Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2012 Oct 1.
Published in final edited form as: AIDS Behav. 2011 Oct;15(7):1570–1578. doi: 10.1007/s10461-011-9992-0

Changes in the Prevalence of Injection Drug Use Among Adolescents and Young Adults in Large U.S. Metropolitan Areas

Sudip Chatterjee 1, Barbara Tempalski 2, Enrique R Pouget 3, Hannah L F Cooper 4, Charles M Cleland 5, Samuel R Friedman 6,
PMCID: PMC3299409  NIHMSID: NIHMS356768  PMID: 21739288

Abstract

Young injection drug users (IDUs) are at risk for acquiring blood-borne diseases like HIV and Hepatitis C. Little is known about the population prevalence of young IDUs. We (1) estimate annual population prevalence rates of young IDUs (aged 15–29) per 10,000 in 95 large U.S. metropolitan statistical areas (MSAs) from 1992 to 2002; (2) assess the validity of these estimates; and (3) explore whether injection drug use among youth in these MSAs began to rise after HAART was discovered. A linear mixed model (LMM) estimated the annual population prevalence of young IDUs in each MSA and described trends therein. The population prevalence of IDUs among youths across 95 MSAs increased from 1996 (mean = 95.64) to 2002 (mean = 115.59). Additional analyses of the proportion of young IDUs using health services suggest this increase may have continued after 2002. Harm reduction and prevention research and programs for young IDUs are needed.

Keywords: Injection drug use, Adolescents, Young adults, Metropolitan statistical area, Prevalence, Harm reduction

Introduction

Research indicates that young injection drug users (IDUs) differ in their risk behavior from their older counterparts, and have a very high risk for HIV, HCV, STIs and drug overdose [18]. They are less aware of the dangers of injecting drugs and how to reduce their risk, and more likely to share syringes and drug preparation equipment. They inject frequently, have multiple sexual partners, and exchange sex for money or drugs [912].

Increases in the number of young IDUs are likely to increase the numbers of HIV/AIDS, cirrhosis, and hepatocellular carcinoma cases, the number of IDUs needing social and medical services, and the number of overdose deaths [13]. Therefore, it is very important to monitor the prevalence of IDU among youth.

Data on the prevalence of young IDUs in US geographic areas are rare. The National Survey on Drug Use and Health (NSDUH) provides annual estimates of numbers of young IDUs in the US, but these data are not suitable to measure change as: (a) data are derived from a household survey with well-known sampling and self-report limitations; and (b) NSDUH acknowledge the data are not suitable for longitudinal analyses, given changes in data collection methods over time. These limitations have been discussed in detail elsewhere [1418].

This study: (1) describes a method of estimating the population prevalence of young IDUs aged 15–29 in 95 large metropolitan statistical areas (MSAs) annually over an 11-year period (1992–2002); (2) validates the resulting population prevalence estimates; and (3) conducts exploratory analyses of a hypothesis that young IDU prevalence increased after HAART was discovered.

Providing public health and harm reduction advocates with young IDUs estimates can: (1) assist efforts to plan young IDU-related health services; (2) bring about a better understanding of young IDU drug-related health problems; and (3) assist research in exploring the social and structural determinants of young IDU-related prevalence [19, 20].

Methods

Unit of Analysis

The MSA is the unit of analysis. The U.S. Office of Management and Budget defines an MSA as a set of adjacent counties that collectively form a single cohesive socioeconomic unit and include at least one central city home to 50,000 people or more [21, 22]. We chose MSAs as a unit of analysis because they are salient epidemiologic units for the study of injecting: injection-related epidemics like HIV vary widely across MSAs, and many suburban injectors travel to the central city to receive services and engage in drug-related activity [23, 24].

This study includes 95 of the 96 U.S. MSAs whose population exceeded 500,000 in 1992. These are home to almost two thirds of the U.S. population. One MSA, San Juan, was excluded due to data unavailability.

Overview of the Data Series Used and Estimating Procedure

We used two data series to estimate the population prevalence of young IDUs. Both data-series report on service episodes rather than on unique individuals:

  1. Substance Abuse and Mental Health Service Administration's (SAMHSA's) Treatment Entry Data System (TEDS). TEDS documents admissions to private and public drug treatment programs receiving state funds, certificates, or licenses [25].

  2. The Centers for Disease Control and Prevention's (CDC's) HIV counseling and testing services data series (CTS). CDC provided data on numbers and ages of IDUs tested for HIV at CDC-funded counseling and testing sites for each MSA [26].

We used a 3-step approach similar to that used in some of our previous studies to estimate the annual population prevalence of young IDUs in each MSA from 1992 to 2002 [14, 27, 28].

Step 1: For both TEDS and CTS, separately, we calculated the annual proportions of IDUs receiving these services at drug treatment and HIV testing and counseling sites who were aged 15–29 years in each MSA.

Step 2: To calculate the number of young IDUs, we then multiplied these proportions of young IDUs by previously-calculated estimates of the total number of IDUs in each MSA and year [27].

To estimate the population prevalence of young IDUs for TEDS and CTS, we divided the number of young IDUs using each service by the size of their respective “at risk” populations (i.e., youth aged 15–29) for each MSA and year.

Step 3: For the final estimates, we used the predicted values from a linear mixed model (LMM) that included both TEDS and CTS based estimates.

Step 1 Estimating the proportions of young IDUs in TEDS and CTS

First, for TEDS, we calculated the proportion of young IDUs aged 15–29 among all IDUs (regardless of age) entering treatment in 95 MSAs from 1992 to 2002. We then calculated the proportion of young IDUs among all IDUs receiving HIV counseling and testing from the CTS data.

To avoid small denominator problems, the TEDS and CTS databases were processed with a criterion that, if any MSAs in any year from 1992 to 2002 had less than 5 IDUs (regardless of age), we marked that cell as missing. After applying the criteria, there were approximately 5% missing cells in TEDS and 8% missing cells in CTS.1

Step 2 Estimating the numbers and population prevalence of young IDUs from TEDS and CTS proportions

To estimate the total number of young IDUs, previously published data on the total number of IDUs were used [28]. We briefly discuss how this earlier paper calculated the total numbers of IDUs in 96 MSAs for each year 1992–2002.

The study used a multiplier/allocation method to estimate the national population prevalence of IDUs from 1992 to 2002 from existing data on the number of injectors living in the U.S. in 1992 and in 1998, and from annual data on injectors'; encounters with health services and with the criminal justice system [2729]. Then, to estimate the prevalence of IDUs in 96 large MSAs from 1992 to 2002, we allocated these totals among the 96 MSAs (and the rest of the country) using four different types of data: (1) Centers for Disease Control HIV CTS data; (2) SAMSHA's Uniform Facility Data Set (UFDS) and TEDS data; (3) CDC data on diagnoses of IDUs with HIV/AIDS; and (4) an estimate derived from published estimates of the number of injectors living in each MSA in 1992 [29] and in 1998 [28]. Each series was smoothed over time using loess regression and the mean value of the four component estimates was taken as the best estimate of the prevalence of IDUs for each MSA and year [27].

Where data were not missing, we multiplied our estimated proportions of IDUs who were aged 15–29 in the TEDS data by these previous estimates of the total number of IDUs in each MSA annually from 1992 to 2002. Similarly, we then multiplied the proportion of IDUs who were young in the CTS data by the estimated total IDUs in the MSA to create a second estimate of the number of young IDUs.

We then calculated the population prevalence of young IDUs separately for each data series by dividing the estimated number of IDUs in the MSA by the population of young people aged 15–29 of that MSA in that year (and multiplying the result by 10,000), using data from the US Census Population Estimates Program [30].

Step 3 Final estimate, using a restricted-maximum-likelihood average based on LMM

To calculate the final estimates of young IDUs per 10,000 populations in each MSA in each year, we used LMM [3134]. The LMM combined the population prevalence of young IDUs calculated from TEDS and CTS to form a single combined estimate while adjusting for missing data. Once we combined the data series we had 1,045 cells + 1,045 cells = 2,090 cells. To distinguish the two sources of data, we created a source indicator, coded 0.5 if representing TEDS and -0.5 if representing CTS. We describe our LMM briefly here:

E(Yijk|time, data series)=β0+β1timeijk+β2timeijktimeijk+β3sourceijk+γjk+ɛijk

where E (Yijk |time, data series) is the mean population prevalence of young IDUs in i MSA, j year and k estimates from TEDS or CTS; β0 the mean population prevalence of young IDUs in 1997; β1 the population prevalence of young IDUs linear slope; β2 the population prevalence of young IDUs quadratic slope; β3 the difference in young IDU prevalence estimated from TEDS and CTS data; γ the unknown vector of random effect parameters; and ε is the unknown random error vector.

An important component in our estimation was the number of IDUs. Since Brady et al. [27] described the trend of population prevalence of IDUs as a quadratic polynomial, we chose the quadratic polynomial for study year as our best model. The study year was centered on 1997 to diminish correlations between study year polynomials [35]. Instead of using a simple average [14, 27] we used LMM to compute the restricted-maximum-likelihood average as our final estimates for the following three reasons: (1) The TEDS data-series had 5% missing cells and CTS had 8% missing cells. The LMM used all available data to estimate parameters under the assumption that data were missing at random (MAR) conditional on observed data; (2) Since we used health service data (i.e., TEDS data on treatment entry and CTS data on HIV counseling and testing), sudden increases or decreases in health services funding for IDUs might affect our prevalence estimates. LMM helped to smooth the data so the overall trend would not be unduly affected by temporary changes in services that did not reflect true changes in prevalence; and (3) LMM let us compute the uncertainty (standard error) associated with our estimations, which would not have been possible using simple averages.

Reliability

To assess the reliability of the final estimates, we examined the correlations between TEDS- and CTS-based estimates of young IDUs per 10,000 youth for each year.

Criterion Validity

Since injection drug use is associated with fatal overdose, we used overdose deaths among youth to test criterion validity [14, 36]. We examined two types of overdose deaths; (a) drug-related deaths among young people aged 15–29; and (b) accidental and unintentional drug poisoning deaths among 15–29 year olds.

Our algorithm for “drug-related deaths” variable was adapted from the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). They use ICD-9 and ICD-10 codes to capture “deaths happening shortly after consumption of one or more psychoactive drugs and directly related to this consumption” [37]. For “accidental and unintentional drug poisoning deaths,” we included only those overdose deaths that occurred due to consumption of cocaine, heroin, or psycho-stimulants.

The number of people dying from either of these causes in each MSA and year was extracted from the National Center for Health Statistics'; Multiple Cause of Death database, a census of all deaths in the U.S. [38]. This data series used the ICD-9 coding system to identify causes of death between 1992 and 1998; ICD-10 coding was used thereafter [38]. We restricted our analysis to overdose cases where residency (MSA) and death occurrence (MSA) matched. Neither the ICD-9 nor the ICD-10 coding systems identify the mode of drug administration, so we could not limit overdose cases to those that were IDU related.

Hypothesis Development and Exploration

In preliminary analyses, we observed an apparent decline of young IDU prevalence between 1992 and 1996 and an increase thereafter. This led us to hypothesize that the prevalence of young drug injectors increased after HAART was discovered in 1996. To explore the hypothesis, a number of different analyses were performed:

  1. A trend analysis on the percentages of 15–29 year olds who entered drug abuse treatment (TEDS) and reported that they were IDUs.

  2. A trend analysis on the percentages of 15–29 year olds who received services at HIV counseling and testing sites (CTS) and reported that they were IDUs.

Two sets of models were calculated for each of these to see if 1996 was the starting point of a rise in IDU prevalence among young people: (1) a quadratic model on the percentages of young IDUs from 1992 to 2005; and (2) a linear model on the percentages of young IDUs from 1996 to 2005.

We also conducted trend analyses on the population prevalence of young IDUs in each MSA individually from 1996 to 2002. (We could not conduct such analyses for the later years, 2003–2005, because estimates of total IDU prevalence for the MSAs since 2002 have not been published.)

Results

Figure 1 shows the overall trajectory of young IDU population prevalence based on the LMM and considering both fixed effects and random effects. This figure also includes trajectories of young IDU population prevalence based separately on estimates from TEDS and from CTS data. Annual estimates for each MSA appear in the Appendix—supplementary material.

Fig. 1.

Fig. 1

Estimated mean population prevalence of young IDUs per 10,000 15–29 year olds (1992–2002) for 95 large MSAs

Table 1 shows the fixed effect and random effect parameters estimates where the study year was centered on 1997. Considering both the instantaneous rate of change parameter (1.72; P = 0.01) and curvature parameter (0.40; P < 0.001) the average population prevalence of young IDUs trajectory showed an increasing trend after 1995 (see Table 2). The fixed-effect coefficient for the source indicator (Table 1) indicates a significant difference, with the average estimate in 1997 based on CTS about 15 IDUs per 10,000 people aged 15–29 years greater than the estimate from TEDS. The estimated intercept suggests a prevalence of 97 young IDUs per 10,000 young people in 1997 when TEDS and CTS data are averaged by the LMM.

Table 1. Linear mixed effects model to estimate the population prevalence of young IDUs in 95 MSAs, 1992–2002: restricted-maximum-likelihood estimates of fixed effect and random effect parameters.

Symbol Estimates Standard error Lower bound (95% CI) Upper bound (95% CI)
Intercept β0 96.96** 5.40 86.26 107.67
Time β1 1.72* 0.67 0.40 3.05
Time × time β2 0.40** 0.08 0.23 0.57
Source β3 −14.92** 1.18 −17.23 −12.60
Intercept variance r00 2688.93** 402.39 2046.52 3691.30
Time variance r11 39.10** 6.15 29.37 54.62
Time × time variance r22 0.28* 0.10 0.16 0.65
Correlation β0 and β1 r01 0.003
Correlation of β0 and β3 r02 −0.16
Correlation of β1 and β3 r12 0.26

Study year is centered at 1997

*

P <0.05;

**

P <0.001

Table 2. Descriptive statistics: IDUs per 10,000 persons aged 15–29 in 95 MSAs (1992–2002).

Year Mean Standard deviation Median Interquartile range Minimum Maximum
1992 98.34 57.05 78.54 52.50–132.06 27.95 283.91
1993 96.46 57.17 81.98 50.93–132.52 25.77 260.13
1994 95.39 53.59 84.41 50.58–130.50 24.73 237.88
1995 95.11 52.40 85.53 51.91–128.81 23.14 229.26
1996 95.64 51.65 85.24 52.80–129.94 22.89 221.92
1997 96.96 51.40 86.93 52.79–130.18 24.00 218.09
1998 99.09 51.73 89.47 54.28–140.30 26.44 231.23
1999 102.02 52.75 92.18 56.22–133.52 30.24 252.83
2000 105.74 54.55 93.62 58.53–134.07 34.64 276.02
2001 110.27 57.20 98.48 63.20–138.67 37.50 300.83
2002 115.59 60.76 101.94 68.29–140.28 41.04 327.24

The average trajectory of young IDUs across all 95 MSAs was not necessarily indicative of the trend of population prevalence of young IDUs in a given MSA. Statistically significant variations in the prevalence of young IDUs in 1997 (variance = 2689), in the instantaneous rate of change (linear expression of time; variance = 39), and in the curvature (quadratic expression of time; variance = 0.28) of the trajectories across MSAs were observed. A comparison graph (Fig. 2) of estimates for the five largest MSAs illustrates such variation.

Fig. 2.

Fig. 2

Estimated population prevalence of young IDUs in five large US MSAs (and the mean across 95 large MSAs from 1992 to 2002)

Table 2 describes the prevalence of young IDUs across 95 MSAs from 1992 to 2002. Young IDU prevalence varied across MSAs from 28 to 284 (mean = 98.34; SD = 57.06; median = 78; and interquartile range = 52–132) in 1992; 23 to 229 (mean = 95.64; SD = 51.65; median = 85; interquartile range = 53–130) in 1996; and 41 to 327 (mean = 115; SD = 60; median = 102; interquartile range = 68–140) in 2002.

Reliability

Table 3 shows Pearson correlations between TEDS- and CTS-based estimates of the population prevalence of young IDUs for each year. These correlations describe the extent to which our estimates for each data series produce consistent results. Correlations ranged from 0.74 to 0.89, which suggests that our estimates have acceptable to high reliability [39].

Table 3. Reliability test: Pearson correlations of young IDU population prevalence estimates based on TEDS and on CTS.
Year Correlation (r)
1992 0.89
1993 0.89
1994 0.80
1995 0.75
1996 0.74
1997 0.76
1998 0.82
1999 0.84
2000 0.83
2001 0.78
2002 0.80

Criterion Validity

Table 4 shows that the population prevalence of young IDUs was significantly correlated each year with: (a) drug related deaths per capita; and (b) accidental and unintentional poisoning deaths per capita. These correlations were positive and in the expected direction, reflecting associations with medium to large effect sizes [40]. These results suggest our final estimates had acceptable validity.

Table 4. Criterion validity: Pearson correlations between young IDU prevalence estimates and two measures of drug-related mortality.
Year Accidental and unintentional poisoning deaths per capita Drug related deaths per capita
1992 0.55 0.49
1993 0.47 0.49
1994 0.51 0.50
1995 0.49 0.43
1996 0.40 0.40
1997 0.54 0.54
1998 0.50 0.51
1999 0.50 0.70
2000 0.39 0.52
2001 0.33 0.43
2002 0.21 0.29

Exploring the Hypothesis that IDU Prevalence Among Youth Increased After HAART was Discovered

To test this exploratory hypothesis we first examined the percentages of young IDUs in TEDS and CTS from 1992 to 2005 (Fig. 3). Trend analyses on percentages of young IDUs in TEDS and CTS for the years 1996–2005 showed significant increases (TEDS linear slope = 1.62, P < 0.0001; CTS linear slope = 0.54, P < 0.0001).

Fig. 3.

Fig. 3

The percentages of IDUs entering drug treatment (TEDS) and receiving HIV counseling and testing (CTS) who were aged 15–29 in 95 large MSAs (1992–2005)

Trend analyses on the final estimates of young IDU population prevalence in each MSA for 1996–2002 were also performed. In TEDS, 42 MSAs increased significantly and 6 MSAs decreased significantly (at P < 0.05). In CTS, 27 MSAs increased significantly and 10 MSAs decreased significantly (at P < 0.05). These results suggest young IDU prevalence rates increased after 1996, with some local variation.

Discussion

These data suggest that the prevalence of IDUs among adolescents and young adults increased between 1995 and 2002. Further analyses of the proportions of IDUs entering treatment or receiving HIV counseling and testing who were young suggest that this trend may have continued through 2005. This contrasts sharply with our previous finding that the prevalence of IDUs of all ages decreased from the early 1990s to the early 2000s [27]. If the prevalence of IDUs among young people continues to increase, we would expect the overall prevalence of IDUs eventually to increase as well.

One possible explanation for the increase in young IDUs involves community learning, which has influenced drug use patterns in other circumstances [41, 42]. HAART led to dramatic declines in AIDS incidence and mortality, and this seems to have affected public perceptions of the epidemic. Survey data find that the proportion of Americans who considered HIV/AIDS to be the “most urgent health problem facing this nation today decreased from 38% in 1997 to 17% in 2002” [43]. In neighborhoods where injection drug use was prevalent, this meant that children and youth no longer observed widespread HIV-related morbidity or mortality among older peers, relatives or neighbors. According to community learning theory, this would have reduced the deterrent effect of the fear of HIV/AIDS, which in term might mean that young drug users would be more likely to try (and continue in) injecting their drugs. Parallel arguments have been made to explain decreases in condom use among men who have sex with men after HAART was discovered [44]. Future research should consider and test competing explanations for this trend. One such possible explanation might be the increasing use of prescription analgesics by youth to the extent that this leads them to take up injection [45].

Study Limitations

Data Limitations

Despite the fact that using different data sources helps to balance biases, as each data series has strengths and weaknesses [28], we could use only two data series due to lack of other usable data. Availability of additional sources might have strengthened our estimates. Since admissions, rather than individuals, are the units of analysis for TEDS data, an individual who entered drug treatment twice or more in a particular year was counted as two or more independent cases [25]. Similar double-counting is also a limitation for HIV counseling and testing data.

Further, since the TEDS and CTS systems only collect data from subsets of United States locations where drug treatment or CDC-HIV counseling and testing take place our estimates may be biased to the extent that the age distributions of IDUs using these sites differ from those at sites that were not included. For example, the HIV CTS data as a whole are considered to only represent somewhere in the range of about 10–17% of all HIV tests in the US. These limitations have been discussed in detail elsewhere [14, 27].

Our analyses of data on deaths from overdose had some limitations. Unfortunately, the data do not indicate whether the decedent injected drugs prior to death, or if other methods of administration were used. Since non-injection modes of drug administration are more common, we should not expect large associations between IDU prevalence estimates and overdose mortality data. In addition, changes in ICD coding from version 9 to version 10 may have resulted in increased measurement error during the later study years. In addition, our estimates of young IDUs include injectors of heroin, cocaine or other psycho-stimulants, and we have no way to construct accurate estimates of young IDUs by primary drug of choice. Since mortality rates due to overdose vary by the drug being used, this probably means that variations by MSA and by year in the relative distribution of drugs being used by young adults will tend to decrease the size of the correlations presented in Table 4—which may imply that our estimates of criterion validity are underestimates. Finally, overdose deaths in the young age range (15–29) were sparse in some MSAs, potentially reducing the reliability of overdose deaths as an indicator for IDU prevalence among young people.

Analytical Limitations

The rate of increase in the percentage of young IDUs entering treatment centers was considerably higher than the rate of increase in young IDUs attending HIV counseling and testing centers (Fig. 3). This finding could be due to causes other than an increase in young IDU prevalence in the population—for example, if younger IDUs increased in their propensity to enter treatment relative to older IDUs. (This could have occurred if treatment centers increasingly solicited young IDUs or if courts increasingly ordered young IDUs to enter treatment.) Thus our study results could be influenced by selection bias.

Conclusion

This study indicates that injection drug use among young people rose in recent years. Given the importance of sexual and injection behaviors as risk factors for HIV among young IDUs, this underscores previous suggestions that programs should implement interventions for younger IDUs [7, 4648]. Failure to set up proper intervention programs could lead to widespread increases in HIV transmission that could parallel recent increases in HIV incidence among young MSM [49, 50]. Young IDUs often face other difficulties as well, such as dropping out of or being expelled from school, difficulty gaining training and experience that might help them get good jobs, and resulting difficulties in obtaining health care [1, 51, 52].

Drug abuse treatment is unlikely to have much impact on current young IDUs given the very low treatment coverage among IDUs overall from 1993 to 2002 in 90 large US MSAs [53]. Further, some studies have found that young IDUs have less access to drug treatment and to and counseling and testing services than older users [4648].

We conclude with some suggestions for action: (1) Prevention programs including harm reduction programs, treatment programs, counseling centers should include young IDUs as a core focus of their intervention structure; (2) funding for such programs should be increased; and (3) future research should study what differentiates MSAs in which injection drug use among youth is decreasing from MSAs in which it is increasing.

Acknowledgments

This research was supported by National Institute of Drug Abuse grant # R01 DA13336. We would like to thank the Centers for Disease Control and Prevention, specifically, National Center for HIV, Viral Hepatitis, STD, and TB Prevention and the Coordinating Center for Infectious Diseases for providing data from the HIV counseling and testing databases. We acknowledge the gracious assistance of Dr. Amy Lansky, Dr. John Beltrami, and Nancy Habarta.

Appendix

Estimated number and population prevalence per 10,000 of injection drug users among people aged 15–29 in the 95 largest U.S. Metropolitan Statistical Areas, 1992 – 2002, and prevalence sub-estimates based on Treatment Entry Data System and HIV-Counseling and Testing data series. Missing data are indicated by blank spaces.

MSA Name Year Sub-estimates Final model-based population prevalence rate Final model-based population estimate
Prevalence estimated from Treatment Entry Data System Prevalence estimated from HIV-Counseling and Testing data series
Akron, OH 1992 30 34 33 493
Akron, OH 1993 23 38 31 451
Akron, OH 1994 29 34 30 430
Akron, OH 1995 23 33 30 427
Akron, OH 1996 21 42 31 445
Akron, OH 1997 29 36 33 473
Akron, OH 1998 31 33 37 516
Akron, OH 1999 34 35 41 575
Akron, OH 2000 34 48 47 648
Akron, OH 2001 67 73 53 740
Akron, OH 2002 64 47 61 849
Albany--Schenectady--Troy, NY 1992 44 45 873
Albany--Schenectady--Troy, NY 1993 32 37 42 803
Albany--Schenectady--Troy, NY 1994 32 53 41 755
Albany--Schenectady--Troy, NY 1995 37 38 40 725
Albany--Schenectady--Troy, NY 1996 50 39 40 711
Albany--Schenectady--Troy, NY 1997 39 30 41 716
Albany--Schenectady--Troy, NY 1998 47 39 43 741
Albany--Schenectady--Troy, NY 1999 54 43 45 779
Albany--Schenectady--Troy, NY 2000 58 43 49 836
Albany--Schenectady--Troy, NY 2001 54 43 53 922
Albany--Schenectady--Troy, NY 2002 70 46 58 1030
Albuquerque, NM 1992 223 266 238 3232
Albuquerque, NM 1993 223 266 232 3163
Albuquerque, NM 1994 223 239 226 3144
Albuquerque, NM 1995 185 225 220 3129
Albuquerque, NM 1996 182 197 215 3107
Albuquerque, NM 1997 209 229 210 3073
Albuquerque, NM 1998 190 257 206 3056
Albuquerque, NM 1999 222 236 202 3014
Albuquerque, NM 2000 205 170 198 2988
Albuquerque, NM 2001 158 207 195 2983
Albuquerque, NM 2002 151 232 192 3024
Allentown--Bethlehem--Easton, PA 1992 159 169 154 1894
Allentown--Bethlehem--Easton, PA 1993 142 157 155 1884
Allentown--Bethlehem--Easton, PA 1994 155 181 158 1897
Allentown--Bethlehem--Easton, PA 1995 155 174 162 1930
Allentown--Bethlehem--Easton, PA 1996 138 166 169 1993
Allentown--Bethlehem--Easton, PA 1997 158 165 176 2077
Allentown--Bethlehem--Easton, PA 1998 158 196 186 2182
Allentown--Bethlehem--Easton, PA 1999 226 220 197 2296
Allentown--Bethlehem--Easton, PA 2000 178 200 210 2431
Allentown--Bethlehem--Easton, PA 2001 280 251 225 2623
Allentown--Bethlehem--Easton, PA 2002 239 221 241 2863
Ann Arbor, MI 1992 37 27 32 438
Ann Arbor, MI 1993 30 37 30 405
Ann Arbor, MI 1994 13 29 29 386
Ann Arbor, MI 1995 23 25 29 385
Ann Arbor, MI 1996 25 34 29 397
Ann Arbor, MI 1997 28 40 31 421
Ann Arbor, MI 1998 35 38 33 454
Ann Arbor, MI 1999 29 31 36 504
Ann Arbor, MI 2000 34 47 40 565
Ann Arbor, MI 2001 50 48 45 644
Ann Arbor, MI 2002 40 52 51 739
Atlanta, GA 1992 74 73 5473
Atlanta, GA 1993 53 68 5173
Atlanta, GA 1994 61 60 63 4921
Atlanta, GA 1995 58 55 59 4714
Atlanta, GA 1996 53 52 56 4553
Atlanta, GA 1997 89 47 53 4440
Atlanta, GA 1998 42 44 50 4365
Atlanta, GA 1999 55 47 48 4317
Atlanta, GA 2000 48 41 47 4305
Atlanta, GA 2001 53 42 46 4255
Atlanta, GA 2002 38 38 45 4227
Austin--San Marcos, TX 1992 165 252 200 5095
Austin--San Marcos, TX 1993 137 206 192 4977
Austin--San Marcos, TX 1994 152 232 183 4879
Austin--San Marcos, TX 1995 138 201 174 4796
Austin--San Marcos, TX 1996 188 205 164 4676
Austin--San Marcos, TX 1997 137 172 153 4536
Austin--San Marcos, TX 1998 122 146 142 4380
Austin--San Marcos, TX 1999 146 142 130 4201
Austin--San Marcos, TX 2000 105 104 117 3982
Austin--San Marcos, TX 2001 114 85 104 3644
Austin--San Marcos, TX 2002 89 71 90 3182
Bakersfield, CA 1992 210 339 257 3401
Bakersfield, CA 1993 156 300 247 3246
Bakersfield, CA 1994 170 346 238 3164
Bakersfield, CA 1995 120 348 229 3051
Bakersfield, CA 1996 114 341 222 2974
Bakersfield, CA 1997 116 302 216 2952
Bakersfield, CA 1998 116 295 210 2951
Bakersfield, CA 1999 112 282 205 2983
Bakersfield, CA 2000 99 262 202 2991
Bakersfield, CA 2001 140 305 199 3044
Bakersfield, CA 2002 107 291 197 3144
Baltimore, MD 1992 120 151 135 7081
Baltimore, MD 1993 138 175 147 7503
Baltimore, MD 1994 131 167 161 8003
Baltimore, MD 1995 154 175 176 8604
Baltimore, MD 1996 165 187 193 9331
Baltimore, MD 1997 203 212 211 10176
Baltimore, MD 1998 259 252 231 11116
Baltimore, MD 1999 274 274 253 12225
Baltimore, MD 2000 279 256 276 13445
Baltimore, MD 2001 330 288 301 14797
Baltimore, MD 2002 363 302 327 16333
Bergen--Passaic, NJ 1992 100 90 93 2460
Bergen--Passaic, NJ 1993 91 94 88 2281
Bergen--Passaic, NJ 1994 91 71 84 2135
Bergen--Passaic, NJ 1995 89 67 82 2028
Bergen--Passaic, NJ 1996 95 58 79 1955
Bergen--Passaic, NJ 1997 93 69 78 1913
Bergen--Passaic, NJ 1998 89 70 78 1899
Bergen--Passaic, NJ 1999 100 63 78 1901
Bergen--Passaic, NJ 2000 88 61 80 1935
Bergen--Passaic, NJ 2001 94 60 82 1972
Bergen--Passaic, NJ 2002 99 76 85 2032
Birmingham, AL 1992 41 85 54 1022
Birmingham, AL 1993 28 53 1004
Birmingham, AL 1994 56 54 1010
Birmingham, AL 1995 40 55 1041
Birmingham, AL 1996 32 58 1098
Birmingham, AL 1997 37 62 1178
Birmingham, AL 1998 67 67 1281
Birmingham, AL 1999 69 73 1402
Birmingham, AL 2000 83 81 1541
Birmingham, AL 2001 99 90 1694
Birmingham, AL 2002 82 100 1872
Boston, MA--NH 1992 64 72 78 10298
Boston, MA--NH 1993 89 103 87 11109
Boston, MA--NH 1994 70 82 96 12008
Boston, MA--NH 1995 103 113 106 13059
Boston, MA--NH 1996 113 124 117 14210
Boston, MA--NH 1997 132 138 128 15521
Boston, MA--NH 1998 161 159 140 16919
Boston, MA--NH 1999 125 153 18374
Boston, MA--NH 2000 191 170 167 19954
Boston, MA--NH 2001 139 181 21760
Boston, MA--NH 2002 208 197 23651
Buffalo--Niagara Falls, NY 1992 27 37 917
Buffalo--Niagara Falls, NY 1993 29 35 37 905
Buffalo--Niagara Falls, NY 1994 28 35 38 900
Buffalo--Niagara Falls, NY 1995 32 40 39 907
Buffalo--Niagara Falls, NY 1996 43 49 41 924
Buffalo--Niagara Falls, NY 1997 41 47 42 951
Buffalo--Niagara Falls, NY 1998 56 52 45 990
Buffalo--Niagara Falls, NY 1999 51 43 47 1037
Buffalo--Niagara Falls, NY 2000 65 51 51 1094
Buffalo--Niagara Falls, NY 2001 51 38 54 1175
Buffalo--Niagara Falls, NY 2002 67 37 58 1274
Charleston--North Charleston, SC 1992 47 43 585
Charleston--North Charleston, SC 1993 28 39 511
Charleston--North Charleston, SC 1994 27 36 458
Charleston--North Charleston, SC 1995 19 34 421
Charleston--North Charleston, SC 1996 23 33 404
Charleston--North Charleston, SC 1997 30 18 33 412
Charleston--North Charleston, SC 1998 32 28 35 436
Charleston--North Charleston, SC 1999 64 27 38 475
Charleston--North Charleston, SC 2000 51 34 41 520
Charleston--North Charleston, SC 2001 50 48 46 579
Charleston--North Charleston, SC 2002 75 21 52 659
Charlotte--Gastonia--Rock Hill,
NC--SC
1992 38 90 62 1738
Charlotte--Gastonia--Rock Hill,
NC--SC
1993 39 67 57 1624
Charlotte--Gastonia--Rock Hill,
NC--SC
1994 34 84 54 1537
Charlotte--Gastonia--Rock Hill,
NC--SC
1995 37 60 51 1475
Charlotte--Gastonia--Rock Hill,
NC--SC
1996 40 50 49 1431
Charlotte--Gastonia--Rock Hill,
NC--SC
1997 36 46 47 1408
Charlotte--Gastonia--Rock Hill,
NC--SC
1998 40 54 45 1397
Charlotte--Gastonia--Rock Hill,
NC--SC
1999 52 53 45 1396
Charlotte--Gastonia--Rock Hill,
NC--SC
2000 47 56 44 1414
Charlotte--Gastonia--Rock Hill,
NC--SC
2001 42 35 45 1426
Charlotte--Gastonia--Rock Hill,
NC--SC
2002 44 32 45 1456
Chicago, IL 1992 34 53 39 6759
Chicago, IL 1993 32 41 38 6457
Chicago, IL 1994 33 45 37 6338
Chicago, IL 1995 22 35 38 6427
Chicago, IL 1996 22 32 39 6711
Chicago, IL 1997 30 40 41 7176
Chicago, IL 1998 47 58 45 7854
Chicago, IL 1999 73 69 49 8685
Chicago, IL 2000 43 48 55 9701
Chicago, IL 2001 62 60 61 10814
Chicago, IL 2002 55 73 68 12071
Cincinnati, OH--KY--IN 1992 47 75 53 1788
Cincinnati, OH--KY--IN 1993 38 50 49 1656
Cincinnati, OH--KY--IN 1994 37 55 47 1562
Cincinnati, OH--KY--IN 1995 30 61 45 1521
Cincinnati, OH--KY--IN 1996 34 43 46 1525
Cincinnati, OH--KY--IN 1997 35 50 47 1575
Cincinnati, OH--KY--IN 1998 38 57 50 1665
Cincinnati, OH--KY--IN 1999 42 73 53 1787
Cincinnati, OH--KY--IN 2000 38 64 59 1953
Cincinnati, OH--KY--IN 2001 69 81 65 2167
Cincinnati, OH--KY--IN 2002 70 69 72 2425
Cleveland--Lorain--Elyria, OH 1992 41 55 41 1847
Cleveland--Lorain--Elyria, OH 1993 25 33 40 1773
Cleveland--Lorain--Elyria, OH 1994 30 48 40 1731
Cleveland--Lorain--Elyria, OH 1995 26 47 40 1731
Cleveland--Lorain--Elyria, OH 1996 29 42 41 1765
Cleveland--Lorain--Elyria, OH 1997 43 48 43 1824
Cleveland--Lorain--Elyria, OH 1998 41 55 45 1910
Cleveland--Lorain--Elyria, OH 1999 50 67 48 2014
Cleveland--Lorain--Elyria, OH 2000 51 57 52 2146
Cleveland--Lorain--Elyria, OH 2001 58 51 57 2301
Cleveland--Lorain--Elyria, OH 2002 65 46 62 2504
Columbus, OH 1992 39 72 49 1686
Columbus, OH 1993 25 52 49 1673
Columbus, OH 1994 43 59 50 1703
Columbus, OH 1995 34 61 52 1783
Columbus, OH 1996 39 70 55 1905
Columbus, OH 1997 42 77 60 2078
Columbus, OH 1998 43 84 66 2299
Columbus, OH 1999 53 96 73 2555
Columbus, OH 2000 60 86 82 2860
Columbus, OH 2001 98 124 91 3193
Columbus, OH 2002 79 111 102 3575
Dallas, TX 1992 125 153 118 8051
Dallas, TX 1993 90 115 116 7894
Dallas, TX 1994 104 131 115 7904
Dallas, TX 1995 93 136 116 8101
Dallas, TX 1996 87 109 118 8490
Dallas, TX 1997 137 111 122 9085
Dallas, TX 1998 140 104 128 9849
Dallas, TX 1999 149 140 135 10743
Dallas, TX 2000 126 114 144 11759
Dallas, TX 2001 275 132 154 12882
Dallas, TX 2002 180 118 166 14026
Dayton--Springfield, OH 1992 28 47 32 677
Dayton--Springfield, OH 1993 20 30 28 579
Dayton--Springfield, OH 1994 19 25 25 509
Dayton--Springfield, OH 1995 13 27 23 472
Dayton--Springfield, OH 1996 15 33 23 463
Dayton--Springfield, OH 1997 21 35 24 480
Dayton--Springfield, OH 1998 21 22 26 527
Dayton--Springfield, OH 1999 20 27 30 596
Dayton--Springfield, OH 2000 37 23 35 690
Dayton--Springfield, OH 2001 38 38 42 806
Dayton--Springfield, OH 2002 58 63 50 956
Denver, CO 1992 114 189 140 5094
Denver, CO 1993 99 142 141 5197
Denver, CO 1994 124 147 141 5263
Denver, CO 1995 117 163 141 5414
Denver, CO 1996 118 172 141 5602
Denver, CO 1997 117 184 141 5821
Denver, CO 1998 119 192 142 6031
Denver, CO 1999 150 148 142 6254
Denver, CO 2000 161 156 142 6395
Denver, CO 2001 111 107 142 6456
Denver, CO 2002 134 154 142 6459
Detroit, MI 1992 35 54 40 3757
Detroit, MI 1993 25 38 39 3568
Detroit, MI 1994 27 36 38 3452
Detroit, MI 1995 35 39 38 3427
Detroit, MI 1996 37 42 39 3465
Detroit, MI 1997 46 44 40 3541
Detroit, MI 1998 45 53 42 3665
Detroit, MI 1999 39 46 44 3836
Detroit, MI 2000 46 53 47 4066
Detroit, MI 2001 46 38 51 4329
Detroit, MI 2002 64 47 56 4652
El Paso, TX 1992 308 347 284 4467
El Paso, TX 1993 234 273 260 4125
El Paso, TX 1994 220 295 238 3748
El Paso, TX 1995 173 240 217 3425
El Paso, TX 1996 77 237 198 3108
El Paso, TX 1997 157 241 180 2852
El Paso, TX 1998 116 168 164 2608
El Paso, TX 1999 146 159 150 2373
El Paso, TX 2000 105 177 137 2165
El Paso, TX 2001 111 145 125 1980
El Paso, TX 2002 102 130 115 1814
Fort Lauderdale, FL 1992 62 77 61 1515
Fort Lauderdale, FL 1993 56 61 60 1503
Fort Lauderdale, FL 1994 55 57 60 1509
Fort Lauderdale, FL 1995 44 51 61 1540
Fort Lauderdale, FL 1996 52 55 62 1600
Fort Lauderdale, FL 1997 69 68 64 1705
Fort Lauderdale, FL 1998 65 77 68 1836
Fort Lauderdale, FL 1999 81 93 71 1988
Fort Lauderdale, FL 2000 66 88 76 2171
Fort Lauderdale, FL 2001 79 92 82 2370
Fort Lauderdale, FL 2002 80 72 88 2598
Fort Worth--Arlington, TX 1992 218 281 209 6976
Fort Worth--Arlington, TX 1993 169 216 200 6601
Fort Worth--Arlington, TX 1994 181 224 193 6388
Fort Worth--Arlington, TX 1995 149 173 188 6273
Fort Worth--Arlington, TX 1996 120 187 184 6250
Fort Worth--Arlington, TX 1997 155 175 182 6336
Fort Worth--Arlington, TX 1998 179 185 181 6491
Fort Worth--Arlington, TX 1999 208 232 183 6703
Fort Worth--Arlington, TX 2000 192 194 185 6965
Fort Worth--Arlington, TX 2001 227 202 190 7272
Fort Worth--Arlington, TX 2002 171 171 196 7677
Fresno, CA 1992 108 220 192 3564
Fresno, CA 1993 131 283 187 3502
Fresno, CA 1994 83 238 180 3398
Fresno, CA 1995 103 315 173 3281
Fresno, CA 1996 99 286 164 3183
Fresno, CA 1997 86 238 154 3068
Fresno, CA 1998 86 169 143 2916
Fresno, CA 1999 100 153 131 2734
Fresno, CA 2000 89 143 117 2514
Fresno, CA 2001 80 108 103 2245
Fresno, CA 2002 76 81 87 1961
Gary, IN 1992 75 115 71 930
Gary, IN 1993 53 65 69 901
Gary, IN 1994 64 68 69 894
Gary, IN 1995 48 67 71 917
Gary, IN 1996 45 56 74 964
Gary, IN 1997 97 79 1031
Gary, IN 1998 104 86 1118
Gary, IN 1999 102 94 1219
Gary, IN 2000 144 105 1339
Gary, IN 2001 128 117 1473
Gary, IN 2002 130 130 1637
Grand Rapids--Muskegon--Holland,
MI
1992 25 47 36 792
Grand Rapids--Muskegon--Holland,
MI
1993 24 40 34 735
Grand Rapids--Muskegon--Holland,
MI
1994 28 37 32 697
Grand Rapids--Muskegon--Holland,
MI
1995 17 32 30 678
Grand Rapids--Muskegon--Holland,
MI
1996 21 35 30 677
Grand Rapids--Muskegon--Holland,
MI
1997 28 33 30 691
Grand Rapids--Muskegon--Holland,
MI
1998 29 35 31 720
Grand Rapids--Muskegon--Holland,
MI
1999 35 42 32 764
Grand Rapids--Muskegon--Holland,
MI
2000 29 39 35 825
Grand Rapids--Muskegon--Holland,
MI
2001 38 38 38 901
Grand Rapids--Muskegon--Holland,
MI
2002 35 33 41 995
Greensboro--Winston-Salem
--High Point, NC
1992 56 95 65 1616
Greensboro--Winston-Salem
--High Point, NC
1993 39 66 61 1491
Greensboro--Winston-Salem
--High Point, NC
1994 60 67 57 1400
Greensboro--Winston-Salem
--High Point, NC
1995 41 50 54 1338
Greensboro--Winston-Salem
--High Point, NC
1996 37 46 52 1301
Greensboro--Winston-Salem
--High Point, NC
1997 44 55 51 1290
Greensboro--Winston-Salem
--High Point, NC
1998 52 54 51 1302
Greensboro--Winston-Salem
--High Point, NC
1999 61 69 52 1332
Greensboro--Winston-Salem
--High Point, NC
2000 43 58 54 1390
Greensboro--Winston-Salem
--High Point, NC
2001 61 54 57 1455
Greensboro--Winston-Salem
--High Point, NC
2002 64 48 61 1544
Greenville--Spartanburg--Anderson,
SC
1992 44 45 882
Greenville--Spartanburg--Anderson,
SC
1993 33 40 41 810
Greenville--Spartanburg--Anderson,
SC
1994 37 39 756
Greenville--Spartanburg--Anderson,
SC
1995 26 37 725
Greenville--Spartanburg--Anderson,
SC
1996 19 36 716
Greenville--Spartanburg--Anderson,
SC
1997 32 33 36 722
Greenville--Spartanburg--Anderson,
SC
1998 35 40 37 748
Greenville--Spartanburg--Anderson,
SC
1999 49 44 39 791
Greenville--Spartanburg--Anderson,
SC
2000 33 43 42 847
Greenville--Spartanburg--Anderson,
SC
2001 52 40 45 916
Greenville--Spartanburg--Anderson,
SC
2002 47 45 49 1001
Harrisburg--Lebanon--Carlisle, PA 1992 59 88 61 779
Harrisburg--Lebanon--Carlisle, PA 1993 50 76 74 929
Harrisburg--Lebanon--Carlisle, PA 1994 59 100 87 1083
Harrisburg--Lebanon--Carlisle, PA 1995 61 78 101 1243
Harrisburg--Lebanon--Carlisle, PA 1996 83 94 115 1415
Harrisburg--Lebanon--Carlisle, PA 1997 144 130 130 1586
Harrisburg--Lebanon--Carlisle, PA 1998 179 156 146 1771
Harrisburg--Lebanon--Carlisle, PA 1999 229 189 162 1946
Harrisburg--Lebanon--Carlisle, PA 2000 209 174 179 2125
Harrisburg--Lebanon--Carlisle, PA 2001 269 153 197 2317
Harrisburg--Lebanon--Carlisle, PA 2002 211 147 215 2548
Hartford, CT 1992 162 149 3613
Hartford, CT 1993 149 146 3401
Hartford, CT 1994 149 143 3222
Hartford, CT 1995 142 140 3067
Hartford, CT 1996 153 137 2952
Hartford, CT 1997 158 135 2867
Hartford, CT 1998 142 133 2803
Hartford, CT 1999 143 132 2746
Hartford, CT 2000 142 130 2717
Hartford, CT 2001 124 129 2712
Hartford, CT 2002 130 128 2749
Honolulu, HI 1992 31 46 949
Honolulu, HI 1993 37 44 882
Honolulu, HI 1994 47 43 842
Honolulu, HI 1995 34 42 819
Honolulu, HI 1996 27 43 817
Honolulu, HI 1997 32 44 838
Honolulu, HI 1998 39 46 880
Honolulu, HI 1999 36 49 925
Honolulu, HI 2000 44 53 999
Honolulu, HI 2001 58 58 1090
Honolulu, HI 2002 53 64 1201
Houston, TX 1992 158 231 167 13893
Houston, TX 1993 117 160 156 13035
Houston, TX 1994 152 185 147 12288
Houston, TX 1995 114 131 138 11694
Houston, TX 1996 79 128 130 11240
Houston, TX 1997 113 126 123 10912
Houston, TX 1998 108 137 117 10685
Houston, TX 1999 129 159 112 10505
Houston, TX 2000 73 103 108 10334
Houston, TX 2001 112 121 105 10152
Houston, TX 2002 78 105 103 10133
Indianapolis, IN 1992 82 96 75 2419
Indianapolis, IN 1993 57 73 67 2157
Indianapolis, IN 1994 49 75 61 1950
Indianapolis, IN 1995 40 66 56 1805
Indianapolis, IN 1996 43 58 53 1719
Indianapolis, IN 1997 47 51 1685
Indianapolis, IN 1998 43 61 52 1702
Indianapolis, IN 1999 18 66 54 1771
Indianapolis, IN 2000 37 44 58 1895
Indianapolis, IN 2001 64 94 63 2074
Indianapolis, IN 2002 80 75 70 2318
Jacksonville, FL 1992 64 122 78 1683
Jacksonville, FL 1993 45 93 73 1534
Jacksonville, FL 1994 65 101 70 1444
Jacksonville, FL 1995 30 71 68 1407
Jacksonville, FL 1996 48 72 68 1448
Jacksonville, FL 1997 44 70 70 1515
Jacksonville, FL 1998 50 71 73 1608
Jacksonville, FL 1999 90 92 78 1727
Jacksonville, FL 2000 82 88 85 1899
Jacksonville, FL 2001 114 117 93 2109
Jacksonville, FL 2002 107 79 103 2378
Jersey City, NJ 1992 202 184 175 2468
Jersey City, NJ 1993 148 140 163 2280
Jersey City, NJ 1994 204 162 152 2113
Jersey City, NJ 1995 161 129 142 1978
Jersey City, NJ 1996 131 106 133 1870
Jersey City, NJ 1997 131 109 126 1788
Jersey City, NJ 1998 105 98 119 1717
Jersey City, NJ 1999 124 120 114 1656
Jersey City, NJ 2000 118 97 110 1605
Jersey City, NJ 2001 116 97 107 1527
Jersey City, NJ 2002 126 91 105 1445
Kansas City, MO--KS 1992 75 65 61 2063
Kansas City, MO--KS 1993 51 41 60 2036
Kansas City, MO--KS 1994 53 36 60 2018
Kansas City, MO--KS 1995 55 40 59 2008
Kansas City, MO--KS 1996 56 71 59 2012
Kansas City, MO--KS 1997 71 108 58 2016
Kansas City, MO--KS 1998 59 80 57 2018
Kansas City, MO--KS 1999 54 61 57 2011
Kansas City, MO--KS 2000 42 46 56 1997
Kansas City, MO--KS 2001 54 55 55 1966
Kansas City, MO--KS 2002 48 37 54 1950
Knoxville, TN 1992 102 107 92 1268
Knoxville, TN 1993 84 85 89 1225
Knoxville, TN 1994 85 71 87 1201
Knoxville, TN 1995 81 87 86 1195
Knoxville, TN 1996 80 84 85 1204
Knoxville, TN 1997 93 83 86 1210
Knoxville, TN 1998 90 76 88 1237
Knoxville, TN 1999 101 75 90 1272
Knoxville, TN 2000 127 84 94 1322
Knoxville, TN 2001 126 86 98 1394
Knoxville, TN 2002 120 65 104 1482
Las Vegas, NV--AZ 1992 94 155 125 2613
Las Vegas, NV--AZ 1993 107 124 123 2617
Las Vegas, NV--AZ 1994 142 147 121 2721
Las Vegas, NV--AZ 1995 98 127 119 2819
Las Vegas, NV--AZ 1996 92 119 118 2933
Las Vegas, NV--AZ 1997 88 141 117 3118
Las Vegas, NV--AZ 1998 90 140 117 3308
Las Vegas, NV--AZ 1999 117 144 117 3511
Las Vegas, NV--AZ 2000 118 132 118 3738
Las Vegas, NV--AZ 2001 122 127 119 3872
Las Vegas, NV--AZ 2002 101 110 120 4022
Little Rock--North Little Rock, AR 1992 198 180 2207
Little Rock--North Little Rock, AR 1993 152 173 2136
Little Rock--North Little Rock, AR 1994 175 167 2060
Little Rock--North Little Rock, AR 1995 166 162 2005
Little Rock--North Little Rock, AR 1996 114 158 1979
Little Rock--North Little Rock, AR 1997 145 155 1955
Little Rock--North Little Rock, AR 1998 142 152 1931
Little Rock--North Little Rock, AR 1999 160 150 1921
Little Rock--North Little Rock, AR 2000 146 149 1910
Little Rock--North Little Rock, AR 2001 151 149 1889
Little Rock--North Little Rock, AR 2002 128 149 1890
Los Angeles--Long Beach, CA 1992 79 127 103 23261
Los Angeles--Long Beach, CA 1993 80 121 99 21817
Los Angeles--Long Beach, CA 1994 62 108 95 20501
Los Angeles--Long Beach, CA 1995 69 126 92 19404
Los Angeles--Long Beach, CA 1996 69 121 89 18633
Los Angeles--Long Beach, CA 1997 65 120 87 18245
Los Angeles--Long Beach, CA 1998 63 115 85 18068
Los Angeles--Long Beach, CA 1999 60 96 84 17974
Los Angeles--Long Beach, CA 2000 58 97 83 17983
Los Angeles--Long Beach, CA 2001 58 96 83 17835
Los Angeles--Long Beach, CA 2002 63 107 83 17823
Louisville, KY--IN 1992 69 94 81 1676
Louisville, KY--IN 1993 59 51 82 1685
Louisville, KY--IN 1994 172 51 84 1719
Louisville, KY--IN 1995 157 73 87 1777
Louisville, KY--IN 1996 63 62 91 1856
Louisville, KY--IN 1997 80 96 1952
Louisville, KY--IN 1998 98 101 2068
Louisville, KY--IN 1999 83 108 2197
Louisville, KY--IN 2000 149 135 115 2332
Louisville, KY--IN 2001 155 142 123 2468
Louisville, KY--IN 2002 103 117 132 2638
Memphis, TN--AR--MS 1992 84 73 72 1728
Memphis, TN--AR--MS 1993 97 55 65 1562
Memphis, TN--AR--MS 1994 60 53 60 1442
Memphis, TN--AR--MS 1995 57 36 57 1360
Memphis, TN--AR--MS 1996 71 38 55 1314
Memphis, TN--AR--MS 1997 40 50 54 1297
Memphis, TN--AR--MS 1998 41 48 54 1320
Memphis, TN--AR--MS 1999 89 49 56 1373
Memphis, TN--AR--MS 2000 56 57 60 1456
Memphis, TN--AR--MS 2001 62 59 64 1556
Memphis, TN--AR--MS 2002 89 62 70 1697
Miami, FL 1992 69 116 78 3442
Miami, FL 1993 52 70 74 3177
Miami, FL 1994 72 67 70 3019
Miami, FL 1995 58 64 67 2914
Miami, FL 1996 55 63 65 2848
Miami, FL 1997 65 71 63 2805
Miami, FL 1998 50 73 62 2789
Miami, FL 1999 69 76 62 2828
Miami, FL 2000 56 73 62 2885
Miami, FL 2001 57 70 63 2926
Miami, FL 2002 60 49 65 2991
Middlesex--Somerset--Hunterdon,
NJ
1992 81 80 82 1878
Middlesex--Somerset--Hunterdon,
NJ
1993 80 83 82 1833
Middlesex--Somerset--Hunterdon,
NJ
1994 74 76 82 1808
Middlesex--Somerset--Hunterdon,
NJ
1995 86 75 83 1809
Middlesex--Somerset--Hunterdon,
NJ
1996 97 82 85 1833
Middlesex--Somerset--Hunterdon,
NJ
1997 108 82 88 1884
Middlesex--Somerset--Hunterdon,
NJ
1998 102 84 91 1957
Middlesex--Somerset--Hunterdon,
NJ
1999 101 84 94 2046
Middlesex--Somerset--Hunterdon,
NJ
2000 103 95 99 2154
Middlesex--Somerset--Hunterdon,
NJ
2001 107 94 104 2272
Middlesex--Somerset--Hunterdon,
NJ
2002 113 105 109 2401
Milwaukee--Waukesha, WI 1992 71 43 56 1751
Milwaukee--Waukesha, WI 1993 59 37 50 1567
Milwaukee--Waukesha, WI 1994 85 36 46 1430
Milwaukee--Waukesha, WI 1995 33 34 44 1342
Milwaukee--Waukesha, WI 1996 61 31 42 1295
Milwaukee--Waukesha, WI 1997 29 37 42 1283
Milwaukee--Waukesha, WI 1998 52 35 43 1312
Milwaukee--Waukesha, WI 1999 32 40 45 1376
Milwaukee--Waukesha, WI 2000 39 36 49 1479
Milwaukee--Waukesha, WI 2001 100 40 54 1612
Milwaukee--Waukesha, WI 2002 70 48 60 1797
Minneapolis--St. Paul, MN--WI 1992 60 70 57 3345
Minneapolis--St. Paul, MN--WI 1993 51 50 54 3132
Minneapolis--St. Paul, MN--WI 1994 50 49 52 3000
Minneapolis--St. Paul, MN--WI 1995 50 44 51 2966
Minneapolis--St. Paul, MN--WI 1996 51 52 51 3014
Minneapolis--St. Paul, MN--WI 1997 41 54 53 3138
Minneapolis--St. Paul, MN--WI 1998 50 57 55 3339
Minneapolis--St. Paul, MN--WI 1999 63 65 59 3618
Minneapolis--St. Paul, MN--WI 2000 53 33 64 3970
Minneapolis--St. Paul, MN--WI 2001 67 138 70 4346
Minneapolis--St. Paul, MN--WI 2002 61 66 77 4811
Monmouth--Ocean, NJ 1992 98 117 95 1751
Monmouth--Ocean, NJ 1993 80 92 97 1750
Monmouth--Ocean, NJ 1994 95 95 100 1771
Monmouth--Ocean, NJ 1995 102 82 104 1826
Monmouth--Ocean, NJ 1996 122 91 109 1900
Monmouth--Ocean, NJ 1997 141 120 115 2004
Monmouth--Ocean, NJ 1998 140 119 122 2139
Monmouth--Ocean, NJ 1999 142 113 130 2295
Monmouth--Ocean, NJ 2000 165 134 139 2479
Monmouth--Ocean, NJ 2001 144 120 149 2724
Monmouth--Ocean, NJ 2002 187 152 161 3027
Nashville, TN 1992 79 94 79 1893
Nashville, TN 1993 63 80 76 1851
Nashville, TN 1994 80 78 74 1834
Nashville, TN 1995 70 74 73 1846
Nashville, TN 1996 33 71 73 1884
Nashville, TN 1997 44 80 74 1948
Nashville, TN 1998 91 92 76 2026
Nashville, TN 1999 115 66 78 2115
Nashville, TN 2000 101 67 81 2228
Nashville, TN 2001 98 85 86 2352
Nashville, TN 2002 84 72 91 2481
Nassau--Suffolk, NY 1992 44 46 43 2357
Nassau--Suffolk, NY 1993 41 44 45 2375
Nassau--Suffolk, NY 1994 41 34 47 2430
Nassau--Suffolk, NY 1995 51 38 51 2530
Nassau--Suffolk, NY 1996 61 41 55 2670
Nassau--Suffolk, NY 1997 81 58 59 2859
Nassau--Suffolk, NY 1998 90 59 65 3098
Nassau--Suffolk, NY 1999 84 52 71 3361
Nassau--Suffolk, NY 2000 104 75 78 3674
Nassau--Suffolk, NY 2001 83 58 86 4096
Nassau--Suffolk, NY 2002 111 84 95 4573
New Haven--Meriden, CT 1992 147 135 4573
New Haven--Meriden, CT 1993 130 133 4352
New Haven--Meriden, CT 1994 131 130 4165
New Haven--Meriden, CT 1995 143 129 4019
New Haven--Meriden, CT 1996 144 127 3916
New Haven--Meriden, CT 1997 140 126 3855
New Haven--Meriden, CT 1998 141 126 3816
New Haven--Meriden, CT 1999 133 125 3780
New Haven--Meriden, CT 2000 136 125 3775
New Haven--Meriden, CT 2001 125 126 3786
New Haven--Meriden, CT 2002 127 126 3845
New Orleans, LA 1992 158 142 127 3726
New Orleans, LA 1993 113 144 133 3855
New Orleans, LA 1994 138 155 141 4068
New Orleans, LA 1995 117 140 151 4367
New Orleans, LA 1996 131 143 164 4719
New Orleans, LA 1997 154 143 179 5144
New Orleans, LA 1998 219 201 196 5632
New Orleans, LA 1999 241 258 215 6164
New Orleans, LA 2000 248 206 237 6722
New Orleans, LA 2001 336 296 261 7337
New Orleans, LA 2002 275 249 288 8057
New York, NY 1992 102 97 96 18978
New York, NY 1993 96 104 90 17764
New York, NY 1994 81 98 86 16874
New York, NY 1995 80 77 84 16368
New York, NY 1996 81 80 83 16306
New York, NY 1997 83 70 84 16686
New York, NY 1998 83 71 87 17470
New York, NY 1999 79 62 92 18512
New York, NY 2000 93 102 99 19852
New York, NY 2001 88 206 107 21348
New York, NY 2002 102 112 117 23133
Newark, NJ 1992 149 138 132 5350
Newark, NJ 1993 136 108 128 5060
Newark, NJ 1994 148 115 125 4822
Newark, NJ 1995 134 99 122 4657
Newark, NJ 1996 130 95 121 4563
Newark, NJ 1997 135 104 122 4537
Newark, NJ 1998 137 106 123 4574
Newark, NJ 1999 147 109 125 4652
Newark, NJ 2000 153 123 129 4762
Newark, NJ 2001 149 106 133 4908
Newark, NJ 2002 169 114 139 5117
Norfolk--Virginia Beach--Newport News, VA--NC 1992 25 70 44 1717
Norfolk--Virginia Beach--Newport News, VA--NC 1993 20 51 1948
Norfolk--Virginia Beach--Newport News, VA--NC 1994 26 58 2145
Norfolk--Virginia Beach--Newport News, VA--NC 1995 31 64 2346
Norfolk--Virginia Beach--Newport News, VA--NC 1996 57 72 70 2546
Norfolk--Virginia Beach--Newport News, VA--NC 1997 67 76 2738
Norfolk--Virginia Beach--Newport News, VA--NC 1998 70 155 82 2911
Norfolk--Virginia Beach--Newport News, VA--NC 1999 92 160 88 3113
Norfolk--Virginia Beach--Newport News, VA--NC 2000 73 105 93 3326
Norfolk--Virginia Beach--Newport News, VA--NC 2001 108 79 99 3499
Norfolk--Virginia Beach--Newport News, VA--NC 2002 84 76 104 3738
Oakland, CA 1992 71 119 106 4985
Oakland, CA 1993 78 131 103 4753
Oakland, CA 1994 56 125 100 4529
Oakland, CA 1995 70 160 97 4341
Oakland, CA 1996 62 139 93 4185
Oakland, CA 1997 73 130 90 4078
Oakland, CA 1998 66 106 86 3988
Oakland, CA 1999 68 82 82 3871
Oakland, CA 2000 66 78 78 3746
Oakland, CA 2001 66 76 73 3572
Oakland, CA 2002 58 68 68 3303
Oklahoma City, OK 1992 85 126 103 2357
Oklahoma City, OK 1993 86 107 100 2294
Oklahoma City, OK 1994 90 98 97 2241
Oklahoma City, OK 1995 103 107 94 2210
Oklahoma City, OK 1996 82 92 93 2206
Oklahoma City, OK 1997 94 83 91 2221
Oklahoma City, OK 1998 74 99 91 2244
Oklahoma City, OK 1999 91 99 91 2280
Oklahoma City, OK 2000 90 105 91 2305
Oklahoma City, OK 2001 87 99 93 2356
Oklahoma City, OK 2002 91 83 94 2422
Omaha, NE--IA 1992 45 58 50 740
Omaha, NE--IA 1993 47 43 50 728
Omaha, NE--IA 1994 48 47 51 736
Omaha, NE--IA 1995 50 52 52 766
Omaha, NE--IA 1996 44 58 54 816
Omaha, NE--IA 1997 54 73 57 876
Omaha, NE--IA 1998 50 82 61 945
Omaha, NE--IA 1999 60 70 66 1028
Omaha, NE--IA 2000 62 70 71 1120
Omaha, NE--IA 2001 72 88 78 1221
Omaha, NE--IA 2002 81 85 85 1342
Orange County, CA 1992 108 147 131 8032
Orange County, CA 1993 111 159 124 7441
Orange County, CA 1994 82 133 117 6931
Orange County, CA 1995 83 155 112 6522
Orange County, CA 1996 87 151 107 6200
Orange County, CA 1997 89 114 102 6040
Orange County, CA 1998 82 109 99 5920
Orange County, CA 1999 76 94 96 5769
Orange County, CA 2000 85 91 93 5679
Orange County, CA 2001 79 92 91 5544
Orange County, CA 2002 89 109 90 5451
Orlando, FL 1992 54 71 50 1486
Orlando, FL 1993 45 43 55 1637
Orlando, FL 1994 52 64 61 1833
Orlando, FL 1995 43 55 68 2070
Orlando, FL 1996 61 67 77 2376
Orlando, FL 1997 96 84 87 2766
Orlando, FL 1998 110 95 98 3213
Orlando, FL 1999 146 125 110 3705
Orlando, FL 2000 127 120 124 4283
Orlando, FL 2001 171 134 139 4911
Orlando, FL 2002 156 123 155 5602
Philadelphia, PA--NJ 1992 112 118 101 10801
Philadelphia, PA--NJ 1993 97 101 106 11095
Philadelphia, PA--NJ 1994 112 100 112 11563
Philadelphia, PA--NJ 1995 111 95 119 12207
Philadelphia, PA--NJ 1996 139 106 129 13007
Philadelphia, PA--NJ 1997 165 117 139 14007
Philadelphia, PA--NJ 1998 177 132 152 15164
Philadelphia, PA--NJ 1999 208 153 166 16425
Philadelphia, PA--NJ 2000 218 143 181 17849
Philadelphia, PA--NJ 2001 234 179 198 19430
Philadelphia, PA--NJ 2002 252 180 217 21334
Phoenix--Mesa, AZ 1992 121 111 6060
Phoenix--Mesa, AZ 1993 108 107 5919
Phoenix--Mesa, AZ 1994 123 103 5942
Phoenix--Mesa, AZ 1995 115 100 6022
Phoenix--Mesa, AZ 1996 109 98 6126
Phoenix--Mesa, AZ 1997 98 96 6317
Phoenix--Mesa, AZ 1998 97 96 6526
Phoenix--Mesa, AZ 1999 95 96 6776
Phoenix--Mesa, AZ 2000 96 97 7076
Phoenix--Mesa, AZ 2001 108 100 7397
Phoenix--Mesa, AZ 2002 118 102 7799
Pittsburgh, PA 1992 39 56 42 1957
Pittsburgh, PA 1993 38 51 40 1844
Pittsburgh, PA 1994 33 48 41 1838
Pittsburgh, PA 1995 33 48 44 1940
Pittsburgh, PA 1996 34 53 49 2146
Pittsburgh, PA 1997 49 58 57 2450
Pittsburgh, PA 1998 46 52 67 2850
Pittsburgh, PA 1999 89 63 79 3320
Pittsburgh, PA 2000 114 61 94 3879
Pittsburgh, PA 2001 160 72 111 4540
Pittsburgh, PA 2002 184 115 130 5323
Portland--Vancouver, OR--WA 1992 220 220 213 7064
Portland--Vancouver, OR--WA 1993 226 222 208 7049
Portland--Vancouver, OR--WA 1994 170 188 204 7061
Portland--Vancouver, OR--WA 1995 198 221 201 7169
Portland--Vancouver, OR--WA 1996 178 221 200 7369
Portland--Vancouver, OR--WA 1997 177 233 199 7593
Portland--Vancouver, OR--WA 1998 178 235 200 7824
Portland--Vancouver, OR--WA 1999 158 211 201 8059
Portland--Vancouver, OR--WA 2000 175 241 204 8300
Portland--Vancouver, OR--WA 2001 164 237 208 8534
Portland--Vancouver, OR--WA 2002 191 263 213 8827
Providence--Fall River--Warwick,
RI--MA
1992 62 72 1531
Providence--Fall River--Warwick,
RI--MA
1993 69 75 1558
Providence--Fall River--Warwick,
RI--MA
1994 56 49 78 1591
Providence--Fall River--Warwick,
RI--MA
1995 91 72 81 1626
Providence--Fall River--Warwick,
RI--MA
1996 101 81 84 1670
Providence--Fall River--Warwick,
RI--MA
1997 112 90 87 1720
Providence--Fall River--Warwick,
RI--MA
1998 124 92 89 1777
Providence--Fall River--Warwick,
RI--MA
1999 76 75 92 1824
Providence--Fall River--Warwick,
RI--MA
2000 137 123 95 1883
Providence--Fall River--Warwick,
RI--MA
2001 74 56 98 1960
Providence--Fall River--Warwick,
RI--MA
2002 131 70 102 2046
Raleigh--Durham--Chapel Hill, NC 1992 82 90 74 1797
Raleigh--Durham--Chapel Hill, NC 1993 52 62 67 1661
Raleigh--Durham--Chapel Hill, NC 1994 59 68 61 1545
Raleigh--Durham--Chapel Hill, NC 1995 47 52 56 1454
Raleigh--Durham--Chapel Hill, NC 1996 55 49 52 1378
Raleigh--Durham--Chapel Hill, NC 1997 56 44 49 1321
Raleigh--Durham--Chapel Hill, NC 1998 45 42 46 1279
Raleigh--Durham--Chapel Hill, NC 1999 54 38 45 1254
Raleigh--Durham--Chapel Hill, NC 2000 40 48 44 1244
Raleigh--Durham--Chapel Hill, NC 2001 45 46 44 1255
Raleigh--Durham--Chapel Hill, NC 2002 40 37 44 1285
Richmond--Petersburg, VA 1992 79 77 1518
Richmond--Petersburg, VA 1993 53 82 1620
Richmond--Petersburg, VA 1994 69 88 1723
Richmond--Petersburg, VA 1995 60 95 1833
Richmond--Petersburg, VA 1996 99 101 1952
Richmond--Petersburg, VA 1997 107 2094
Richmond--Petersburg, VA 1998 113 2237
Richmond--Petersburg, VA 1999 164 120 2372
Richmond--Petersburg, VA 2000 155 127 2526
Richmond--Petersburg, VA 2001 154 145 133 2678
Richmond--Petersburg, VA 2002 128 81 140 2859
Riverside--San Bernardino, CA 1992 112 171 145 9112
Riverside--San Bernardino, CA 1993 116 195 135 8411
Riverside--San Bernardino, CA 1994 79 149 126 7755
Riverside--San Bernardino, CA 1995 84 159 117 7199
Riverside--San Bernardino, CA 1996 74 139 108 6682
Riverside--San Bernardino, CA 1997 66 138 99 6261
Riverside--San Bernardino, CA 1998 68 120 90 5886
Riverside--San Bernardino, CA 1999 60 97 82 5516
Riverside--San Bernardino, CA 2000 50 92 74 5139
Riverside--San Bernardino, CA 2001 43 77 66 4853
Riverside--San Bernardino, CA 2002 42 68 58 4522
Rochester, NY 1992 37 44 1043
Rochester, NY 1993 32 49 45 1054
Rochester, NY 1994 40 55 47 1080
Rochester, NY 1995 40 46 50 1126
Rochester, NY 1996 47 56 54 1194
Rochester, NY 1997 60 60 59 1283
Rochester, NY 1998 72 63 64 1392
Rochester, NY 1999 79 68 70 1515
Rochester, NY 2000 91 65 78 1668
Rochester, NY 2001 102 88 86 1853
Rochester, NY 2002 99 72 95 2069
Sacramento, CA 1992 95 199 154 4721
Sacramento, CA 1993 86 217 149 4480
Sacramento, CA 1994 80 187 144 4240
Sacramento, CA 1995 70 237 138 4070
Sacramento, CA 1996 81 203 132 3923
Sacramento, CA 1997 92 192 126 3808
Sacramento, CA 1998 94 133 120 3699
Sacramento, CA 1999 88 118 113 3577
Sacramento, CA 2000 89 132 106 3442
Sacramento, CA 2001 70 123 98 3358
Sacramento, CA 2002 75 83 90 3249
St. Louis, MO--IL 1992 67 92 64 3413
St. Louis, MO--IL 1993 44 58 60 3133
St. Louis, MO--IL 1994 42 71 57 2933
St. Louis, MO--IL 1995 40 56 55 2823
St. Louis, MO--IL 1996 45 56 54 2789
St. Louis, MO--IL 1997 48 54 55 2827
St. Louis, MO--IL 1998 52 50 57 2926
St. Louis, MO--IL 1999 64 64 60 3089
St. Louis, MO--IL 2000 77 57 64 3317
St. Louis, MO--IL 2001 87 70 70 3623
St. Louis, MO--IL 2002 84 57 77 4010
Salt Lake City--Ogden, UT 1992 61 80 81 2246
Salt Lake City--Ogden, UT 1993 71 89 88 2531
Salt Lake City--Ogden, UT 1994 65 81 94 2821
Salt Lake City--Ogden, UT 1995 90 129 99 3099
Salt Lake City--Ogden, UT 1996 97 136 104 3362
Salt Lake City--Ogden, UT 1997 101 155 108 3604
Salt Lake City--Ogden, UT 1998 100 153 111 3796
Salt Lake City--Ogden, UT 1999 79 143 114 3957
Salt Lake City--Ogden, UT 2000 94 143 116 4091
Salt Lake City--Ogden, UT 2001 90 129 118 4156
Salt Lake City--Ogden, UT 2002 92 120 118 4210
San Antonio, TX 1992 200 287 210 6896
San Antonio, TX 1993 147 240 194 6363
San Antonio, TX 1994 159 213 180 5959
San Antonio, TX 1995 122 180 168 5628
San Antonio, TX 1996 105 172 157 5322
San Antonio, TX 1997 125 168 149 5105
San Antonio, TX 1998 144 139 142 4960
San Antonio, TX 1999 141 143 137 4857
San Antonio, TX 2000 122 117 134 4804
San Antonio, TX 2001 143 133 4800
San Antonio, TX 2002 124 157 133 4907
San Diego, CA 1992 73 120 104 6910
San Diego, CA 1993 83 125 102 6544
San Diego, CA 1994 81 116 101 6301
San Diego, CA 1995 84 132 99 6119
San Diego, CA 1996 86 121 98 6052
San Diego, CA 1997 91 121 98 6093
San Diego, CA 1998 86 103 98 6190
San Diego, CA 1999 91 87 98 6359
San Diego, CA 2000 109 86 99 6489
San Diego, CA 2001 107 99 100 6656
San Diego, CA 2002 102 98 102 6858
San Francisco, CA 1992 170 252 218 7655
San Francisco, CA 1993 178 268 221 7661
San Francisco, CA 1994 143 246 223 7583
San Francisco, CA 1995 168 264 223 7534
San Francisco, CA 1996 181 302 221 7477
San Francisco, CA 1997 174 303 218 7472
San Francisco, CA 1998 182 379 213 7387
San Francisco, CA 1999 156 232 207 7200
San Francisco, CA 2000 155 193 198 6953
San Francisco, CA 2001 166 227 189 6368
San Francisco, CA 2002 154 149 177 5649
San Jose, CA 1992 100 114 110 4030
San Jose, CA 1993 91 107 101 3644
San Jose, CA 1994 67 132 93 3286
San Jose, CA 1995 67 129 85 3001
San Jose, CA 1996 49 124 78 2767
San Jose, CA 1997 55 95 72 2579
San Jose, CA 1998 48 52 66 2399
San Jose, CA 1999 46 61 61 2222
San Jose, CA 2000 46 49 57 2069
San Jose, CA 2001 38 63 53 1870
San Jose, CA 2002 40 71 49 1661
Sarasota--Bradenton, FL 1992 38 87 60 446
Sarasota--Bradenton, FL 1993 33 87 71 518
Sarasota--Bradenton, FL 1994 74 122 83 602
Sarasota--Bradenton, FL 1995 51 83 97 702
Sarasota--Bradenton, FL 1996 69 122 112 816
Sarasota--Bradenton, FL 1997 95 190 129 954
Sarasota--Bradenton, FL 1998 147 180 147 1112
Sarasota--Bradenton, FL 1999 170 179 167 1286
Sarasota--Bradenton, FL 2000 164 191 189 1484
Sarasota--Bradenton, FL 2001 234 227 212 1736
Sarasota--Bradenton, FL 2002 265 206 236 2035
Scranton--Wilkes-Barre--Hazleton,
PA
1992 56 40 44 572
Scranton--Wilkes-Barre--Hazleton,
PA
1993 41 38 46 588
Scranton--Wilkes-Barre--Hazleton,
PA
1994 47 39 49 614
Scranton--Wilkes-Barre--Hazleton,
PA
1995 51 43 53 654
Scranton--Wilkes-Barre--Hazleton,
PA
1996 67 45 58 705
Scranton--Wilkes-Barre--Hazleton,
PA
1997 78 58 64 765
Scranton--Wilkes-Barre--Hazleton,
PA
1998 84 85 70 835
Scranton--Wilkes-Barre--Hazleton,
PA
1999 80 66 78 911
Scranton--Wilkes-Barre--Hazleton,
PA
2000 101 85 86 996
Scranton--Wilkes-Barre--Hazleton,
PA
2001 90 79 96 1100
Scranton--Wilkes-Barre--Hazleton,
PA
2002 127 93 106 1222
Seattle--Bellevue--Everett, WA 1992 115 142 157 7187
Seattle--Bellevue--Everett, WA 1993 147 187 163 7469
Seattle--Bellevue--Everett, WA 1994 128 183 169 7672
Seattle--Bellevue--Everett, WA 1995 139 240 173 7913
Seattle--Bellevue--Everett, WA 1996 150 258 176 8187
Seattle--Bellevue--Everett, WA 1997 151 247 178 8523
Seattle--Bellevue--Everett, WA 1998 147 241 179 8770
Seattle--Bellevue--Everett, WA 1999 115 207 179 8886
Seattle--Bellevue--Everett, WA 2000 119 227 178 8905
Seattle--Bellevue--Everett, WA 2001 108 234 176 8786
Seattle--Bellevue--Everett, WA 2002 118 214 172 8529
Springfield, MA 1992 108 125 115 1672
Springfield, MA 1993 106 141 124 1765
Springfield, MA 1994 109 122 135 1874
Springfield, MA 1995 131 154 146 1995
Springfield, MA 1996 146 156 158 2124
Springfield, MA 1997 177 179 171 2280
Springfield, MA 1998 210 205 184 2454
Springfield, MA 1999 195 199 2638
Springfield, MA 2000 229 214 2845
Springfield, MA 2001 204 231 3074
Springfield, MA 2002 245 248 3370
Stockton--Lodi, CA 1992 189 165 161 1761
Stockton--Lodi, CA 1993 140 159 157 1708
Stockton--Lodi, CA 1994 122 162 154 1658
Stockton--Lodi, CA 1995 79 175 151 1631
Stockton--Lodi, CA 1996 92 207 148 1616
Stockton--Lodi, CA 1997 100 272 145 1625
Stockton--Lodi, CA 1998 121 190 143 1642
Stockton--Lodi, CA 1999 117 161 141 1673
Stockton--Lodi, CA 2000 119 134 140 1716
Stockton--Lodi, CA 2001 107 145 139 1808
Stockton--Lodi, CA 2002 107 179 138 1884
Syracuse, NY 1992 31 41 713
Syracuse, NY 1993 25 51 38 633
Syracuse, NY 1994 30 51 35 566
Syracuse, NY 1995 30 35 33 518
Syracuse, NY 1996 25 19 31 486
Syracuse, NY 1997 26 30 31 471
Syracuse, NY 1998 28 28 31 471
Syracuse, NY 1999 44 42 33 483
Syracuse, NY 2000 35 25 35 510
Syracuse, NY 2001 49 32 38 557
Syracuse, NY 2002 45 29 42 624
Tacoma, WA 1992 102 105 118 1649
Tacoma, WA 1993 92 142 121 1684
Tacoma, WA 1994 87 142 125 1728
Tacoma, WA 1995 103 178 127 1775
Tacoma, WA 1996 109 178 129 1813
Tacoma, WA 1997 126 176 131 1859
Tacoma, WA 1998 133 143 133 1913
Tacoma, WA 1999 118 151 134 1965
Tacoma, WA 2000 129 99 134 1997
Tacoma, WA 2001 120 153 134 2040
Tacoma, WA 2002 131 128 134 2086
Tampa--St. Petersburg--Clearwater,
FL
1992 78 112 78 3095
Tampa--St. Petersburg--Clearwater,
FL
1993 63 84 80 3100
Tampa--St. Petersburg--Clearwater,
FL
1994 71 103 82 3170
Tampa--St. Petersburg--Clearwater,
FL
1995 59 71 87 3334
Tampa--St. Petersburg--Clearwater,
FL
1996 62 88 93 3578
Tampa--St. Petersburg--Clearwater,
FL
1997 79 110 100 3933
Tampa--St. Petersburg--Clearwater,
FL
1998 102 119 109 4375
Tampa--St. Petersburg--Clearwater,
FL
1999 142 148 120 4872
Tampa--St. Petersburg--Clearwater,
FL
2000 131 136 132 5447
Tampa--St. Petersburg--Clearwater,
FL
2001 161 163 146 6118
Tampa--St. Petersburg--Clearwater,
FL
2002 163 136 162 6898
Toledo, OH 1992 31 53 39 569
Toledo, OH 1993 24 45 36 524
Toledo, OH 1994 26 39 35 495
Toledo, OH 1995 28 36 34 485
Toledo, OH 1996 18 39 35 489
Toledo, OH 1997 38 45 36 508
Toledo, OH 1998 27 50 39 542
Toledo, OH 1999 28 44 42 586
Toledo, OH 2000 60 47 643
Toledo, OH 2001 67 47 52 716
Toledo, OH 2002 59 48 58 805
Tucson, AZ 1992 180 167 2678
Tucson, AZ 1993 165 166 2696
Tucson, AZ 1994 160 166 2762
Tucson, AZ 1995 171 166 2831
Tucson, AZ 1996 193 167 2889
Tucson, AZ 1997 233 169 2978
Tucson, AZ 1998 189 171 3061
Tucson, AZ 1999 137 174 3161
Tucson, AZ 2000 134 178 3292
Tucson, AZ 2001 228 182 3425
Tucson, AZ 2002 205 187 3595
Tulsa, OK 1992 105 105 106 1639
Tulsa, OK 1993 98 90 107 1649
Tulsa, OK 1994 118 116 108 1657
Tulsa, OK 1995 110 107 109 1684
Tulsa, OK 1996 107 110 111 1735
Tulsa, OK 1997 116 126 113 1799
Tulsa, OK 1998 116 128 114 1868
Tulsa, OK 1999 127 121 116 1933
Tulsa, OK 2000 102 113 119 1974
Tulsa, OK 2001 123 131 121 2020
Tulsa, OK 2002 110 121 124 2077
Ventura, CA 1992 87 120 109 1637
Ventura, CA 1993 88 124 110 1607
Ventura, CA 1994 62 138 111 1598
Ventura, CA 1995 94 154 112 1591
Ventura, CA 1996 88 173 113 1604
Ventura, CA 1997 102 153 115 1645
Ventura, CA 1998 102 119 116 1693
Ventura, CA 1999 79 113 118 1754
Ventura, CA 2000 120 143 121 1826
Ventura, CA 2001 96 146 124 1893
Ventura, CA 2002 122 130 126 1995
Washington, DC--MD--VA--WV 1992 56 79 57 5779
Washington, DC--MD--VA--WV 1993 37 53 53 5283
Washington, DC--MD--VA--WV 1994 41 57 50 4939
Washington, DC--MD--VA--WV 1995 49 44 49 4741
Washington, DC--MD--VA--WV 1996 43 58 49 4718
Washington, DC--MD--VA--WV 1997 40 46 50 4839
Washington, DC--MD--VA--WV 1998 51 57 52 5120
Washington, DC--MD--VA--WV 1999 50 54 56 5551
Washington, DC--MD--VA--WV 2000 55 62 61 6138
Washington, DC--MD--VA--WV 2001 66 72 68 6880
Washington, DC--MD--VA--WV 2002 69 92 76 7731
West Palm Beach--Boca Raton, FL 1992 136 146 114 1775
West Palm Beach--Boca Raton, FL 1993 86 96 117 1818
West Palm Beach--Boca Raton, FL 1994 139 114 120 1883
West Palm Beach--Boca Raton, FL 1995 83 95 125 1966
West Palm Beach--Boca Raton, FL 1996 123 116 130 2078
West Palm Beach--Boca Raton, FL 1997 173 136 136 2231
West Palm Beach--Boca Raton, FL 1998 168 136 144 2408
West Palm Beach--Boca Raton, FL 1999 204 145 152 2600
West Palm Beach--Boca Raton, FL 2000 175 135 161 2804
West Palm Beach--Boca Raton, FL 2001 191 192 171 3055
West Palm Beach--Boca Raton, FL 2002 161 161 182 3383
Wichita, KS 1992 53 56 595
Wichita, KS 1993 47 58 55 588
Wichita, KS 1994 38 56 592
Wichita, KS 1995 48 57 612
Wichita, KS 1996 52 60 650
Wichita, KS 1997 60 64 702
Wichita, KS 1998 64 68 772
Wichita, KS 1999 60 74 844
Wichita, KS 2000 73 81 921
Wichita, KS 2001 83 89 1012
Wichita, KS 2002 94 98 1125
Wilmington--Newark, DE--MD 1992 215 161 135 1652
Wilmington--Newark, DE--MD 1993 82 103 141 1706
Wilmington--Newark, DE--MD 1994 159 149 149 1789
Wilmington--Newark, DE--MD 1995 126 104 159 1908
Wilmington--Newark, DE--MD 1996 160 144 170 2049
Wilmington--Newark, DE--MD 1997 205 178 184 2216
Wilmington--Newark, DE--MD 1998 238 201 199 2409
Wilmington--Newark, DE--MD 1999 274 214 215 2625
Wilmington--Newark, DE--MD 2000 274 231 234 2865
Wilmington--Newark, DE--MD 2001 294 212 254 3113
Wilmington--Newark, DE--MD 2002 308 221 276 3392
Youngstown--Warren, OH 1992 22 40 28 325
Youngstown--Warren, OH 1993 14 27 26 295
Youngstown--Warren, OH 1994 20 26 25 281
Youngstown--Warren, OH 1995 19 30 25 280
Youngstown--Warren, OH 1996 21 39 26 294
Youngstown--Warren, OH 1997 21 35 29 319
Youngstown--Warren, OH 1998 23 45 33 358
Youngstown--Warren, OH 1999 27 34 37 406
Youngstown--Warren, OH 2000 31 52 44 466
Youngstown--Warren, OH 2001 47 39 51 538
Youngstown--Warren, OH 2002 89 50 59 624

Footnotes

1

For each data series, cells were defined by year and MSA; 11 years × 95 MSAs = 1,045 cells.

Contributor Information

Sudip Chatterjee, National Development and Research Institutes, Inc., 71 West 23rd Street, New York, NY 10010, USA.

Barbara Tempalski, National Development and Research Institutes, Inc., 71 West 23rd Street, New York, NY 10010, USA.

Enrique R. Pouget, National Development and Research Institutes, Inc., 71 West 23rd Street, New York, NY 10010, USA

Hannah L. F. Cooper, Behavioral Science & Health Education, Rollins School of Public Health, Emory University, Atlanta, GA, USA

Charles M. Cleland, College of Nursing, New York University, New York, NY, USA

Samuel R. Friedman, Email: friedman@ndri.org, Department of Epidemiology, John Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; National Development and Research Institutes, Inc., 71 West 23rd Street, New York, NY 10010, USA.

References

  • 1.Miller CL, Spittal PM, LaLiberte N, Li K, Tyndall MW, O';Shaughnessy MV, Schechter MT. Females experiencing sexual and drug vulnerabilities are at elevated risk for HIV infection among youth who use injection drugs. J Acquir Immune Defic Syndr. 2002;30:335–41. doi: 10.1097/00126334-200207010-00010. [DOI] [PubMed] [Google Scholar]
  • 2.Miller CL, Tyndall M, Spittal P, Li K, LaLiberte N, Schechter MT. HIV incidence and associated risk factors among young injection drug users. AIDS. 2002;16:491–3. doi: 10.1097/00002030-200202150-00025. [DOI] [PubMed] [Google Scholar]
  • 3.Fennema JS, Van Ameijden EJ, Van Den Hoek A, Coutinho RA. Young and recent-onset injecting drug users are at higher risk for HIV. Addiction. 1997;92:1457–65. [PubMed] [Google Scholar]
  • 4.Doherty MC, Garfein RS, Monterroso E, Brown D, Vlahov D. Correlates of HIV infection among young adult short-term injection drug users. AIDS. 2000;14:717–26. doi: 10.1097/00002030-200004140-00011. [DOI] [PubMed] [Google Scholar]
  • 5.Judd A, Hickman M, Jones S, McDonald T, Parry JV, Stimson JV, Hall AJ. Incidence of hepatitis C virus and HIV among new injecting drug users in London: prospective cohort study. BMJ. 2005;330:24–5. doi: 10.1136/bmj.38286.841227.7C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Hahn JA, Page-Shafer K, Lum PJ, Bourgois P, Stein E, Evans JL, Busch MP, Tobler LH, Phelps B, Moss AR. Hepatitis C virus seroconversion among young injection drug users: relationships and risks. J Infect Dis. 2002;186:1558–64. doi: 10.1086/345554. [DOI] [PubMed] [Google Scholar]
  • 7.Des Jarlais DC, Diaz T, Perlis T, Vlahov D, Maslow C, Latka M, Rockwell R, Edwards V, Friedman SR, Monterroso E, Williams I, Garfein R. Variability in the incidence of human immunodeficiency virus, hepatitis B virus, and hepatitis C virus infection among young injecting drug users in New York City. Am J Epidemiol. 2003;157:467–71. doi: 10.1093/aje/kwf222. [DOI] [PubMed] [Google Scholar]
  • 8.Hagan H, Thiede H, Weiss NS, Hopkins SG, Duchin JS, Alexander ER. Sharing of drug preparation equipment as a risk factor for hepatitis C. Am J Public Health. 2001;91(1):42–6. doi: 10.2105/ajph.91.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Garfein RS, Doherty MC, Monterroso ER, Thomas DL, Nelson KE, Vlahov D. Prevalence and incidence of hepatitis C virus infection among young adult injection drug users. J Acquir Immune Defic Syndr Hum Retrovir. 1998;18(Suppl 1):S11–9. doi: 10.1097/00042560-199802001-00004. [DOI] [PubMed] [Google Scholar]
  • 10.Hahn JA, Page-Shafer K, Lum PJ, Ochoa K, Moss AR. Hepatitis C virus infection and needle exchange use among young injection drug users in San Francisco. Hepatology. 2001;34:180–7. doi: 10.1053/jhep.2001.25759. [DOI] [PubMed] [Google Scholar]
  • 11.Kral AH, Lorvick J, Edlin BR. Sex- and drug-related risk among populations of younger and older injection drug users in adjacent neighborhoods in San Francisco. J Acquir Immune Defic Syndr. 2000;24:162–7. doi: 10.1097/00126334-200006010-00011. [DOI] [PubMed] [Google Scholar]
  • 12.Thorpe L, Ouellet L, Levy J, Williams I, Monterroso E. Hepatitis C virus infection: prevalence, risk factors, and prevention opportunities among young injection drug users in Chicago, 1997–1999. J Infect Dis. 2000;182:1588–94. doi: 10.1086/317607. [DOI] [PubMed] [Google Scholar]
  • 13.Ochoa KC, Hahn JA, Seal KH, Moss AR. Overdosing among young injection drug users in San Francisco. Addict Behav. 2001;26:453–60. doi: 10.1016/s0306-4603(00)00115-5. [DOI] [PubMed] [Google Scholar]
  • 14.Cooper HLF, Brady JE, Friedman SR, Tempalski B, Gostnell K, Flom PL. Estimating the prevalence of injection drug use among Black and White adults in large U.S. metropolitan areas over time (1992–2002): estimation methods and prevalence trends. J Urban Health. 2008;85:826–56. doi: 10.1007/s11524-008-9304-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Wright D, Gfroerer J, Epstein J. The use of external data sources and ratio estimation to improve estimates of hardcore drug use from the NHSDA NIDA research monograph, vol 167. Rockville: Office of Applied Studies, Substance Abuse and Mental Health Services Administration; 1997. [PubMed] [Google Scholar]
  • 16.Wright D, Gfroerer J, Epstein J. Ratio estimation of hardcore drug use. J Off Stat. 1997;13:401–16. [PubMed] [Google Scholar]
  • 17.Archibald CP, Jayaraman GC, Major C, Patrick DM, Houston SM, Sutherland D. Estimating the size of hard-to-reach populations: a novel method using HIV testing data compared to other methods. AIDS. 2001;15(Suppl 3):S41–8. doi: 10.1097/00002030-200104003-00006. [DOI] [PubMed] [Google Scholar]
  • 18.Korf D, Reijneveld S, Toet J. Estimating the number of heroin users: a review of methods and empirical findings from the Netherlands. Int J Addict. 1994;29:1393–417. doi: 10.3109/10826089409048716. [DOI] [PubMed] [Google Scholar]
  • 19.Galea S, Nandi A, Vlahov D. The social epidemiology of substance use. Epidemiol Rev. 2004;26:36–52. doi: 10.1093/epirev/mxh007. [DOI] [PubMed] [Google Scholar]
  • 20.Friedman SR, Pouget ER, Chatterjee S, Cleland CM, Tempalski B, Brady JE, Cooper HLF. Do drug arrest deter drug use? Am J Public Health. 2011;101:344–9. doi: 10.2105/AJPH.2010.191759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Office of Management and Budget. Standards for defining metropolitan and micropolitan statistical areas. Fed Regist. 2000;65:82228–38. [Google Scholar]
  • 22.U.S. Bureau of the Census. State and metropolitan area data book, 1997-1998. Washington, DC: US Bureau of the Census; 1998. [Google Scholar]
  • 23.Pierce T. Gen-X Junkie: ethnographic research with young white heroin users. Vol. 34. Washington, DC: Subst Use Misuse; 1999. pp. 2095–114. [DOI] [PubMed] [Google Scholar]
  • 24.Wallace R, Wallace D. Socioeconomic determinants of health: community marginalization and the diffusion of disease and disorder in the United States. BMJ. 1997;314:1341–5. doi: 10.1136/bmj.314.7090.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.US Department of Health and Human Services. Substance Abuse and Mental Health Services Administration, Office of Applied Studies. Treatment episode data set, 1992-2007 (concatenated) Data Collection Description. 2009:1992–2007. [Google Scholar]
  • 26.Beltrami J, Usman HR, Habarta N. HIV counseling and testing at CDC-funded sites, United States, Puerto Rico, and the U S Virgin Islands, 2005. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2010. [Google Scholar]
  • 27.Brady JE, Friedman SR, Cooper HLF, Flom PL, Tempalski B, Gostnell K. Estimating the prevalence of injection drug users in the US and in large US metropolitan areas from 1992–2002. J Urban Health. 2008;85:323–51. doi: 10.1007/s11524-007-9248-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Friedman SR, Tempalski B, Cooper HL, et al. Estimating numbers of injecting drug users in metropolitan areas for structural analyses of community vulnerability and for assessing relative degrees of service provision for injecting drug users. J Urban Health. 2004;81(3):377–400. doi: 10.1093/jurban/jth125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Holmberg S. The estimated prevalence and incidence of HIV in 96 large US metropolitan areas. Am J Public Health. 1996;86(5):642–54. doi: 10.2105/ajph.86.5.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Census USBot. Population estimates program dataset. U.S.Bureau of the Census; 2009. [Google Scholar]
  • 31.Longford N. Random coefficient models. Oxford: Clarendon Press; 1993. [Google Scholar]
  • 32.Singer JD, Willett JB. Applied longitudinal data analysis: modeling change and event occurrence. New York: Oxford University Press; 2003. [Google Scholar]
  • 33.Verbeke G, Molenberghs G. Linear mixed models for longitudinal data. New York: Springer; 2000. [Google Scholar]
  • 34.Fitzmaurice GM, Ravichandran C. A primer in longitudinal data analysis. Circulation. 2008;118:2005–10. doi: 10.1161/CIRCULATIONAHA.107.714618. [DOI] [PubMed] [Google Scholar]
  • 35.Hedeker D. An introduction to growth modeling. In: Kaplan D, editor. Quantitative methodology for the social sciences. Thousand Oaks: Sage Publications; 2004. [Google Scholar]
  • 36.Pedhazur EJ, Schmelkin LP. Measurement, design and analysis: an integrated approach. Hillsdale: Lawrence Erlbaum Associates; 1991. pp. 73–6. [Google Scholar]
  • 37.European Monitoring Centre for Drugs and Drug Addiction. [Accessed 18 January 2010];EMCDDA Stat Bull. http://stats05.emcdda.europa.eu/en/homeen.html (2005)
  • 38.U S Department of Health and Human Services, National Center for Health Statistics. Multiple cause of death file, 1992-2002 (computer file) U S Department of Health and Human Services, National Center for Health Statistics. 2004 [Google Scholar]
  • 39.Nunnally JC, Bernstein IH. Psychometric theory. 3rd. New York: McGraw Hill; 1994. [Google Scholar]
  • 40.Cohen J. Statistical power analysis for the behavioral sciences. 2nd. Hillsdale: Erlbaum; 1988. [Google Scholar]
  • 41.Musto DF. Opium, cocaine, and marijuana in American history. Sci Am. 1991;265:40–7. doi: 10.1038/scientificamerican0791-40. [DOI] [PubMed] [Google Scholar]
  • 42.Tracy SW, Acker CJ, editors. Altering American consciousness: the history of alcohol and drug use in the United States. Amherst: University of Massachusetts; 2004. pp. 1800–2000. [Google Scholar]
  • 43.The Washington Post/Kaiser Family Foundation/Harvard University. National survey on the public's attitudes towards HIV/AIDS in the US and the World. 2002 July; www.kff.org.
  • 44.Crepaz N, Hart TA, Marks G. Highly active antiretroviral therapy and sexual risk behavior. JAMA. 2004;292(2):224–36. doi: 10.1001/jama.292.2.224. [DOI] [PubMed] [Google Scholar]
  • 45.Firestone M, Fischer B. A qualitative exploration of prescription opioid injection among street-based drug users in Toronto: behaviours, preferences and drug availability. Harm Reduct J. 2008;5:30. doi: 10.1186/1477-7517-5-30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Latka M, Ahern J, Garfein RS, Ouellet L, Kerndt P, Morse P, et al. Prevalence, incidence, and correlates of chlamydia and gonorrhea among young adult injection drug users. J Subst Abuse. 2001;13:73–88. doi: 10.1016/s0899-3289(01)00071-2. [DOI] [PubMed] [Google Scholar]
  • 47.Thorpe LE, Ouellet LJ, Hershow R, Bailey SL, Williams IT, Williamson J, et al. Risk of hepatitis C virus infection among young adult injection drug users who share injection equipment. Am J Epidemiol. 2002;155:645–53. doi: 10.1093/aje/155.7.645. [DOI] [PubMed] [Google Scholar]
  • 48.UNODC and the Global Youth Network. HIV prevention among young injecting drug users. Vienna: UNODC; 2004. http://www.http://www.unodc.org/pdf/youthnet/handbook_hiv_english.pdf. [Google Scholar]
  • 49.CDC. Trends in HIV/AIDS diagnoses among men who have sex with men: 33 States, 2001–2006. MMWR. 2008;57:681–6. [PubMed] [Google Scholar]
  • 50.Hall HI, Byers RH, Ling Q, Espinoza L. Racial/ethnic and age disparities in HIV prevalence and disease progression among men who have sex with men in the United States. Am J Public Health. 2007;97(6):1060–6. doi: 10.2105/AJPH.2006.087551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Hathazi Lankenau Health status and service utilization among young injection drug users; American Public Health Association Annual Meeting; Washington, DC. November, 2007. [Google Scholar]
  • 52.Community-Based HIV Intervention for Young People: Guidance Briefs. UNAIDS Inter-Agency Task Team (IATT) on HIV and young people. Unite Nations, New York: 2008. http://www.unfpa.org/hiv/iatt/docs/unicef.pdf. [Google Scholar]
  • 53.Tempalski B, Cleland CM, Pouget ER, Chatterjee S, Friedman SR. Persistence of low drug treatment coverage for injection drug users in large US metropolitan areas. Subst Abuse Treat Prev Policy. 2010;5:23. doi: 10.1186/1747-597X-5-23. [DOI] [PMC free article] [PubMed] [Google Scholar]

RESOURCES