.55) 1.05 (0.04)

1,000 0.84 (0.20) 0.95 (0.21) 0.74 (−0.01) 1.68 (0.00) 2.32 (0.55) 1.05 (0.05)

5 25 7.63 (−2.19) 7.66 (−2.10) 8.35 (−2.23) 39.26 (0.12) 38.69 (2.26) 15.34 (−0.17)
50 6.34 (−1.38) 6.79 (−1.24) 7.11 (−1.31) 32.09 (−0.11) 27.76 (1.89) 13.64 (−0.03)
100 6.35 (−0.72) 7.45 (−0.51) 7.62 (−0.60) 36.31 (0.03) 23.73 (1.77) 12.90 (0.06)
150 6.66 (−0.36) 8.22 (−0.12) 7.89 (−0.35) 36.25 (0.04) 21.70 (1.68) 12.72 (0.04)
200 6.70 (−0.30) 8.28 (−0.05) 8.38 (−0.22) 32.98 (−0.11) 21.62 (1.68) 12.26 (0.07)
250 7.30 (−0.11) 9.29 (0.17) 8.65 (−0.15) 32.58 (−0.12) 21.04 (1.60) 12.12 (0.02)
500 7.60 (0.06) 11.78 (0.71) 9.95 (0.27) 36.3 (0.08) 21.01 (1.68) 12.11 (0.11)

1,000 8.34 (0.30) 13.33 (0.99) 10.79 (0.48) 35.37 (−0.01) 20.18 (1.57) 11.81 (0.04)

10 25 32.59 (−5.07) 31.68 (−4.80) 32.12 (−4.86) 165.44 (0.25) 142.75 (4.44) 55.97 (−0.20)
50 23.42 (−3.47) 24.23 (−2.98) 24.46 (−3.03) 136.10 (−0.12) 85.93 (3.22) 44.80 (−0.15)
100 21.18 (−2.13) 25.70 (−1.41) 24.95 (−1.42) 160.60 (0.27) 72.54 (3.01) 41.26 (0.07)
150 20.84 (−1.46) 27.45 (−0.61) 26.22 (−0.98) 136.33 (0.04) 66.18 (2.74) 39.16 (−0.04)
200 21.62 (−1.15) 29.80 (−0.24) 27.85 (−0.67) 128.24 (−0.13) 64.86 (2.69) 38.80 (−0.02)
250 22.58 (−0.82) 32.43 (0.15) 28.68 (−0.27) 131.27 (0.01) 63.58 (2.77) 37.94 (0.07)
500 22.92 (−0.66) 37.99 (1.04) 33.26 (0.38) 130.66 (−0.05) 59.94 (2.61) 36.6 (0.00)

1,000 24.72 (−0.14) 43.79 (1.70) 36.86 (0.90) 137.53 (0.03) 60.40 (2.60) 37.17 (0.02)

25 25 260.33 (−15.58) 238.67 (−14.59) 234.44 (−14.43) 903.13 (−0.51) 963.32 (11.19) 370.38 (−0.16)
50 163.59 (−11.14) 146.18 (−9.09) 145.48 (−9.19) 867.12 (0.06) 489.12 (7.71) 256.98 (−0.03)
100 124.27 (−7.50) 134.25 (−4.42) 128.80 (−4.88) 938.10 (0.48) 371.22 (6.47) 216.67 (0.03)
150 114.45 (−6.08) 138.76 (−2.57) 138.17 (−3.07) 728.61 (−0.78) 342.89 (6.22) 205.18 (0.12)
200 113.71 (−5.14) 151.87 (−1.34) 144.97 (−2.31) 759.54 (−0.70) 319.68 (5.74) 196.06 (−0.13)
250 113.93 (−4.53) 161.29 (−0.55) 152.06 (−1.34) 716.11 (−0.94) 310.82 (5.70) 191.16 (−0.08)
500 118.14 (−3.67) 200.4 (1.92) 188.00 (0.88) 803.3 (−0.16) 291.44 (5.44) 182.27 (−0.15)

1,000 122.70 (−2.57) 231.52 (3.42) 210.54 (2.12) 837.15 (−0.04) 288.20 (5.38) 181.82 (−0.13)

50 25 1,276 (−35.26) 1,143 (−33.02) 1,144 (−33.02) 3,393 (−1.18) 4,859 (24.94) 1,712 (1.56)
50 814.2 (−22.04) 650.2 (−22.04) 646.6 (−21.99) 3,412 (−0.53) 1,955 (15.20) 1,040 (0.35)
100 544.0 (−18.87) 464.1 (0.14) 480.7 (−12.08) 3,282 (0.14) 1,380 (12.28) 819.9 (0.14)
150 473.8 (−15.32) 468.6 (−6.75) 491.9 (−7.93) 2,875 (−1.08) 1,195 (10.97) 732.2 (−0.34)
200 460.3 (−13.17) 521.4 (−3.91) 525.6 (−5.34) 3,286 (−0.45) 1,185 (11.13) 733.7 (0.07)
250 438.9 (−11.66) 537.9 (−1.90) 557.9 (−3.56) 2,810 (−1.90) 1,126 (10.61) 704.2 (−0.20)
500 442.4 (−10.17) 719.2 (2.92) 740.5 (2.15) 2,991.4 (−1.15) 1,039.2 (9.85) 663.2 (−0.53)

1,000 452.2 (−7.62) 880.2 (6.62) 867.0 (5.23) 3,114.5 (−0.32) 1,009.8 (9.57) 651.0 (−0.62)

75 25 3,253 (−56.65) 2,926 (−53.59) 2,901 (−53.16) 6,258 (−2.33) 12,403 (40.05) 4,243 (4.26)
50 2,063 (−43.77) 1,582 (−36.35) 1,603 (−36.47) 6,702 (−1.95) 4,415 (23.08) 2,349 (1.11)
100 1,372 (−32.18) 1,032 (−20.95) 1,070 (−20.88) 6,685 (−1.86) 2,963 (17.65) 1,776 (−0.04)
150 1,144 (−26.32) 963.6 (−13.19) 1,043 (−13.37) 6,097 (−2.69) 2,685 (16.67) 1,652 (0.06)
200 1,058 (−22.70) 1,014 (−8.41) 1,106 (−9.36) 5,896 (−2.48) 2,512 (16.05) 1,966 (−0.03)
250 1,010 (−20.38) 1,061 (−5.35) 1,178 (−6.08) 6,154 (−2.06) 2,445 (15.72) 1,537 (−0.06)
500 1,001 (−17.6) 1,560 (3.69) 1,730 (4.08) 6,914 (−1.61) 2,251 (14.01) 1,456 (−1.03)

1,000 987 (−13.56) 1,917 (9.76) 2,044 (9.32) 6,873 (−1.17) 2,158 (13.80) 1,402 (−0.99)

100 25 6,229 (−78.58) 5,627 (−74.38) 5,673 (−74.72) 10,463 (−4.52) 29,701 (54.50) 7,916 (5.63)
50 4,052 (−62.00) 3,108 (−52.32) 3,155 (−52.07) 11,132 (−2.91) 7,295 (30.00) 4,207 (1.13)
100 2,614 (−46.03) 1,834 (−31.18) 1,918 (−30.66) 10,536 (−4.08) 5,091 (22.38) 3,088 (−0.66)
150 2,116 (−37.60) 1,616 (−20.10) 1,820 (−20.36) 9,971 (−3.81) 4,484 (20.31) 2,805 (−1.18)
200 1,936 (−32.84) 1,664 (−13.86) 1,900 (−13.90) 10,582 (−4.37) 4,391 (20.54) 2,765 (−0.43)
250 1,829 (−28.81) 1,782 (−8.59) 2,024 (−9.51) 11,080 (−2.27) 4,237 (19.86) 2,688 (−0.68)
500 1,782 (−25.50) 2,684 (4.55) 3,213 (7.06) 10,372 (−3.74) 3,298 (18.70) 2,543 (−1.05)

1,000 1,755 (−19.48) 3,475 (13.76) 3,998 (15.26) 11,257 (−1.50) 3,829 (18.55) 2,490 (−0.88)
NOTE.—Values in italic indicate the lowest MSE achieved by any estimate for a particular value of θ.
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Table 2.MSE and (Bias) of Four θ Estimators for a Variety of θ Values and Sample Sizes (n ). Results Presented in Each Row Are Based on 150
Simulated Data Sets.

θθθ n θ̂θθNA θ̂θθPAC θ̂θθMIG θ̂θθNA+PAC

5 25 8.39 (−1.96) 26.05 (1.43) 23.3 (1.10) 12.03 (−0.27)
50 5.85 (−0.88) 15.31 (1.57) 9.17 (−0.10) 7.97 (0.35)

100 7.31 (−0.19) 8.93 (0.98) 13.68 (0.87) 7.09 (0.40)
150 7.42 (−0.13) 7.94 (0.69) 14.21 (1.69) 6.77 (0.28)
200 7.94 (−0.09) 8.45 (0.62) 13.85 (0.89) 6.42 (0.27)
250 8.40 (0.20) 9.38 (0.82) 16.96 (1.47) 7.84 (0.51)

10 25 34.03 (−5.03) 66.32 (1.4) 52.46 (0.82) 31.97 (−1.82)
50 24.46 (−2.95) 45.41 (1.64) 32.25 (−0.04) 25.72 (−0.66)

100 25.64 (−1.03) 37.16 (2.09) 37.82 (1.05) 23.16 (0.10)
150 31.87 (−0.78) 27.70 (0.76) 23.94 (0.49) 24.41 (−0.01)
200 29.33 (0.55) 18.50 (0.15) 19.83 (0.20) 20.70 (−0.20)
250 25.45 (0.49) 20.36 (0.57) 30.3 (1.07) 19.46 (0.04)

50 25 1,114.74 (−32.49) 1,712.82 (13.51) 488.7 (−14.09) 607.43 (−9.49)
50 649.48 (−21.03) 968.20 (8.06) 430.64 (−11.21) 487.37 (−6.48)

100 408.12 (−11.97) 476.20 (4.38) 400.5 (−10.27) 316.02 (−3.79)
150 560.78 (−4.52) 577.09 (6.90) 357.0 (−9.50) 462.54 (1.91)
200 533.72 (−3.83) 330.28 (0.66) 377.03 (−8.98) 361.12 (−1.58)
250 589.59 (0.94) 348.02 (4.26) 318.83 (−8.25) 369.25 (2.60)

100 25 5,831.24 (−75.84) 2,634.15 (3.88) 2,590.0 (−47.01) 2,144.69 (−35.98)
50 2,976.69 (−51.15) 3,703.58 (21.75) 1,936.0 (−37.11) 1,546.09 (−14.70)

100 1,805.86 (−31.91) 2,185.54 (11.69) 2,206.9 (−41.38) 1,215.98 (−10.10)
150 1,548.14 (−18.04) 1,991.27 (10.52) 1,407.0 (−29.66) 1,293.62 (−3.76)
200 1,564.57 (−17.18) 1,528.86 (1.52) 1,641.5 (−32.87) 1,218.80 (−8.15)
250 1,442.96 (−11.61) 1,240.68 (3.74) 1,404.3 (−29.08) 970.37 (−3.94)

n � 100, θ̂NA showed lower MSE than θ̂PAC, whereas for
n � 100, θ̂NA exhibited comparableMSE to that of θ̂PAC and
θ̂MIG (table 2). As mentioned above, θ̂NA and θ̂PAC exhibited
roughly symmetrical biases. The performance of both esti-
mators was frequently improved considerably by averaging
them. For many combinations of θ and n , θ̂NA+PAC showed
less (sometimes substantially so)MSE that any individual es-
timation method (table 2). It is worth noting that although
θ̂NA and θ̂H also share symmetrical biases (table 1), the aver-
age of their estimates did not result in decreased MSE.

Multistep Mutation and θ Estimation
The evolution of many microsatellite loci likely includes
multistep mutations, a violation of a key SMM assump-

Table 3. Effects ofMultistepMutations on θEstimation. MSE based on
10,000 Independent Estimates (θ = 10 and n = 50, 250), Except for
θ̂PAC and θ̂MIG Based on 150 Independent Estimates. Data Sets Were
Modeled Assuming the GSM with Probability of a Single-Step Muta-
tion, P = 0.63. Values from SMM Simulations Are Taken from Tables 1
and 2 and Listed for Comparison.

n = 50 n = 250
Method GSM SMM GSM SMM

θ̂x̄ 34.8 23.4 213.5 22.6
θ̂NA 61.2 24.2 388.9 32.4
θ̂EFS 60.2 24.4 284.62 28.7
θ̂AS 4,740.0 136.1 4,265.1 131.3
θ̂H 390.4 85.9 302.5 63.6
θ̂F 163.9 44.8 156.4 37.9
θ̂PAC 416.0 45.4 148.5 20.7
θ̂MIG 180.8 32.3 104.7 30.3

tion (DiRienzo et al. 1994). It was therefore important to
determine how multistep mutation affected θ̂x̄ , θ̂NA, and
θ̂EFS in comparison to other estimators. Under the gener-
alized stepwise model (GSM), microsatellite mutations are
still Poisson distributed, but mutations of >1 step are al-
lowed. One-hundred and fifty data sets of θ = 10 and
n = 50 or 250 were simulated following a GSM. Step size
was drawn from a geometric distribution with parameter
P = 0.63, which specifies the probability of a single-step
mutation. Although data suggest P is greater than 0.63 for
most loci (DiRienzo et al. 1994; Dib et al. 1996), we chose a
small value of P in order to ensure frequentmultistepmuta-
tions andcleardeparture fromSMMevolution. As expected,
data setsmodeled under the GSMproduced estimates with
greater MSE and larger positive bias than did comparable
SMM data sets (table 3). θ̂x̄ and θ̂MIG were least affected for
n = 50 and n = 250, respectively. The change in mu-
tational model had the greatest effect on θ̂AS (table 3). Al-
though MSE for θ̂x̄ was 1.5 and 9.5 times greater under the
GSM than under the SMM for n = 50 and 250, respectively,
θ̂AS MSE increased by>30 times regardless of sample size.

Demographic Change and θ Estimation
We were interested in quantifying the effect of nonequilib-
rium conditions on all θ estimators. We employed a model
of demographic change in which a population undergoes
an instantaneous bottleneck followed by an exponential
growth until the present. Four parameters characterize this
model (fig. 4): tb, the time of the bottleneck; r , the rate of
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exponential growth; N0, the current census population size;
and Na, the prebottleneck census population size. During
the period of exponential growth, the size of the popula-
tion g × 4N0 generations ago is specified by the equation
N (g) = N0 e

−rg . This general demographic scenario is com-
monly modeled because it likely captures the population
dynamics exhibited by numerous species including humans
(Slatkin and Hudson 1991).

We investigated four distinct instances of the bottleneck-
expansion model (fig. 4A–D ). In all four scenarios, N0 =
10, 000, μ = 0.00025, and present-day θ = 10. In scenario I
(sustained exponential growth, moderate bottleneck), tb =
2, 500 generations, Na = 10, 000, and r = 36 (fig. 4A ).
In scenario II (sustained exponential growth, severe bottle-
neck), tb = 2, 500 generations, Na = 10, 000, and r =
110 (fig. 4C ). In scenario III (recent, mild bottleneck), tb =
100 generations,Na = 10, 000, and r = 110 (fig. 4E ). Finally,
in scenario IV (recent bottleneck of intermediate strength),
tb = 100 generations, Na = 100, 000, and r = 110
(fig. 4G ).

For each scenario, we calculated the inbreeding effective
population size, N i

e , using the formula 1
N i
e
= 1

t

∑t
i=1

1
Ni
,

where t is the number of past generations examined. This
accounting of the current effective population size incor-
porates past changes in census population size. For all
scenarios, we set t = 40, 000, which was four times the cur-
rent census population size. The true contemporary value
of θT = 4N i

eμ was then calculated for each scenario: 8.52,
1.03, 9.99, and 97.44 for scenarios I, II, III, and IV, respectively.
Thus, the different demographic scenarios produced widely
different effects on the true value of contemporary θ. If we
consider that 4N0μ = 10 for all scenarios, we see that the
contemporary θ was little affected by the small period of
time during which N < 10, 000 under scenario III. Con-
versely, the large amount of time spent at N = 100, 000
under scenario IV increased contemporary θ dramatically
despite much smaller values of N in recent generations.

To test the effect of demographic change on θ estima-
tion, 150 data sets were produced (n = 250) for each de-
mographic scenario.We usedms (Hudson 2002) to simulate
genealogies and a custom-written program to apply muta-
tion. PAC and MIGRATE run conditions were the same as
above. In all cases, MSE and bias were calculated by com-
paring estimated θ to the values of θT calculated above. In
general, MSE and bias associated with estimates of θT were
similar to those observed when a true θ of similar mag-
nitude was estimated under a model of constant popula-
tion size (table 4). In fact, in many cases, it appeared that
MSE actually improved under scenarios of demographic
change (e.g., compare table 4 scenario I results with those for
θ = 1.0,n = 250 in table 1), although thismay simply result
from sampling error; the results in table 4 are based on 150
replicates, whereas those in table 1 are based on 40, 000
replicates.

Demographic Change and the Frequency Spectrum
We also conducted a preliminary examination of the effect
of demographic change on the frequency spectrum. Using

A

C

E

G

B

D

F

H

Na = 10,000

tb = 2,500 
        gens.

r = 36

tb = 2,500 
        gens.

r = 110

Na = 10,000

Na = 10,000

r = 110

tb = 100 
       gens.

r = 110

tb = 100 
       gens.

Na = 100,000

FIG. 4. Effect of demographic change on the microsatellite frequency
spectrum. The demographic scenario modeled (left column) and re-
sulting change to the microsatellite frequency spectrum (right col-
umn) for scenarios I (A and B ), II (C and D ), III (E and F ), and IV (G
and H ). Difference plotted on the y axis is the nonequilibrium spec-
trumminus the spectrum under constant population size. All spectra
were each based on 10,000 simulations of n = 1, 000 data sets. Na,
ancestral census population size; r , rate of exponential growth; and tb,
number of generations ago when the bottleneck occurred.

the same scenarios specified in the Demographic Change
and θ Estimation section, 10,000 independent loci (n =
1, 000)were simulated for each of the four scenarios. As with
the constant population sizemodel, the resulting data were
pooled to form empirical frequency spectra. We examined
deflections of the frequency spectrum due to demographic
change by comparing nonequilibrium spectra to the spec-
trum expected when population size is constant and θ =
10. We chose this as the null spectrum because for all sce-
narios of demographic change modeled here, 4N0μ = 10.
Panels in the right-hand column of figure 4 plot the average
differences between the nonequilibriumand constant pop-
ulation size (θ = 10) spectra for each of the four scenarios.
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Table 4.Demographic Change and θ Estimation.MSE and Bias (in parentheses) Are Shown. The Scenarios Refer to theHistories of Bottleneck
Followed by Expansion Shown in Figure 4. All Statistics, Except for Those Associated with Constant Population Size, Are Based on Estimates
from 150 Independent Data Sets. Constant Population Size Statistics (θ = 10) Are Drawn from Tables 1 and 2. θT is the True Value of
θ = 4N i

eμ, Where N i
e Was Calculated Based on the Fluctuating Census Population Size of the Past 40,000 Generations.

Model θθθT θ̂θθx̄ θ̂θθNA θ̂θθEFS θ̂θθAS θ̂θθH θ̂θθF θ̂θθPAC θ̂θθMIG

Scenario I 8.52 19.4 (−3.2) 19.8 (−2.5) 20.5 (−2.9) 198.6 (−0.2) 26.4 (−2.3) 28.3 (−3.8) 14.8 (−2.4) 10.6 (−1.6)
Scenario II 1.03 0.69 (0.4) 0.84 (0.4) 0.51 (0.2) 0.34 (−0.4) 0.96 (0.1) 0.62 (−0.3) 1.38 (0.7) 5.99 (2.1)
Scenario III 9.99 20.0 (−1.4) 29.2 (0.11) 27.3 (−0.4) 87.3 (−0.6) 67.2 (2.6) 41.3 (−0.1) 27.7 (1.5) 36.7 (0.7)
Scenario IV 97.4 1,879 (−36.0) 1,453 (−12.9) 1,589 (−9.8) 8,545 (1.8) 3,007 (10.3) 2,059 (−8.4) 1,111.8 (4.8) 1,500 (−31.1)
Constant size 10.0 22.6 (−0.8) 32.4 (+0.2) 28.7 (−0.3) 131 (0.0) 63.6 (+2.8) 37.9 (+0.1) 20.4 (0.6) 30.3 (1.1)

Under scenarios I and II, sustained exponential growth had
the effect of increasing the frequency of very rare alleles
(allele frequency<0.01) anddecreasing the frequency of in-
termediate frequency alleles (0.01 < allele frequency <
0.30). Both these trends were more pronounced in the case
of themore severe bottleneck (scenario II; fig. 4D ). Addition-
ally, the increased rate of exponential growth in scenario II
was associated with a noticeable increase in the frequency
of high-frequency alleles (allele frequency > 0.60; fig. 4D ).
The amplitude of this high-frequency peak increased with
r and became very pronounced between allele frequencies
of 0.90 and 0.99 when r = 1, 000 (data not shown). No
difference was detected between the spectrum under the
constant population size model and the spectrum under
scenario III (fig. 4F ), despite the recent 25% reduction in
population size. The more severe bottleneck of scenario
IV, however, produced a decline in singleton alleles (allele
frequency = 0.001), a dramatic increase in the frequency
of rare-to-intermediate alleles (0.001 < allele frequency
< 0.1), and a decline in intermediate-to-common alleles
(0.1 < allele frequency< 0.5; fig. 4H ).

We calculated three summary statistics for each of the
simulated data sets: 1) na; 2) range, the lowest frequency
subtracted from the highest frequency; and 3) rarest frac-
tion, the fraction of alleles with frequencies <0.05 that
are also <0.01 (e.g., for observed frequencies 0.90, 0.03,
0.02, 0.02, 0.015, 0.005, 0.005, and 0.005, rarest fraction
is 3/7). Based on the observed changes to the frequency
spectrum depicted in figure 4, we suspected the latter
two statistics held potential to diagnose demographic his-
tory. The average values of the three statistics are listed in
table 5.

As figure 1 and supplementary figure 2, Supplementary
Material online make clear, changes to θ alone cause de-

Table 5. Demographic Change and the Frequency Spectrum. Range
Is the Highest Frequency Minus the Lowest Frequency. Rarest Frac-
tion is the Fraction of Alleles with Frequencies �0.05 that Are also
�0.01. All Statistics Listed Are Averaged Across 10,000 Independent
Simulations.

Model na Range Rarest Fraction

Scenario I 7.40 0.43 0.45
Scenario II 4.38 0.71 0.50

Constant size (θ = 1.5) 4.25 0.59 0.46
Scenario III 9.06 0.32 0.40
Scenario IV 23.72 0.14 0.31

Constant size (θ = 89.5) 24.12 0.13 0.35

flections of the frequency spectrum. However, in some cir-
cumstances, itmaybepossible todetect unusual deflections
of the frequency spectrum associated with demographic
change, such as the increase in abundance of high-frequency
alleles under scenario II (fig. 4D ). We recommend isolating
deflections due to demographic change using the follow-
ing simple procedure: 1) simulate data sets using a value of
θ that produces an average na similar to that observed in
the empirical data set, 2) calculate the average range and
rarest fraction from the simulated data, and 3) check for
discrepancies between the simulation summaries and those
calculated from the observed data set. As an example, con-
sider scenarios II and IV for which we provide average val-
ues of summary statistics from data sets simulated with
constant population size and values of θ that produced
na comparable to those under nonequilibrium conditions
(table 5). For scenario IV (strong and recent bottleneck),
the average values of all three summary statistics were
similar to those of data simulated with θ = 89.5 and
constant population size (table 5). On the other hand, de-
spite similarity in na, the average frequency range of sce-
nario II data sets was quite different from that of data sets
simulated with θ = 1.5 and constant population size
(table 5).

Discussion

The Microsatellite Allele Frequency Spectrum
Though the distribution of allele types at microsatellite loci
evolving under the SMM has been investigated in great an-
alytical detail (Moran 1975; Wehrhahn 1975; Brown et al.
1975; Weir et al. 1976; Chakraborty and Nei 1982; Beder
1988), the distribution of allele frequencies has received less
attention. The only available formula for the microsatel-
lite frequency spectrum was derived under assumptions
that limit its application to microsatellite loci with very low
mutation rates (Kimura and Ohta 1975, 1978). We used
coalescent simulation to develop gamma and exponential
approximations to the microsatellite allele frequency spec-
trum under the SMM. Whether exponential or gamma, the
parameter of biological relevance was na, which can be ex-
pressed in terms of θ.

A visual comparison of results from different θ values
in figures 1A–D and 3 as well as supplementary figure 2,
Supplementary Material online demonstrates the pre-
dictable effect of θ on microsatellite variation: as θ in-
creases, low-frequency alleles become very frequent and
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intermediate- to high-frequency alleles become very rare.
Though intuitive, this result is in direct contrast to the un-
folded SNP spectrum in which the ratio of rare to com-
mon alleles remains unchanged as θ increases (Fu 1995).
This fundamental difference between microsatellite and
SNP spectra stems from the different definitions of SNP and
microsatellite polymorphism. Individual SNPs are defined as
biallelic under the infinite alleles and infinite sitesmodels. As
such, SNP θ affects the number of SNPs andnot the number
of alleles at individual SNP loci. The frequencies of derived
alleles, in this case, are mainly a function of age (Kimura and
Ohta 1973) and the time of introduction of neutral SNPs is
random. These facts ensure that the relative proportions of
SNP allele frequencies found in the population remain un-
changed by θ (Fu 1995). On the other hand, an individual
microsatellite is likely to possess a large number of alleles.
As microsatelliteθ increases, density on the frequency spec-
trum begins to pile up at low frequencies due to increasing
number of alleles and their decreasing frequencies.

Comparison of Microsatellite θ Estimators
No estimator compared in our study is superior under all
conditions. For example, though θ̂MIG clearly provides the
best performance when θ = 50, it frequently requires long
(though not prohibitive) computation time and is consis-
tently outperformedby θ̂NAwhen θ = 5 (table 2). Although
under all conditions our three estimators clearly exhibit less
error than the others presented in table 1, θ̂NAoffers variable
competitivenesswith θ̂PAC and θ̂MIG (table 2). Also, although
the estimates θ̂x̄ , θ̂NA, and θ̂EFS demonstrate largely simi-
lar diagnostic statistics, they frequently exhibit their lowest
MSE at different sample sizes when the default n = 1, 000
regression is used (table 1). It is again worth noting that
both the use of other regressions in equation (7) (supple-
mentary table 2, Supplementary Material online) and sub-
sampling (supplementary table 3, Supplementary Material
online) have great potential to improve the accuracy of our
estimators. However, this will be difficult to do in practice
because the efficacy of both these alternate methods is de-
pendent on θ. Nevertheless, if very high values of θ (>50)
can be ruled out, it appears that subsampling is safe and
highly effective in the cases of θ̂NA and θ̂EFS (supplementary
table 3, SupplementaryMaterial online).

We often found that when all estimates based on a sin-
gle data set were compared, the outlier estimate was the
most accurate. This fact discourages the practice of taking
the average of all estimates or discarding outlier estimates.
An exception to this rule is θ̂NA+PAC , which is the average
of θ̂NA and θ̂PAC estimates. More often than not, θ̂NA+PAC
demonstrated lower MSE than all other estimators (table
2). On average, we suggest this compound estimator is the
best option for θ estimationwhen no a priori information is
available regarding the locus in question and n � 100. We
note, however, that θ̂NA+PAC appears to do well merely by
the coincidence of opposite biases and we do not imply any
underlying biological meaning for the good performance of
this estimator.

Ewens (1972) showed that the sampled number of alleles
was a sufficient statistic for SNP θ and that allele frequen-
cies provided no further information in this regard. In an
interesting parallel to this finding, the MSE and bias of θ̂NA
and θ̂EFS are very similar across the range of θ values tested
(table 1). Recall that θ̂NA is based on na alone, whereas θ̂EFS
is based on the number of alleles and their frequencies. Al-
though we make no theoretical claim that na is a sufficient
statistic for microsatelliteθ, our results do suggest that esti-
mation of microsatellite θ is similarly unimproved by allele
frequency information.

As noted by RoyChoudhury and Stephens (2007), θ̂H
consistently outperforms the other moment estimator, θ̂AS
(table 1). Estimator θ̂F , a regression corrected formof θ̂H (Xu
and Fu 2004), generally performedwell in terms of MSE and
bias (table 1). However, we found that this reportedly un-
biased estimator began to exhibit some bias for θ � 50.
The largest value of θ tested by Xu and Fu (2004) was 40,
suggesting that their regression equations are less applica-
ble to loci with very large θ whenever n is small. In conjunc-
tion with the fact that the unbiased estimator θ̂AS began to
demonstrate appreciable bias when θ � 75 (table 1), this
result emphasizes that newmethods shouldbe testedacross
a wide range of biologically realistic parameter values.

The bias of θ̂x̄ , θ̂NA, and θ̂EFS
When sample size is small, an individual sample of allele fre-
quencies, x, is likely to diverge greatly from the expected fre-
quency spectrum. For example, as θ increases, the number
of alleles with frequencies<0.01 increases (figs. 1 and 4), but
many of these alleles may fail to be surveyed in small sam-
ples. Similarly, the high sampling variance associated with
small sample size implies greater divergence between na and
E (na) as sample size decreases. Such discrepancies lead to
extreme biases in the estimates θ̂x̄ , θ̂NA, and θ̂EFS for sample
sizes<100, especially when θ is very large (� 50; table 1).
When using the n = 1, 000 regression, the biases are neg-
ative for small actual n because failure to detect rare alle-
les 1) flattens the sampled distribution of allele frequencies,
making it more similar to low θ spectra and 2) frequently
produces an allele count that is more in keeping with lower
values of θ. The switch in sign of the bias sometimes ob-
served as n increases (table 1, θ̂NA and θ̂EFS) or the version
of equation (7) used changes (supplementary table 2, Sup-
plementary Material online) signals that a version of equa-
tion (7) associated with zero bias exists for any situation.
However, our results indicate that the interrelationship of
n and θ is quite complicated and that use of the n = 1, 000
regression is the best default practice.

A rather remarkable result is that the estimation meth-
ods presented here and based on simple summaries of the
data perform competitively even when sample size is much
smaller than 1, 000. Despite bias, our results indicate that
n � 100 is frequently sufficient to achieve estimates with
comparable or lower error than those of other estimators.
In fact, sample sizes of this order frequently yield the most
accurate estimates. Thus, these estimators represent fast,
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accurate means of estimating θ: they always outperform
other “fast” estimates in table 1 and frequently outperform
the more computationally intensive methods in table 2.
The possibility remains that similar approaches may lead
to estimators with less bias. For example, an estimator that
matches observedna to the expectedmodeof na rather than
mean na (eq. 7) might prove more robust to the technical
complications detailed in supplementary figure 1, Supple-
mentary Material online.

Although ideal estimators are unbiased, MSE comprises
variance and bias, which implies that low variance can lead
to relatively small MSE despite high bias (Futschik andGach
2008). Furthermore, MSE arguably has greater practical im-
portance than other estimator diagnostics. For example, an
unbiased estimatorof θwith highMSE is only advantageous
if a large number of loci known to be evolving identically
are available. Only then will the average estimate approach
the true value of θ at the homogeneous loci. Each estimate
provided by a biased estimator with lowMSE, on the other
hand, will be relatively close to the true value of θ though
less likely to be exactly correct. Similarly, ideal estimators are
consistent. However, the range of sample sizes under which
our estimators do the best overlaps the size of most empir-
ical microsatellite data.

Multistep Mutation and θ Estimation
Multistep mutationsmay occur frequently in microsatellite
evolution (DiRienzo et al. 1994). A concern regarding esti-
mators explicitly built upon the single-step SMM (including
all of those presented in table 1) is thatmultistepmutations
will compromise their ability to estimate θ. This concern is
certainly realized in the case of θ̂AS, where MSE increased
by more than 30 times in response to the introduction of
frequentmultistepmutation (table 3). Other estimators, in-
cluding θ̂PAC and θ̂MIG, also exhibiteddramatically increased
MSE in response to GSM evolution. The relative insensitiv-
ity of θ̂x̄ , θ̂NA, and θ̂EFS to multistep mutation when n = 50
is most likely another consequence of the inability of small
data sets to detect rare alleles. Failure to detect the abun-
dance of rare alleles produced by multistepmutation when
n is small buffers θ̂x̄ and θ̂EFS against the inflationary ef-
fect GSM evolution has on estimates of θ. Increased sam-
ple size eliminates this buffer and θ̂x̄ MSE, for example, is
nearly 10-fold higher under the GSM than under the SMM,
though absoluteMSE is still comparable to other estimators
(table 3).

Demographic Change and θ Estimation
The performances of all estimators were unaffected by the
shift from a model of constant population size to models
of recent demographic change (table 4). We suspected that
estimator performancemight be affected bymutation-drift
nonequilibrium. For example, our estimators were devel-
oped using simulations that assumed constant population
size.Of course, all estimators do performpoorly if we substi-
tute the current census population size (N0 = 10, 000 in this
case) forNe and thereby treat θ = 10 as the true contempo-
rary value of θ for all scenariosmodeled. However, when we

use the inbreeding effective population size (N i
e) to calculate

θT, expressions such as those in equations (1) and (2) still
hold and estimators retain their relative abilities to estimate
θT. Essentially, the use of N i

e averages fluctuations in mu-
tational pressure associated with past expansions and con-
tractions of population size across the genealogical depth of
the locus.

Further Application of the Microsatellite Frequency
Spectrum
Tests for departure from the neutral SNP frequency spec-
trumhave enjoyedwideuse in the inference of demographic
parameters and detection of various forms of selection (e.g.,
Adams andHudson 2004;Marth et al. 2004; Przeworski et al.
2005; Nielsen et al. 2009). In addition, summary statistics
with direct relevance to the frequency spectrum—such as
heterozygosity, number of alleles, range in allele size, and
variance in allele size—have been employed in the detec-
tion of positive selection and analysis of historical demog-
raphy using microsatellite data (Jorde et al. 1997; Kimmel
et al. 1998; Luikart and Cornuet 1998; Wiehe 1998; Beau-
mont 1999; Garza andWilliamson 2001; Payseur et al. 2002;
Storz et al. 2004). Direct comparison of the full array of al-
lele frequencies at multiple loci to the expected frequency
spectrummight increase the sensitivityof such approaches.
The gamma approximation to the allele frequency spec-
trum might also allow frequency spectra at microsatellites
and SNPs to be combined by using a composite likelihood
approach (Adams and Hudson 2004; Nielsen et al. 2005).
Simultaneous use of both marker types could refine esti-
mates of demographic and selection parameters. Of course,
strong dependency of the spectrum on the actual value of
θ makes its application in these other contexts somewhat
challenging.

The frequency spectrummight also be usefully employed
in methods of approximate Bayesian computation (ABC;
Beaumont et al. 2002; Plagnol and Tavaré 2004), where pos-
terior probabilities of parameters of interest are computed
based on comparisons between summaries of observed and
simulated data. Unfortunately, sufficient summary statis-
tics are frequently unknown for the parameters of interest
(Marjoram and Tavaré 2006). We suggest that simulations
of the frequency spectrum under various evolutionary sce-
narios may inspire novel (though not necessarily sufficient)
summary statistics for use in ABC. As an example, consider
our simulations of four demographic scenarios (fig. 4). Three
of the four scenarios led to distinct deflections of the fre-
quency spectrum (fig. 4B, D, and H ). In particular, scenario
II—a severe bottleneck followed by extended exponential
growth—produced an na in keepingwith θ ∼ 1.5 (table 5).
On average, however, simulations with θ = 1.5 and con-
stant population size generated a distinctly different allele
frequency range [table 5, scenario II vs. constant population
size (θ = 1.5)]. Increases in the frequency range due to con-
tinued exponential growth are not transient. Rather, sus-
tained population growthmaintains an increased frequency
range and the magnitude of the increase is positively corre-
lated with the rate of exponential growth (fig. 4B andD ). In
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cases where sustained population growth is suspected, use
of this summary statistic may therefore improve the accu-
racy and/or efficiencyof inference in an ABC framework. Al-
though several summaries of the underlying microsatellite
frequency spectrum have been investigated for their abil-
ity to diagnose bottlenecks (e.g., Luikart and Cornuet 1998;
Garza andWilliamson 2001), to our knowledge the range of
allele frequencies has not been employed in the detection of
demographic change. Similar investigations of nonequilib-
rium frequency spectra may lead to other summary statis-
tics of interest.

The simple program, thesitmate, may be downloaded at
our laboratory Web site http://payseur.genetics.wisc.edu/
resources.htm. Taking frequency data as input, thestimate
outputs the five estimates θ̂x̄ , θ̂NA, θ̂EFS, θ̂H, and θ̂F .

Supplementary Material
Supplementary tables 1–3 and figures 1–2 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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