Abstract
Young injection drug users (IDUs) are at risk for acquiring blood-borne diseases like HIV and Hepatitis C. Little is known about the population prevalence of young IDUs. We (1) estimate annual population prevalence rates of young IDUs (aged 15–29) per 10,000 in 95 large U.S. metropolitan statistical areas (MSAs) from 1992 to 2002; (2) assess the validity of these estimates; and (3) explore whether injection drug use among youth in these MSAs began to rise after HAART was discovered. A linear mixed model (LMM) estimated the annual population prevalence of young IDUs in each MSA and described trends therein. The population prevalence of IDUs among youths across 95 MSAs increased from 1996 (mean = 95.64) to 2002 (mean = 115.59). Additional analyses of the proportion of young IDUs using health services suggest this increase may have continued after 2002. Harm reduction and prevention research and programs for young IDUs are needed.
Keywords: Injection drug use, Adolescents, Young adults, Metropolitan statistical area, Prevalence, Harm reduction
Introduction
Research indicates that young injection drug users (IDUs) differ in their risk behavior from their older counterparts, and have a very high risk for HIV, HCV, STIs and drug overdose [1–8]. They are less aware of the dangers of injecting drugs and how to reduce their risk, and more likely to share syringes and drug preparation equipment. They inject frequently, have multiple sexual partners, and exchange sex for money or drugs [9–12].
Increases in the number of young IDUs are likely to increase the numbers of HIV/AIDS, cirrhosis, and hepatocellular carcinoma cases, the number of IDUs needing social and medical services, and the number of overdose deaths [13]. Therefore, it is very important to monitor the prevalence of IDU among youth.
Data on the prevalence of young IDUs in US geographic areas are rare. The National Survey on Drug Use and Health (NSDUH) provides annual estimates of numbers of young IDUs in the US, but these data are not suitable to measure change as: (a) data are derived from a household survey with well-known sampling and self-report limitations; and (b) NSDUH acknowledge the data are not suitable for longitudinal analyses, given changes in data collection methods over time. These limitations have been discussed in detail elsewhere [14–18].
This study: (1) describes a method of estimating the population prevalence of young IDUs aged 15–29 in 95 large metropolitan statistical areas (MSAs) annually over an 11-year period (1992–2002); (2) validates the resulting population prevalence estimates; and (3) conducts exploratory analyses of a hypothesis that young IDU prevalence increased after HAART was discovered.
Providing public health and harm reduction advocates with young IDUs estimates can: (1) assist efforts to plan young IDU-related health services; (2) bring about a better understanding of young IDU drug-related health problems; and (3) assist research in exploring the social and structural determinants of young IDU-related prevalence [19, 20].
Methods
Unit of Analysis
The MSA is the unit of analysis. The U.S. Office of Management and Budget defines an MSA as a set of adjacent counties that collectively form a single cohesive socioeconomic unit and include at least one central city home to 50,000 people or more [21, 22]. We chose MSAs as a unit of analysis because they are salient epidemiologic units for the study of injecting: injection-related epidemics like HIV vary widely across MSAs, and many suburban injectors travel to the central city to receive services and engage in drug-related activity [23, 24].
This study includes 95 of the 96 U.S. MSAs whose population exceeded 500,000 in 1992. These are home to almost two thirds of the U.S. population. One MSA, San Juan, was excluded due to data unavailability.
Overview of the Data Series Used and Estimating Procedure
We used two data series to estimate the population prevalence of young IDUs. Both data-series report on service episodes rather than on unique individuals:
Substance Abuse and Mental Health Service Administration's (SAMHSA's) Treatment Entry Data System (TEDS). TEDS documents admissions to private and public drug treatment programs receiving state funds, certificates, or licenses [25].
The Centers for Disease Control and Prevention's (CDC's) HIV counseling and testing services data series (CTS). CDC provided data on numbers and ages of IDUs tested for HIV at CDC-funded counseling and testing sites for each MSA [26].
We used a 3-step approach similar to that used in some of our previous studies to estimate the annual population prevalence of young IDUs in each MSA from 1992 to 2002 [14, 27, 28].
Step 1: For both TEDS and CTS, separately, we calculated the annual proportions of IDUs receiving these services at drug treatment and HIV testing and counseling sites who were aged 15–29 years in each MSA.
Step 2: To calculate the number of young IDUs, we then multiplied these proportions of young IDUs by previously-calculated estimates of the total number of IDUs in each MSA and year [27].
To estimate the population prevalence of young IDUs for TEDS and CTS, we divided the number of young IDUs using each service by the size of their respective “at risk” populations (i.e., youth aged 15–29) for each MSA and year.
Step 3: For the final estimates, we used the predicted values from a linear mixed model (LMM) that included both TEDS and CTS based estimates.
Step 1 Estimating the proportions of young IDUs in TEDS and CTS
First, for TEDS, we calculated the proportion of young IDUs aged 15–29 among all IDUs (regardless of age) entering treatment in 95 MSAs from 1992 to 2002. We then calculated the proportion of young IDUs among all IDUs receiving HIV counseling and testing from the CTS data.
To avoid small denominator problems, the TEDS and CTS databases were processed with a criterion that, if any MSAs in any year from 1992 to 2002 had less than 5 IDUs (regardless of age), we marked that cell as missing. After applying the criteria, there were approximately 5% missing cells in TEDS and 8% missing cells in CTS.1
Step 2 Estimating the numbers and population prevalence of young IDUs from TEDS and CTS proportions
To estimate the total number of young IDUs, previously published data on the total number of IDUs were used [28]. We briefly discuss how this earlier paper calculated the total numbers of IDUs in 96 MSAs for each year 1992–2002.
The study used a multiplier/allocation method to estimate the national population prevalence of IDUs from 1992 to 2002 from existing data on the number of injectors living in the U.S. in 1992 and in 1998, and from annual data on injectors'; encounters with health services and with the criminal justice system [27–29]. Then, to estimate the prevalence of IDUs in 96 large MSAs from 1992 to 2002, we allocated these totals among the 96 MSAs (and the rest of the country) using four different types of data: (1) Centers for Disease Control HIV CTS data; (2) SAMSHA's Uniform Facility Data Set (UFDS) and TEDS data; (3) CDC data on diagnoses of IDUs with HIV/AIDS; and (4) an estimate derived from published estimates of the number of injectors living in each MSA in 1992 [29] and in 1998 [28]. Each series was smoothed over time using loess regression and the mean value of the four component estimates was taken as the best estimate of the prevalence of IDUs for each MSA and year [27].
Where data were not missing, we multiplied our estimated proportions of IDUs who were aged 15–29 in the TEDS data by these previous estimates of the total number of IDUs in each MSA annually from 1992 to 2002. Similarly, we then multiplied the proportion of IDUs who were young in the CTS data by the estimated total IDUs in the MSA to create a second estimate of the number of young IDUs.
We then calculated the population prevalence of young IDUs separately for each data series by dividing the estimated number of IDUs in the MSA by the population of young people aged 15–29 of that MSA in that year (and multiplying the result by 10,000), using data from the US Census Population Estimates Program [30].
Step 3 Final estimate, using a restricted-maximum-likelihood average based on LMM
To calculate the final estimates of young IDUs per 10,000 populations in each MSA in each year, we used LMM [31–34]. The LMM combined the population prevalence of young IDUs calculated from TEDS and CTS to form a single combined estimate while adjusting for missing data. Once we combined the data series we had 1,045 cells + 1,045 cells = 2,090 cells. To distinguish the two sources of data, we created a source indicator, coded 0.5 if representing TEDS and -0.5 if representing CTS. We describe our LMM briefly here:
where E (Yijk |time, data series) is the mean population prevalence of young IDUs in i MSA, j year and k estimates from TEDS or CTS; β0 the mean population prevalence of young IDUs in 1997; β1 the population prevalence of young IDUs linear slope; β2 the population prevalence of young IDUs quadratic slope; β3 the difference in young IDU prevalence estimated from TEDS and CTS data; γ the unknown vector of random effect parameters; and ε is the unknown random error vector.
An important component in our estimation was the number of IDUs. Since Brady et al. [27] described the trend of population prevalence of IDUs as a quadratic polynomial, we chose the quadratic polynomial for study year as our best model. The study year was centered on 1997 to diminish correlations between study year polynomials [35]. Instead of using a simple average [14, 27] we used LMM to compute the restricted-maximum-likelihood average as our final estimates for the following three reasons: (1) The TEDS data-series had 5% missing cells and CTS had 8% missing cells. The LMM used all available data to estimate parameters under the assumption that data were missing at random (MAR) conditional on observed data; (2) Since we used health service data (i.e., TEDS data on treatment entry and CTS data on HIV counseling and testing), sudden increases or decreases in health services funding for IDUs might affect our prevalence estimates. LMM helped to smooth the data so the overall trend would not be unduly affected by temporary changes in services that did not reflect true changes in prevalence; and (3) LMM let us compute the uncertainty (standard error) associated with our estimations, which would not have been possible using simple averages.
Reliability
To assess the reliability of the final estimates, we examined the correlations between TEDS- and CTS-based estimates of young IDUs per 10,000 youth for each year.
Criterion Validity
Since injection drug use is associated with fatal overdose, we used overdose deaths among youth to test criterion validity [14, 36]. We examined two types of overdose deaths; (a) drug-related deaths among young people aged 15–29; and (b) accidental and unintentional drug poisoning deaths among 15–29 year olds.
Our algorithm for “drug-related deaths” variable was adapted from the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). They use ICD-9 and ICD-10 codes to capture “deaths happening shortly after consumption of one or more psychoactive drugs and directly related to this consumption” [37]. For “accidental and unintentional drug poisoning deaths,” we included only those overdose deaths that occurred due to consumption of cocaine, heroin, or psycho-stimulants.
The number of people dying from either of these causes in each MSA and year was extracted from the National Center for Health Statistics'; Multiple Cause of Death database, a census of all deaths in the U.S. [38]. This data series used the ICD-9 coding system to identify causes of death between 1992 and 1998; ICD-10 coding was used thereafter [38]. We restricted our analysis to overdose cases where residency (MSA) and death occurrence (MSA) matched. Neither the ICD-9 nor the ICD-10 coding systems identify the mode of drug administration, so we could not limit overdose cases to those that were IDU related.
Hypothesis Development and Exploration
In preliminary analyses, we observed an apparent decline of young IDU prevalence between 1992 and 1996 and an increase thereafter. This led us to hypothesize that the prevalence of young drug injectors increased after HAART was discovered in 1996. To explore the hypothesis, a number of different analyses were performed:
A trend analysis on the percentages of 15–29 year olds who entered drug abuse treatment (TEDS) and reported that they were IDUs.
A trend analysis on the percentages of 15–29 year olds who received services at HIV counseling and testing sites (CTS) and reported that they were IDUs.
Two sets of models were calculated for each of these to see if 1996 was the starting point of a rise in IDU prevalence among young people: (1) a quadratic model on the percentages of young IDUs from 1992 to 2005; and (2) a linear model on the percentages of young IDUs from 1996 to 2005.
We also conducted trend analyses on the population prevalence of young IDUs in each MSA individually from 1996 to 2002. (We could not conduct such analyses for the later years, 2003–2005, because estimates of total IDU prevalence for the MSAs since 2002 have not been published.)
Results
Figure 1 shows the overall trajectory of young IDU population prevalence based on the LMM and considering both fixed effects and random effects. This figure also includes trajectories of young IDU population prevalence based separately on estimates from TEDS and from CTS data. Annual estimates for each MSA appear in the Appendix—supplementary material.
Fig. 1.
Estimated mean population prevalence of young IDUs per 10,000 15–29 year olds (1992–2002) for 95 large MSAs
Table 1 shows the fixed effect and random effect parameters estimates where the study year was centered on 1997. Considering both the instantaneous rate of change parameter (1.72; P = 0.01) and curvature parameter (0.40; P < 0.001) the average population prevalence of young IDUs trajectory showed an increasing trend after 1995 (see Table 2). The fixed-effect coefficient for the source indicator (Table 1) indicates a significant difference, with the average estimate in 1997 based on CTS about 15 IDUs per 10,000 people aged 15–29 years greater than the estimate from TEDS. The estimated intercept suggests a prevalence of 97 young IDUs per 10,000 young people in 1997 when TEDS and CTS data are averaged by the LMM.
Table 1. Linear mixed effects model to estimate the population prevalence of young IDUs in 95 MSAs, 1992–2002: restricted-maximum-likelihood estimates of fixed effect and random effect parameters.
| Symbol | Estimates | Standard error | Lower bound (95% CI) | Upper bound (95% CI) | |
|---|---|---|---|---|---|
| Intercept | β0 | 96.96** | 5.40 | 86.26 | 107.67 |
| Time | β1 | 1.72* | 0.67 | 0.40 | 3.05 |
| Time × time | β2 | 0.40** | 0.08 | 0.23 | 0.57 |
| Source | β3 | −14.92** | 1.18 | −17.23 | −12.60 |
| Intercept variance | r00 | 2688.93** | 402.39 | 2046.52 | 3691.30 |
| Time variance | r11 | 39.10** | 6.15 | 29.37 | 54.62 |
| Time × time variance | r22 | 0.28* | 0.10 | 0.16 | 0.65 |
| Correlation β0 and β1 | r01 | 0.003 | |||
| Correlation of β0 and β3 | r02 | −0.16 | |||
| Correlation of β1 and β3 | r12 | 0.26 |
Study year is centered at 1997
P <0.05;
P <0.001
Table 2. Descriptive statistics: IDUs per 10,000 persons aged 15–29 in 95 MSAs (1992–2002).
| Year | Mean | Standard deviation | Median | Interquartile range | Minimum | Maximum |
|---|---|---|---|---|---|---|
| 1992 | 98.34 | 57.05 | 78.54 | 52.50–132.06 | 27.95 | 283.91 |
| 1993 | 96.46 | 57.17 | 81.98 | 50.93–132.52 | 25.77 | 260.13 |
| 1994 | 95.39 | 53.59 | 84.41 | 50.58–130.50 | 24.73 | 237.88 |
| 1995 | 95.11 | 52.40 | 85.53 | 51.91–128.81 | 23.14 | 229.26 |
| 1996 | 95.64 | 51.65 | 85.24 | 52.80–129.94 | 22.89 | 221.92 |
| 1997 | 96.96 | 51.40 | 86.93 | 52.79–130.18 | 24.00 | 218.09 |
| 1998 | 99.09 | 51.73 | 89.47 | 54.28–140.30 | 26.44 | 231.23 |
| 1999 | 102.02 | 52.75 | 92.18 | 56.22–133.52 | 30.24 | 252.83 |
| 2000 | 105.74 | 54.55 | 93.62 | 58.53–134.07 | 34.64 | 276.02 |
| 2001 | 110.27 | 57.20 | 98.48 | 63.20–138.67 | 37.50 | 300.83 |
| 2002 | 115.59 | 60.76 | 101.94 | 68.29–140.28 | 41.04 | 327.24 |
The average trajectory of young IDUs across all 95 MSAs was not necessarily indicative of the trend of population prevalence of young IDUs in a given MSA. Statistically significant variations in the prevalence of young IDUs in 1997 (variance = 2689), in the instantaneous rate of change (linear expression of time; variance = 39), and in the curvature (quadratic expression of time; variance = 0.28) of the trajectories across MSAs were observed. A comparison graph (Fig. 2) of estimates for the five largest MSAs illustrates such variation.
Fig. 2.
Estimated population prevalence of young IDUs in five large US MSAs (and the mean across 95 large MSAs from 1992 to 2002)
Table 2 describes the prevalence of young IDUs across 95 MSAs from 1992 to 2002. Young IDU prevalence varied across MSAs from 28 to 284 (mean = 98.34; SD = 57.06; median = 78; and interquartile range = 52–132) in 1992; 23 to 229 (mean = 95.64; SD = 51.65; median = 85; interquartile range = 53–130) in 1996; and 41 to 327 (mean = 115; SD = 60; median = 102; interquartile range = 68–140) in 2002.
Reliability
Table 3 shows Pearson correlations between TEDS- and CTS-based estimates of the population prevalence of young IDUs for each year. These correlations describe the extent to which our estimates for each data series produce consistent results. Correlations ranged from 0.74 to 0.89, which suggests that our estimates have acceptable to high reliability [39].
Table 3. Reliability test: Pearson correlations of young IDU population prevalence estimates based on TEDS and on CTS.
| Year | Correlation (r) |
|---|---|
| 1992 | 0.89 |
| 1993 | 0.89 |
| 1994 | 0.80 |
| 1995 | 0.75 |
| 1996 | 0.74 |
| 1997 | 0.76 |
| 1998 | 0.82 |
| 1999 | 0.84 |
| 2000 | 0.83 |
| 2001 | 0.78 |
| 2002 | 0.80 |
Criterion Validity
Table 4 shows that the population prevalence of young IDUs was significantly correlated each year with: (a) drug related deaths per capita; and (b) accidental and unintentional poisoning deaths per capita. These correlations were positive and in the expected direction, reflecting associations with medium to large effect sizes [40]. These results suggest our final estimates had acceptable validity.
Table 4. Criterion validity: Pearson correlations between young IDU prevalence estimates and two measures of drug-related mortality.
| Year | Accidental and unintentional poisoning deaths per capita | Drug related deaths per capita |
|---|---|---|
| 1992 | 0.55 | 0.49 |
| 1993 | 0.47 | 0.49 |
| 1994 | 0.51 | 0.50 |
| 1995 | 0.49 | 0.43 |
| 1996 | 0.40 | 0.40 |
| 1997 | 0.54 | 0.54 |
| 1998 | 0.50 | 0.51 |
| 1999 | 0.50 | 0.70 |
| 2000 | 0.39 | 0.52 |
| 2001 | 0.33 | 0.43 |
| 2002 | 0.21 | 0.29 |
Exploring the Hypothesis that IDU Prevalence Among Youth Increased After HAART was Discovered
To test this exploratory hypothesis we first examined the percentages of young IDUs in TEDS and CTS from 1992 to 2005 (Fig. 3). Trend analyses on percentages of young IDUs in TEDS and CTS for the years 1996–2005 showed significant increases (TEDS linear slope = 1.62, P < 0.0001; CTS linear slope = 0.54, P < 0.0001).
Fig. 3.
The percentages of IDUs entering drug treatment (TEDS) and receiving HIV counseling and testing (CTS) who were aged 15–29 in 95 large MSAs (1992–2005)
Trend analyses on the final estimates of young IDU population prevalence in each MSA for 1996–2002 were also performed. In TEDS, 42 MSAs increased significantly and 6 MSAs decreased significantly (at P < 0.05). In CTS, 27 MSAs increased significantly and 10 MSAs decreased significantly (at P < 0.05). These results suggest young IDU prevalence rates increased after 1996, with some local variation.
Discussion
These data suggest that the prevalence of IDUs among adolescents and young adults increased between 1995 and 2002. Further analyses of the proportions of IDUs entering treatment or receiving HIV counseling and testing who were young suggest that this trend may have continued through 2005. This contrasts sharply with our previous finding that the prevalence of IDUs of all ages decreased from the early 1990s to the early 2000s [27]. If the prevalence of IDUs among young people continues to increase, we would expect the overall prevalence of IDUs eventually to increase as well.
One possible explanation for the increase in young IDUs involves community learning, which has influenced drug use patterns in other circumstances [41, 42]. HAART led to dramatic declines in AIDS incidence and mortality, and this seems to have affected public perceptions of the epidemic. Survey data find that the proportion of Americans who considered HIV/AIDS to be the “most urgent health problem facing this nation today decreased from 38% in 1997 to 17% in 2002” [43]. In neighborhoods where injection drug use was prevalent, this meant that children and youth no longer observed widespread HIV-related morbidity or mortality among older peers, relatives or neighbors. According to community learning theory, this would have reduced the deterrent effect of the fear of HIV/AIDS, which in term might mean that young drug users would be more likely to try (and continue in) injecting their drugs. Parallel arguments have been made to explain decreases in condom use among men who have sex with men after HAART was discovered [44]. Future research should consider and test competing explanations for this trend. One such possible explanation might be the increasing use of prescription analgesics by youth to the extent that this leads them to take up injection [45].
Study Limitations
Data Limitations
Despite the fact that using different data sources helps to balance biases, as each data series has strengths and weaknesses [28], we could use only two data series due to lack of other usable data. Availability of additional sources might have strengthened our estimates. Since admissions, rather than individuals, are the units of analysis for TEDS data, an individual who entered drug treatment twice or more in a particular year was counted as two or more independent cases [25]. Similar double-counting is also a limitation for HIV counseling and testing data.
Further, since the TEDS and CTS systems only collect data from subsets of United States locations where drug treatment or CDC-HIV counseling and testing take place our estimates may be biased to the extent that the age distributions of IDUs using these sites differ from those at sites that were not included. For example, the HIV CTS data as a whole are considered to only represent somewhere in the range of about 10–17% of all HIV tests in the US. These limitations have been discussed in detail elsewhere [14, 27].
Our analyses of data on deaths from overdose had some limitations. Unfortunately, the data do not indicate whether the decedent injected drugs prior to death, or if other methods of administration were used. Since non-injection modes of drug administration are more common, we should not expect large associations between IDU prevalence estimates and overdose mortality data. In addition, changes in ICD coding from version 9 to version 10 may have resulted in increased measurement error during the later study years. In addition, our estimates of young IDUs include injectors of heroin, cocaine or other psycho-stimulants, and we have no way to construct accurate estimates of young IDUs by primary drug of choice. Since mortality rates due to overdose vary by the drug being used, this probably means that variations by MSA and by year in the relative distribution of drugs being used by young adults will tend to decrease the size of the correlations presented in Table 4—which may imply that our estimates of criterion validity are underestimates. Finally, overdose deaths in the young age range (15–29) were sparse in some MSAs, potentially reducing the reliability of overdose deaths as an indicator for IDU prevalence among young people.
Analytical Limitations
The rate of increase in the percentage of young IDUs entering treatment centers was considerably higher than the rate of increase in young IDUs attending HIV counseling and testing centers (Fig. 3). This finding could be due to causes other than an increase in young IDU prevalence in the population—for example, if younger IDUs increased in their propensity to enter treatment relative to older IDUs. (This could have occurred if treatment centers increasingly solicited young IDUs or if courts increasingly ordered young IDUs to enter treatment.) Thus our study results could be influenced by selection bias.
Conclusion
This study indicates that injection drug use among young people rose in recent years. Given the importance of sexual and injection behaviors as risk factors for HIV among young IDUs, this underscores previous suggestions that programs should implement interventions for younger IDUs [7, 46–48]. Failure to set up proper intervention programs could lead to widespread increases in HIV transmission that could parallel recent increases in HIV incidence among young MSM [49, 50]. Young IDUs often face other difficulties as well, such as dropping out of or being expelled from school, difficulty gaining training and experience that might help them get good jobs, and resulting difficulties in obtaining health care [1, 51, 52].
Drug abuse treatment is unlikely to have much impact on current young IDUs given the very low treatment coverage among IDUs overall from 1993 to 2002 in 90 large US MSAs [53]. Further, some studies have found that young IDUs have less access to drug treatment and to and counseling and testing services than older users [46–48].
We conclude with some suggestions for action: (1) Prevention programs including harm reduction programs, treatment programs, counseling centers should include young IDUs as a core focus of their intervention structure; (2) funding for such programs should be increased; and (3) future research should study what differentiates MSAs in which injection drug use among youth is decreasing from MSAs in which it is increasing.
Acknowledgments
This research was supported by National Institute of Drug Abuse grant # R01 DA13336. We would like to thank the Centers for Disease Control and Prevention, specifically, National Center for HIV, Viral Hepatitis, STD, and TB Prevention and the Coordinating Center for Infectious Diseases for providing data from the HIV counseling and testing databases. We acknowledge the gracious assistance of Dr. Amy Lansky, Dr. John Beltrami, and Nancy Habarta.
Appendix
Estimated number and population prevalence per 10,000 of injection drug users among people aged 15–29 in the 95 largest U.S. Metropolitan Statistical Areas, 1992 – 2002, and prevalence sub-estimates based on Treatment Entry Data System and HIV-Counseling and Testing data series. Missing data are indicated by blank spaces.
| MSA Name | Year | Sub-estimates | Final model-based population prevalence rate | Final model-based population estimate | |
|---|---|---|---|---|---|
| Prevalence estimated from Treatment Entry Data System | Prevalence estimated from HIV-Counseling and Testing data series | ||||
| Akron, OH | 1992 | 30 | 34 | 33 | 493 |
| Akron, OH | 1993 | 23 | 38 | 31 | 451 |
| Akron, OH | 1994 | 29 | 34 | 30 | 430 |
| Akron, OH | 1995 | 23 | 33 | 30 | 427 |
| Akron, OH | 1996 | 21 | 42 | 31 | 445 |
| Akron, OH | 1997 | 29 | 36 | 33 | 473 |
| Akron, OH | 1998 | 31 | 33 | 37 | 516 |
| Akron, OH | 1999 | 34 | 35 | 41 | 575 |
| Akron, OH | 2000 | 34 | 48 | 47 | 648 |
| Akron, OH | 2001 | 67 | 73 | 53 | 740 |
| Akron, OH | 2002 | 64 | 47 | 61 | 849 |
| Albany--Schenectady--Troy, NY | 1992 | 44 | 45 | 873 | |
| Albany--Schenectady--Troy, NY | 1993 | 32 | 37 | 42 | 803 |
| Albany--Schenectady--Troy, NY | 1994 | 32 | 53 | 41 | 755 |
| Albany--Schenectady--Troy, NY | 1995 | 37 | 38 | 40 | 725 |
| Albany--Schenectady--Troy, NY | 1996 | 50 | 39 | 40 | 711 |
| Albany--Schenectady--Troy, NY | 1997 | 39 | 30 | 41 | 716 |
| Albany--Schenectady--Troy, NY | 1998 | 47 | 39 | 43 | 741 |
| Albany--Schenectady--Troy, NY | 1999 | 54 | 43 | 45 | 779 |
| Albany--Schenectady--Troy, NY | 2000 | 58 | 43 | 49 | 836 |
| Albany--Schenectady--Troy, NY | 2001 | 54 | 43 | 53 | 922 |
| Albany--Schenectady--Troy, NY | 2002 | 70 | 46 | 58 | 1030 |
| Albuquerque, NM | 1992 | 223 | 266 | 238 | 3232 |
| Albuquerque, NM | 1993 | 223 | 266 | 232 | 3163 |
| Albuquerque, NM | 1994 | 223 | 239 | 226 | 3144 |
| Albuquerque, NM | 1995 | 185 | 225 | 220 | 3129 |
| Albuquerque, NM | 1996 | 182 | 197 | 215 | 3107 |
| Albuquerque, NM | 1997 | 209 | 229 | 210 | 3073 |
| Albuquerque, NM | 1998 | 190 | 257 | 206 | 3056 |
| Albuquerque, NM | 1999 | 222 | 236 | 202 | 3014 |
| Albuquerque, NM | 2000 | 205 | 170 | 198 | 2988 |
| Albuquerque, NM | 2001 | 158 | 207 | 195 | 2983 |
| Albuquerque, NM | 2002 | 151 | 232 | 192 | 3024 |
| Allentown--Bethlehem--Easton, PA | 1992 | 159 | 169 | 154 | 1894 |
| Allentown--Bethlehem--Easton, PA | 1993 | 142 | 157 | 155 | 1884 |
| Allentown--Bethlehem--Easton, PA | 1994 | 155 | 181 | 158 | 1897 |
| Allentown--Bethlehem--Easton, PA | 1995 | 155 | 174 | 162 | 1930 |
| Allentown--Bethlehem--Easton, PA | 1996 | 138 | 166 | 169 | 1993 |
| Allentown--Bethlehem--Easton, PA | 1997 | 158 | 165 | 176 | 2077 |
| Allentown--Bethlehem--Easton, PA | 1998 | 158 | 196 | 186 | 2182 |
| Allentown--Bethlehem--Easton, PA | 1999 | 226 | 220 | 197 | 2296 |
| Allentown--Bethlehem--Easton, PA | 2000 | 178 | 200 | 210 | 2431 |
| Allentown--Bethlehem--Easton, PA | 2001 | 280 | 251 | 225 | 2623 |
| Allentown--Bethlehem--Easton, PA | 2002 | 239 | 221 | 241 | 2863 |
| Ann Arbor, MI | 1992 | 37 | 27 | 32 | 438 |
| Ann Arbor, MI | 1993 | 30 | 37 | 30 | 405 |
| Ann Arbor, MI | 1994 | 13 | 29 | 29 | 386 |
| Ann Arbor, MI | 1995 | 23 | 25 | 29 | 385 |
| Ann Arbor, MI | 1996 | 25 | 34 | 29 | 397 |
| Ann Arbor, MI | 1997 | 28 | 40 | 31 | 421 |
| Ann Arbor, MI | 1998 | 35 | 38 | 33 | 454 |
| Ann Arbor, MI | 1999 | 29 | 31 | 36 | 504 |
| Ann Arbor, MI | 2000 | 34 | 47 | 40 | 565 |
| Ann Arbor, MI | 2001 | 50 | 48 | 45 | 644 |
| Ann Arbor, MI | 2002 | 40 | 52 | 51 | 739 |
| Atlanta, GA | 1992 | 74 | 73 | 5473 | |
| Atlanta, GA | 1993 | 53 | 68 | 5173 | |
| Atlanta, GA | 1994 | 61 | 60 | 63 | 4921 |
| Atlanta, GA | 1995 | 58 | 55 | 59 | 4714 |
| Atlanta, GA | 1996 | 53 | 52 | 56 | 4553 |
| Atlanta, GA | 1997 | 89 | 47 | 53 | 4440 |
| Atlanta, GA | 1998 | 42 | 44 | 50 | 4365 |
| Atlanta, GA | 1999 | 55 | 47 | 48 | 4317 |
| Atlanta, GA | 2000 | 48 | 41 | 47 | 4305 |
| Atlanta, GA | 2001 | 53 | 42 | 46 | 4255 |
| Atlanta, GA | 2002 | 38 | 38 | 45 | 4227 |
| Austin--San Marcos, TX | 1992 | 165 | 252 | 200 | 5095 |
| Austin--San Marcos, TX | 1993 | 137 | 206 | 192 | 4977 |
| Austin--San Marcos, TX | 1994 | 152 | 232 | 183 | 4879 |
| Austin--San Marcos, TX | 1995 | 138 | 201 | 174 | 4796 |
| Austin--San Marcos, TX | 1996 | 188 | 205 | 164 | 4676 |
| Austin--San Marcos, TX | 1997 | 137 | 172 | 153 | 4536 |
| Austin--San Marcos, TX | 1998 | 122 | 146 | 142 | 4380 |
| Austin--San Marcos, TX | 1999 | 146 | 142 | 130 | 4201 |
| Austin--San Marcos, TX | 2000 | 105 | 104 | 117 | 3982 |
| Austin--San Marcos, TX | 2001 | 114 | 85 | 104 | 3644 |
| Austin--San Marcos, TX | 2002 | 89 | 71 | 90 | 3182 |
| Bakersfield, CA | 1992 | 210 | 339 | 257 | 3401 |
| Bakersfield, CA | 1993 | 156 | 300 | 247 | 3246 |
| Bakersfield, CA | 1994 | 170 | 346 | 238 | 3164 |
| Bakersfield, CA | 1995 | 120 | 348 | 229 | 3051 |
| Bakersfield, CA | 1996 | 114 | 341 | 222 | 2974 |
| Bakersfield, CA | 1997 | 116 | 302 | 216 | 2952 |
| Bakersfield, CA | 1998 | 116 | 295 | 210 | 2951 |
| Bakersfield, CA | 1999 | 112 | 282 | 205 | 2983 |
| Bakersfield, CA | 2000 | 99 | 262 | 202 | 2991 |
| Bakersfield, CA | 2001 | 140 | 305 | 199 | 3044 |
| Bakersfield, CA | 2002 | 107 | 291 | 197 | 3144 |
| Baltimore, MD | 1992 | 120 | 151 | 135 | 7081 |
| Baltimore, MD | 1993 | 138 | 175 | 147 | 7503 |
| Baltimore, MD | 1994 | 131 | 167 | 161 | 8003 |
| Baltimore, MD | 1995 | 154 | 175 | 176 | 8604 |
| Baltimore, MD | 1996 | 165 | 187 | 193 | 9331 |
| Baltimore, MD | 1997 | 203 | 212 | 211 | 10176 |
| Baltimore, MD | 1998 | 259 | 252 | 231 | 11116 |
| Baltimore, MD | 1999 | 274 | 274 | 253 | 12225 |
| Baltimore, MD | 2000 | 279 | 256 | 276 | 13445 |
| Baltimore, MD | 2001 | 330 | 288 | 301 | 14797 |
| Baltimore, MD | 2002 | 363 | 302 | 327 | 16333 |
| Bergen--Passaic, NJ | 1992 | 100 | 90 | 93 | 2460 |
| Bergen--Passaic, NJ | 1993 | 91 | 94 | 88 | 2281 |
| Bergen--Passaic, NJ | 1994 | 91 | 71 | 84 | 2135 |
| Bergen--Passaic, NJ | 1995 | 89 | 67 | 82 | 2028 |
| Bergen--Passaic, NJ | 1996 | 95 | 58 | 79 | 1955 |
| Bergen--Passaic, NJ | 1997 | 93 | 69 | 78 | 1913 |
| Bergen--Passaic, NJ | 1998 | 89 | 70 | 78 | 1899 |
| Bergen--Passaic, NJ | 1999 | 100 | 63 | 78 | 1901 |
| Bergen--Passaic, NJ | 2000 | 88 | 61 | 80 | 1935 |
| Bergen--Passaic, NJ | 2001 | 94 | 60 | 82 | 1972 |
| Bergen--Passaic, NJ | 2002 | 99 | 76 | 85 | 2032 |
| Birmingham, AL | 1992 | 41 | 85 | 54 | 1022 |
| Birmingham, AL | 1993 | 28 | 53 | 1004 | |
| Birmingham, AL | 1994 | 56 | 54 | 1010 | |
| Birmingham, AL | 1995 | 40 | 55 | 1041 | |
| Birmingham, AL | 1996 | 32 | 58 | 1098 | |
| Birmingham, AL | 1997 | 37 | 62 | 1178 | |
| Birmingham, AL | 1998 | 67 | 67 | 1281 | |
| Birmingham, AL | 1999 | 69 | 73 | 1402 | |
| Birmingham, AL | 2000 | 83 | 81 | 1541 | |
| Birmingham, AL | 2001 | 99 | 90 | 1694 | |
| Birmingham, AL | 2002 | 82 | 100 | 1872 | |
| Boston, MA--NH | 1992 | 64 | 72 | 78 | 10298 |
| Boston, MA--NH | 1993 | 89 | 103 | 87 | 11109 |
| Boston, MA--NH | 1994 | 70 | 82 | 96 | 12008 |
| Boston, MA--NH | 1995 | 103 | 113 | 106 | 13059 |
| Boston, MA--NH | 1996 | 113 | 124 | 117 | 14210 |
| Boston, MA--NH | 1997 | 132 | 138 | 128 | 15521 |
| Boston, MA--NH | 1998 | 161 | 159 | 140 | 16919 |
| Boston, MA--NH | 1999 | 125 | 153 | 18374 | |
| Boston, MA--NH | 2000 | 191 | 170 | 167 | 19954 |
| Boston, MA--NH | 2001 | 139 | 181 | 21760 | |
| Boston, MA--NH | 2002 | 208 | 197 | 23651 | |
| Buffalo--Niagara Falls, NY | 1992 | 27 | 37 | 917 | |
| Buffalo--Niagara Falls, NY | 1993 | 29 | 35 | 37 | 905 |
| Buffalo--Niagara Falls, NY | 1994 | 28 | 35 | 38 | 900 |
| Buffalo--Niagara Falls, NY | 1995 | 32 | 40 | 39 | 907 |
| Buffalo--Niagara Falls, NY | 1996 | 43 | 49 | 41 | 924 |
| Buffalo--Niagara Falls, NY | 1997 | 41 | 47 | 42 | 951 |
| Buffalo--Niagara Falls, NY | 1998 | 56 | 52 | 45 | 990 |
| Buffalo--Niagara Falls, NY | 1999 | 51 | 43 | 47 | 1037 |
| Buffalo--Niagara Falls, NY | 2000 | 65 | 51 | 51 | 1094 |
| Buffalo--Niagara Falls, NY | 2001 | 51 | 38 | 54 | 1175 |
| Buffalo--Niagara Falls, NY | 2002 | 67 | 37 | 58 | 1274 |
| Charleston--North Charleston, SC | 1992 | 47 | 43 | 585 | |
| Charleston--North Charleston, SC | 1993 | 28 | 39 | 511 | |
| Charleston--North Charleston, SC | 1994 | 27 | 36 | 458 | |
| Charleston--North Charleston, SC | 1995 | 19 | 34 | 421 | |
| Charleston--North Charleston, SC | 1996 | 23 | 33 | 404 | |
| Charleston--North Charleston, SC | 1997 | 30 | 18 | 33 | 412 |
| Charleston--North Charleston, SC | 1998 | 32 | 28 | 35 | 436 |
| Charleston--North Charleston, SC | 1999 | 64 | 27 | 38 | 475 |
| Charleston--North Charleston, SC | 2000 | 51 | 34 | 41 | 520 |
| Charleston--North Charleston, SC | 2001 | 50 | 48 | 46 | 579 |
| Charleston--North Charleston, SC | 2002 | 75 | 21 | 52 | 659 |
| Charlotte--Gastonia--Rock Hill, NC--SC |
1992 | 38 | 90 | 62 | 1738 |
| Charlotte--Gastonia--Rock Hill, NC--SC |
1993 | 39 | 67 | 57 | 1624 |
| Charlotte--Gastonia--Rock Hill, NC--SC |
1994 | 34 | 84 | 54 | 1537 |
| Charlotte--Gastonia--Rock Hill, NC--SC |
1995 | 37 | 60 | 51 | 1475 |
| Charlotte--Gastonia--Rock Hill, NC--SC |
1996 | 40 | 50 | 49 | 1431 |
| Charlotte--Gastonia--Rock Hill, NC--SC |
1997 | 36 | 46 | 47 | 1408 |
| Charlotte--Gastonia--Rock Hill, NC--SC |
1998 | 40 | 54 | 45 | 1397 |
| Charlotte--Gastonia--Rock Hill, NC--SC |
1999 | 52 | 53 | 45 | 1396 |
| Charlotte--Gastonia--Rock Hill, NC--SC |
2000 | 47 | 56 | 44 | 1414 |
| Charlotte--Gastonia--Rock Hill, NC--SC |
2001 | 42 | 35 | 45 | 1426 |
| Charlotte--Gastonia--Rock Hill, NC--SC |
2002 | 44 | 32 | 45 | 1456 |
| Chicago, IL | 1992 | 34 | 53 | 39 | 6759 |
| Chicago, IL | 1993 | 32 | 41 | 38 | 6457 |
| Chicago, IL | 1994 | 33 | 45 | 37 | 6338 |
| Chicago, IL | 1995 | 22 | 35 | 38 | 6427 |
| Chicago, IL | 1996 | 22 | 32 | 39 | 6711 |
| Chicago, IL | 1997 | 30 | 40 | 41 | 7176 |
| Chicago, IL | 1998 | 47 | 58 | 45 | 7854 |
| Chicago, IL | 1999 | 73 | 69 | 49 | 8685 |
| Chicago, IL | 2000 | 43 | 48 | 55 | 9701 |
| Chicago, IL | 2001 | 62 | 60 | 61 | 10814 |
| Chicago, IL | 2002 | 55 | 73 | 68 | 12071 |
| Cincinnati, OH--KY--IN | 1992 | 47 | 75 | 53 | 1788 |
| Cincinnati, OH--KY--IN | 1993 | 38 | 50 | 49 | 1656 |
| Cincinnati, OH--KY--IN | 1994 | 37 | 55 | 47 | 1562 |
| Cincinnati, OH--KY--IN | 1995 | 30 | 61 | 45 | 1521 |
| Cincinnati, OH--KY--IN | 1996 | 34 | 43 | 46 | 1525 |
| Cincinnati, OH--KY--IN | 1997 | 35 | 50 | 47 | 1575 |
| Cincinnati, OH--KY--IN | 1998 | 38 | 57 | 50 | 1665 |
| Cincinnati, OH--KY--IN | 1999 | 42 | 73 | 53 | 1787 |
| Cincinnati, OH--KY--IN | 2000 | 38 | 64 | 59 | 1953 |
| Cincinnati, OH--KY--IN | 2001 | 69 | 81 | 65 | 2167 |
| Cincinnati, OH--KY--IN | 2002 | 70 | 69 | 72 | 2425 |
| Cleveland--Lorain--Elyria, OH | 1992 | 41 | 55 | 41 | 1847 |
| Cleveland--Lorain--Elyria, OH | 1993 | 25 | 33 | 40 | 1773 |
| Cleveland--Lorain--Elyria, OH | 1994 | 30 | 48 | 40 | 1731 |
| Cleveland--Lorain--Elyria, OH | 1995 | 26 | 47 | 40 | 1731 |
| Cleveland--Lorain--Elyria, OH | 1996 | 29 | 42 | 41 | 1765 |
| Cleveland--Lorain--Elyria, OH | 1997 | 43 | 48 | 43 | 1824 |
| Cleveland--Lorain--Elyria, OH | 1998 | 41 | 55 | 45 | 1910 |
| Cleveland--Lorain--Elyria, OH | 1999 | 50 | 67 | 48 | 2014 |
| Cleveland--Lorain--Elyria, OH | 2000 | 51 | 57 | 52 | 2146 |
| Cleveland--Lorain--Elyria, OH | 2001 | 58 | 51 | 57 | 2301 |
| Cleveland--Lorain--Elyria, OH | 2002 | 65 | 46 | 62 | 2504 |
| Columbus, OH | 1992 | 39 | 72 | 49 | 1686 |
| Columbus, OH | 1993 | 25 | 52 | 49 | 1673 |
| Columbus, OH | 1994 | 43 | 59 | 50 | 1703 |
| Columbus, OH | 1995 | 34 | 61 | 52 | 1783 |
| Columbus, OH | 1996 | 39 | 70 | 55 | 1905 |
| Columbus, OH | 1997 | 42 | 77 | 60 | 2078 |
| Columbus, OH | 1998 | 43 | 84 | 66 | 2299 |
| Columbus, OH | 1999 | 53 | 96 | 73 | 2555 |
| Columbus, OH | 2000 | 60 | 86 | 82 | 2860 |
| Columbus, OH | 2001 | 98 | 124 | 91 | 3193 |
| Columbus, OH | 2002 | 79 | 111 | 102 | 3575 |
| Dallas, TX | 1992 | 125 | 153 | 118 | 8051 |
| Dallas, TX | 1993 | 90 | 115 | 116 | 7894 |
| Dallas, TX | 1994 | 104 | 131 | 115 | 7904 |
| Dallas, TX | 1995 | 93 | 136 | 116 | 8101 |
| Dallas, TX | 1996 | 87 | 109 | 118 | 8490 |
| Dallas, TX | 1997 | 137 | 111 | 122 | 9085 |
| Dallas, TX | 1998 | 140 | 104 | 128 | 9849 |
| Dallas, TX | 1999 | 149 | 140 | 135 | 10743 |
| Dallas, TX | 2000 | 126 | 114 | 144 | 11759 |
| Dallas, TX | 2001 | 275 | 132 | 154 | 12882 |
| Dallas, TX | 2002 | 180 | 118 | 166 | 14026 |
| Dayton--Springfield, OH | 1992 | 28 | 47 | 32 | 677 |
| Dayton--Springfield, OH | 1993 | 20 | 30 | 28 | 579 |
| Dayton--Springfield, OH | 1994 | 19 | 25 | 25 | 509 |
| Dayton--Springfield, OH | 1995 | 13 | 27 | 23 | 472 |
| Dayton--Springfield, OH | 1996 | 15 | 33 | 23 | 463 |
| Dayton--Springfield, OH | 1997 | 21 | 35 | 24 | 480 |
| Dayton--Springfield, OH | 1998 | 21 | 22 | 26 | 527 |
| Dayton--Springfield, OH | 1999 | 20 | 27 | 30 | 596 |
| Dayton--Springfield, OH | 2000 | 37 | 23 | 35 | 690 |
| Dayton--Springfield, OH | 2001 | 38 | 38 | 42 | 806 |
| Dayton--Springfield, OH | 2002 | 58 | 63 | 50 | 956 |
| Denver, CO | 1992 | 114 | 189 | 140 | 5094 |
| Denver, CO | 1993 | 99 | 142 | 141 | 5197 |
| Denver, CO | 1994 | 124 | 147 | 141 | 5263 |
| Denver, CO | 1995 | 117 | 163 | 141 | 5414 |
| Denver, CO | 1996 | 118 | 172 | 141 | 5602 |
| Denver, CO | 1997 | 117 | 184 | 141 | 5821 |
| Denver, CO | 1998 | 119 | 192 | 142 | 6031 |
| Denver, CO | 1999 | 150 | 148 | 142 | 6254 |
| Denver, CO | 2000 | 161 | 156 | 142 | 6395 |
| Denver, CO | 2001 | 111 | 107 | 142 | 6456 |
| Denver, CO | 2002 | 134 | 154 | 142 | 6459 |
| Detroit, MI | 1992 | 35 | 54 | 40 | 3757 |
| Detroit, MI | 1993 | 25 | 38 | 39 | 3568 |
| Detroit, MI | 1994 | 27 | 36 | 38 | 3452 |
| Detroit, MI | 1995 | 35 | 39 | 38 | 3427 |
| Detroit, MI | 1996 | 37 | 42 | 39 | 3465 |
| Detroit, MI | 1997 | 46 | 44 | 40 | 3541 |
| Detroit, MI | 1998 | 45 | 53 | 42 | 3665 |
| Detroit, MI | 1999 | 39 | 46 | 44 | 3836 |
| Detroit, MI | 2000 | 46 | 53 | 47 | 4066 |
| Detroit, MI | 2001 | 46 | 38 | 51 | 4329 |
| Detroit, MI | 2002 | 64 | 47 | 56 | 4652 |
| El Paso, TX | 1992 | 308 | 347 | 284 | 4467 |
| El Paso, TX | 1993 | 234 | 273 | 260 | 4125 |
| El Paso, TX | 1994 | 220 | 295 | 238 | 3748 |
| El Paso, TX | 1995 | 173 | 240 | 217 | 3425 |
| El Paso, TX | 1996 | 77 | 237 | 198 | 3108 |
| El Paso, TX | 1997 | 157 | 241 | 180 | 2852 |
| El Paso, TX | 1998 | 116 | 168 | 164 | 2608 |
| El Paso, TX | 1999 | 146 | 159 | 150 | 2373 |
| El Paso, TX | 2000 | 105 | 177 | 137 | 2165 |
| El Paso, TX | 2001 | 111 | 145 | 125 | 1980 |
| El Paso, TX | 2002 | 102 | 130 | 115 | 1814 |
| Fort Lauderdale, FL | 1992 | 62 | 77 | 61 | 1515 |
| Fort Lauderdale, FL | 1993 | 56 | 61 | 60 | 1503 |
| Fort Lauderdale, FL | 1994 | 55 | 57 | 60 | 1509 |
| Fort Lauderdale, FL | 1995 | 44 | 51 | 61 | 1540 |
| Fort Lauderdale, FL | 1996 | 52 | 55 | 62 | 1600 |
| Fort Lauderdale, FL | 1997 | 69 | 68 | 64 | 1705 |
| Fort Lauderdale, FL | 1998 | 65 | 77 | 68 | 1836 |
| Fort Lauderdale, FL | 1999 | 81 | 93 | 71 | 1988 |
| Fort Lauderdale, FL | 2000 | 66 | 88 | 76 | 2171 |
| Fort Lauderdale, FL | 2001 | 79 | 92 | 82 | 2370 |
| Fort Lauderdale, FL | 2002 | 80 | 72 | 88 | 2598 |
| Fort Worth--Arlington, TX | 1992 | 218 | 281 | 209 | 6976 |
| Fort Worth--Arlington, TX | 1993 | 169 | 216 | 200 | 6601 |
| Fort Worth--Arlington, TX | 1994 | 181 | 224 | 193 | 6388 |
| Fort Worth--Arlington, TX | 1995 | 149 | 173 | 188 | 6273 |
| Fort Worth--Arlington, TX | 1996 | 120 | 187 | 184 | 6250 |
| Fort Worth--Arlington, TX | 1997 | 155 | 175 | 182 | 6336 |
| Fort Worth--Arlington, TX | 1998 | 179 | 185 | 181 | 6491 |
| Fort Worth--Arlington, TX | 1999 | 208 | 232 | 183 | 6703 |
| Fort Worth--Arlington, TX | 2000 | 192 | 194 | 185 | 6965 |
| Fort Worth--Arlington, TX | 2001 | 227 | 202 | 190 | 7272 |
| Fort Worth--Arlington, TX | 2002 | 171 | 171 | 196 | 7677 |
| Fresno, CA | 1992 | 108 | 220 | 192 | 3564 |
| Fresno, CA | 1993 | 131 | 283 | 187 | 3502 |
| Fresno, CA | 1994 | 83 | 238 | 180 | 3398 |
| Fresno, CA | 1995 | 103 | 315 | 173 | 3281 |
| Fresno, CA | 1996 | 99 | 286 | 164 | 3183 |
| Fresno, CA | 1997 | 86 | 238 | 154 | 3068 |
| Fresno, CA | 1998 | 86 | 169 | 143 | 2916 |
| Fresno, CA | 1999 | 100 | 153 | 131 | 2734 |
| Fresno, CA | 2000 | 89 | 143 | 117 | 2514 |
| Fresno, CA | 2001 | 80 | 108 | 103 | 2245 |
| Fresno, CA | 2002 | 76 | 81 | 87 | 1961 |
| Gary, IN | 1992 | 75 | 115 | 71 | 930 |
| Gary, IN | 1993 | 53 | 65 | 69 | 901 |
| Gary, IN | 1994 | 64 | 68 | 69 | 894 |
| Gary, IN | 1995 | 48 | 67 | 71 | 917 |
| Gary, IN | 1996 | 45 | 56 | 74 | 964 |
| Gary, IN | 1997 | 97 | 79 | 1031 | |
| Gary, IN | 1998 | 104 | 86 | 1118 | |
| Gary, IN | 1999 | 102 | 94 | 1219 | |
| Gary, IN | 2000 | 144 | 105 | 1339 | |
| Gary, IN | 2001 | 128 | 117 | 1473 | |
| Gary, IN | 2002 | 130 | 130 | 1637 | |
| Grand Rapids--Muskegon--Holland, MI |
1992 | 25 | 47 | 36 | 792 |
| Grand Rapids--Muskegon--Holland, MI |
1993 | 24 | 40 | 34 | 735 |
| Grand Rapids--Muskegon--Holland, MI |
1994 | 28 | 37 | 32 | 697 |
| Grand Rapids--Muskegon--Holland, MI |
1995 | 17 | 32 | 30 | 678 |
| Grand Rapids--Muskegon--Holland, MI |
1996 | 21 | 35 | 30 | 677 |
| Grand Rapids--Muskegon--Holland, MI |
1997 | 28 | 33 | 30 | 691 |
| Grand Rapids--Muskegon--Holland, MI |
1998 | 29 | 35 | 31 | 720 |
| Grand Rapids--Muskegon--Holland, MI |
1999 | 35 | 42 | 32 | 764 |
| Grand Rapids--Muskegon--Holland, MI |
2000 | 29 | 39 | 35 | 825 |
| Grand Rapids--Muskegon--Holland, MI |
2001 | 38 | 38 | 38 | 901 |
| Grand Rapids--Muskegon--Holland, MI |
2002 | 35 | 33 | 41 | 995 |
| Greensboro--Winston-Salem --High Point, NC |
1992 | 56 | 95 | 65 | 1616 |
| Greensboro--Winston-Salem --High Point, NC |
1993 | 39 | 66 | 61 | 1491 |
| Greensboro--Winston-Salem --High Point, NC |
1994 | 60 | 67 | 57 | 1400 |
| Greensboro--Winston-Salem --High Point, NC |
1995 | 41 | 50 | 54 | 1338 |
| Greensboro--Winston-Salem --High Point, NC |
1996 | 37 | 46 | 52 | 1301 |
| Greensboro--Winston-Salem --High Point, NC |
1997 | 44 | 55 | 51 | 1290 |
| Greensboro--Winston-Salem --High Point, NC |
1998 | 52 | 54 | 51 | 1302 |
| Greensboro--Winston-Salem --High Point, NC |
1999 | 61 | 69 | 52 | 1332 |
| Greensboro--Winston-Salem --High Point, NC |
2000 | 43 | 58 | 54 | 1390 |
| Greensboro--Winston-Salem --High Point, NC |
2001 | 61 | 54 | 57 | 1455 |
| Greensboro--Winston-Salem --High Point, NC |
2002 | 64 | 48 | 61 | 1544 |
| Greenville--Spartanburg--Anderson, SC |
1992 | 44 | 45 | 882 | |
| Greenville--Spartanburg--Anderson, SC |
1993 | 33 | 40 | 41 | 810 |
| Greenville--Spartanburg--Anderson, SC |
1994 | 37 | 39 | 756 | |
| Greenville--Spartanburg--Anderson, SC |
1995 | 26 | 37 | 725 | |
| Greenville--Spartanburg--Anderson, SC |
1996 | 19 | 36 | 716 | |
| Greenville--Spartanburg--Anderson, SC |
1997 | 32 | 33 | 36 | 722 |
| Greenville--Spartanburg--Anderson, SC |
1998 | 35 | 40 | 37 | 748 |
| Greenville--Spartanburg--Anderson, SC |
1999 | 49 | 44 | 39 | 791 |
| Greenville--Spartanburg--Anderson, SC |
2000 | 33 | 43 | 42 | 847 |
| Greenville--Spartanburg--Anderson, SC |
2001 | 52 | 40 | 45 | 916 |
| Greenville--Spartanburg--Anderson, SC |
2002 | 47 | 45 | 49 | 1001 |
| Harrisburg--Lebanon--Carlisle, PA | 1992 | 59 | 88 | 61 | 779 |
| Harrisburg--Lebanon--Carlisle, PA | 1993 | 50 | 76 | 74 | 929 |
| Harrisburg--Lebanon--Carlisle, PA | 1994 | 59 | 100 | 87 | 1083 |
| Harrisburg--Lebanon--Carlisle, PA | 1995 | 61 | 78 | 101 | 1243 |
| Harrisburg--Lebanon--Carlisle, PA | 1996 | 83 | 94 | 115 | 1415 |
| Harrisburg--Lebanon--Carlisle, PA | 1997 | 144 | 130 | 130 | 1586 |
| Harrisburg--Lebanon--Carlisle, PA | 1998 | 179 | 156 | 146 | 1771 |
| Harrisburg--Lebanon--Carlisle, PA | 1999 | 229 | 189 | 162 | 1946 |
| Harrisburg--Lebanon--Carlisle, PA | 2000 | 209 | 174 | 179 | 2125 |
| Harrisburg--Lebanon--Carlisle, PA | 2001 | 269 | 153 | 197 | 2317 |
| Harrisburg--Lebanon--Carlisle, PA | 2002 | 211 | 147 | 215 | 2548 |
| Hartford, CT | 1992 | 162 | 149 | 3613 | |
| Hartford, CT | 1993 | 149 | 146 | 3401 | |
| Hartford, CT | 1994 | 149 | 143 | 3222 | |
| Hartford, CT | 1995 | 142 | 140 | 3067 | |
| Hartford, CT | 1996 | 153 | 137 | 2952 | |
| Hartford, CT | 1997 | 158 | 135 | 2867 | |
| Hartford, CT | 1998 | 142 | 133 | 2803 | |
| Hartford, CT | 1999 | 143 | 132 | 2746 | |
| Hartford, CT | 2000 | 142 | 130 | 2717 | |
| Hartford, CT | 2001 | 124 | 129 | 2712 | |
| Hartford, CT | 2002 | 130 | 128 | 2749 | |
| Honolulu, HI | 1992 | 31 | 46 | 949 | |
| Honolulu, HI | 1993 | 37 | 44 | 882 | |
| Honolulu, HI | 1994 | 47 | 43 | 842 | |
| Honolulu, HI | 1995 | 34 | 42 | 819 | |
| Honolulu, HI | 1996 | 27 | 43 | 817 | |
| Honolulu, HI | 1997 | 32 | 44 | 838 | |
| Honolulu, HI | 1998 | 39 | 46 | 880 | |
| Honolulu, HI | 1999 | 36 | 49 | 925 | |
| Honolulu, HI | 2000 | 44 | 53 | 999 | |
| Honolulu, HI | 2001 | 58 | 58 | 1090 | |
| Honolulu, HI | 2002 | 53 | 64 | 1201 | |
| Houston, TX | 1992 | 158 | 231 | 167 | 13893 |
| Houston, TX | 1993 | 117 | 160 | 156 | 13035 |
| Houston, TX | 1994 | 152 | 185 | 147 | 12288 |
| Houston, TX | 1995 | 114 | 131 | 138 | 11694 |
| Houston, TX | 1996 | 79 | 128 | 130 | 11240 |
| Houston, TX | 1997 | 113 | 126 | 123 | 10912 |
| Houston, TX | 1998 | 108 | 137 | 117 | 10685 |
| Houston, TX | 1999 | 129 | 159 | 112 | 10505 |
| Houston, TX | 2000 | 73 | 103 | 108 | 10334 |
| Houston, TX | 2001 | 112 | 121 | 105 | 10152 |
| Houston, TX | 2002 | 78 | 105 | 103 | 10133 |
| Indianapolis, IN | 1992 | 82 | 96 | 75 | 2419 |
| Indianapolis, IN | 1993 | 57 | 73 | 67 | 2157 |
| Indianapolis, IN | 1994 | 49 | 75 | 61 | 1950 |
| Indianapolis, IN | 1995 | 40 | 66 | 56 | 1805 |
| Indianapolis, IN | 1996 | 43 | 58 | 53 | 1719 |
| Indianapolis, IN | 1997 | 47 | 51 | 1685 | |
| Indianapolis, IN | 1998 | 43 | 61 | 52 | 1702 |
| Indianapolis, IN | 1999 | 18 | 66 | 54 | 1771 |
| Indianapolis, IN | 2000 | 37 | 44 | 58 | 1895 |
| Indianapolis, IN | 2001 | 64 | 94 | 63 | 2074 |
| Indianapolis, IN | 2002 | 80 | 75 | 70 | 2318 |
| Jacksonville, FL | 1992 | 64 | 122 | 78 | 1683 |
| Jacksonville, FL | 1993 | 45 | 93 | 73 | 1534 |
| Jacksonville, FL | 1994 | 65 | 101 | 70 | 1444 |
| Jacksonville, FL | 1995 | 30 | 71 | 68 | 1407 |
| Jacksonville, FL | 1996 | 48 | 72 | 68 | 1448 |
| Jacksonville, FL | 1997 | 44 | 70 | 70 | 1515 |
| Jacksonville, FL | 1998 | 50 | 71 | 73 | 1608 |
| Jacksonville, FL | 1999 | 90 | 92 | 78 | 1727 |
| Jacksonville, FL | 2000 | 82 | 88 | 85 | 1899 |
| Jacksonville, FL | 2001 | 114 | 117 | 93 | 2109 |
| Jacksonville, FL | 2002 | 107 | 79 | 103 | 2378 |
| Jersey City, NJ | 1992 | 202 | 184 | 175 | 2468 |
| Jersey City, NJ | 1993 | 148 | 140 | 163 | 2280 |
| Jersey City, NJ | 1994 | 204 | 162 | 152 | 2113 |
| Jersey City, NJ | 1995 | 161 | 129 | 142 | 1978 |
| Jersey City, NJ | 1996 | 131 | 106 | 133 | 1870 |
| Jersey City, NJ | 1997 | 131 | 109 | 126 | 1788 |
| Jersey City, NJ | 1998 | 105 | 98 | 119 | 1717 |
| Jersey City, NJ | 1999 | 124 | 120 | 114 | 1656 |
| Jersey City, NJ | 2000 | 118 | 97 | 110 | 1605 |
| Jersey City, NJ | 2001 | 116 | 97 | 107 | 1527 |
| Jersey City, NJ | 2002 | 126 | 91 | 105 | 1445 |
| Kansas City, MO--KS | 1992 | 75 | 65 | 61 | 2063 |
| Kansas City, MO--KS | 1993 | 51 | 41 | 60 | 2036 |
| Kansas City, MO--KS | 1994 | 53 | 36 | 60 | 2018 |
| Kansas City, MO--KS | 1995 | 55 | 40 | 59 | 2008 |
| Kansas City, MO--KS | 1996 | 56 | 71 | 59 | 2012 |
| Kansas City, MO--KS | 1997 | 71 | 108 | 58 | 2016 |
| Kansas City, MO--KS | 1998 | 59 | 80 | 57 | 2018 |
| Kansas City, MO--KS | 1999 | 54 | 61 | 57 | 2011 |
| Kansas City, MO--KS | 2000 | 42 | 46 | 56 | 1997 |
| Kansas City, MO--KS | 2001 | 54 | 55 | 55 | 1966 |
| Kansas City, MO--KS | 2002 | 48 | 37 | 54 | 1950 |
| Knoxville, TN | 1992 | 102 | 107 | 92 | 1268 |
| Knoxville, TN | 1993 | 84 | 85 | 89 | 1225 |
| Knoxville, TN | 1994 | 85 | 71 | 87 | 1201 |
| Knoxville, TN | 1995 | 81 | 87 | 86 | 1195 |
| Knoxville, TN | 1996 | 80 | 84 | 85 | 1204 |
| Knoxville, TN | 1997 | 93 | 83 | 86 | 1210 |
| Knoxville, TN | 1998 | 90 | 76 | 88 | 1237 |
| Knoxville, TN | 1999 | 101 | 75 | 90 | 1272 |
| Knoxville, TN | 2000 | 127 | 84 | 94 | 1322 |
| Knoxville, TN | 2001 | 126 | 86 | 98 | 1394 |
| Knoxville, TN | 2002 | 120 | 65 | 104 | 1482 |
| Las Vegas, NV--AZ | 1992 | 94 | 155 | 125 | 2613 |
| Las Vegas, NV--AZ | 1993 | 107 | 124 | 123 | 2617 |
| Las Vegas, NV--AZ | 1994 | 142 | 147 | 121 | 2721 |
| Las Vegas, NV--AZ | 1995 | 98 | 127 | 119 | 2819 |
| Las Vegas, NV--AZ | 1996 | 92 | 119 | 118 | 2933 |
| Las Vegas, NV--AZ | 1997 | 88 | 141 | 117 | 3118 |
| Las Vegas, NV--AZ | 1998 | 90 | 140 | 117 | 3308 |
| Las Vegas, NV--AZ | 1999 | 117 | 144 | 117 | 3511 |
| Las Vegas, NV--AZ | 2000 | 118 | 132 | 118 | 3738 |
| Las Vegas, NV--AZ | 2001 | 122 | 127 | 119 | 3872 |
| Las Vegas, NV--AZ | 2002 | 101 | 110 | 120 | 4022 |
| Little Rock--North Little Rock, AR | 1992 | 198 | 180 | 2207 | |
| Little Rock--North Little Rock, AR | 1993 | 152 | 173 | 2136 | |
| Little Rock--North Little Rock, AR | 1994 | 175 | 167 | 2060 | |
| Little Rock--North Little Rock, AR | 1995 | 166 | 162 | 2005 | |
| Little Rock--North Little Rock, AR | 1996 | 114 | 158 | 1979 | |
| Little Rock--North Little Rock, AR | 1997 | 145 | 155 | 1955 | |
| Little Rock--North Little Rock, AR | 1998 | 142 | 152 | 1931 | |
| Little Rock--North Little Rock, AR | 1999 | 160 | 150 | 1921 | |
| Little Rock--North Little Rock, AR | 2000 | 146 | 149 | 1910 | |
| Little Rock--North Little Rock, AR | 2001 | 151 | 149 | 1889 | |
| Little Rock--North Little Rock, AR | 2002 | 128 | 149 | 1890 | |
| Los Angeles--Long Beach, CA | 1992 | 79 | 127 | 103 | 23261 |
| Los Angeles--Long Beach, CA | 1993 | 80 | 121 | 99 | 21817 |
| Los Angeles--Long Beach, CA | 1994 | 62 | 108 | 95 | 20501 |
| Los Angeles--Long Beach, CA | 1995 | 69 | 126 | 92 | 19404 |
| Los Angeles--Long Beach, CA | 1996 | 69 | 121 | 89 | 18633 |
| Los Angeles--Long Beach, CA | 1997 | 65 | 120 | 87 | 18245 |
| Los Angeles--Long Beach, CA | 1998 | 63 | 115 | 85 | 18068 |
| Los Angeles--Long Beach, CA | 1999 | 60 | 96 | 84 | 17974 |
| Los Angeles--Long Beach, CA | 2000 | 58 | 97 | 83 | 17983 |
| Los Angeles--Long Beach, CA | 2001 | 58 | 96 | 83 | 17835 |
| Los Angeles--Long Beach, CA | 2002 | 63 | 107 | 83 | 17823 |
| Louisville, KY--IN | 1992 | 69 | 94 | 81 | 1676 |
| Louisville, KY--IN | 1993 | 59 | 51 | 82 | 1685 |
| Louisville, KY--IN | 1994 | 172 | 51 | 84 | 1719 |
| Louisville, KY--IN | 1995 | 157 | 73 | 87 | 1777 |
| Louisville, KY--IN | 1996 | 63 | 62 | 91 | 1856 |
| Louisville, KY--IN | 1997 | 80 | 96 | 1952 | |
| Louisville, KY--IN | 1998 | 98 | 101 | 2068 | |
| Louisville, KY--IN | 1999 | 83 | 108 | 2197 | |
| Louisville, KY--IN | 2000 | 149 | 135 | 115 | 2332 |
| Louisville, KY--IN | 2001 | 155 | 142 | 123 | 2468 |
| Louisville, KY--IN | 2002 | 103 | 117 | 132 | 2638 |
| Memphis, TN--AR--MS | 1992 | 84 | 73 | 72 | 1728 |
| Memphis, TN--AR--MS | 1993 | 97 | 55 | 65 | 1562 |
| Memphis, TN--AR--MS | 1994 | 60 | 53 | 60 | 1442 |
| Memphis, TN--AR--MS | 1995 | 57 | 36 | 57 | 1360 |
| Memphis, TN--AR--MS | 1996 | 71 | 38 | 55 | 1314 |
| Memphis, TN--AR--MS | 1997 | 40 | 50 | 54 | 1297 |
| Memphis, TN--AR--MS | 1998 | 41 | 48 | 54 | 1320 |
| Memphis, TN--AR--MS | 1999 | 89 | 49 | 56 | 1373 |
| Memphis, TN--AR--MS | 2000 | 56 | 57 | 60 | 1456 |
| Memphis, TN--AR--MS | 2001 | 62 | 59 | 64 | 1556 |
| Memphis, TN--AR--MS | 2002 | 89 | 62 | 70 | 1697 |
| Miami, FL | 1992 | 69 | 116 | 78 | 3442 |
| Miami, FL | 1993 | 52 | 70 | 74 | 3177 |
| Miami, FL | 1994 | 72 | 67 | 70 | 3019 |
| Miami, FL | 1995 | 58 | 64 | 67 | 2914 |
| Miami, FL | 1996 | 55 | 63 | 65 | 2848 |
| Miami, FL | 1997 | 65 | 71 | 63 | 2805 |
| Miami, FL | 1998 | 50 | 73 | 62 | 2789 |
| Miami, FL | 1999 | 69 | 76 | 62 | 2828 |
| Miami, FL | 2000 | 56 | 73 | 62 | 2885 |
| Miami, FL | 2001 | 57 | 70 | 63 | 2926 |
| Miami, FL | 2002 | 60 | 49 | 65 | 2991 |
| Middlesex--Somerset--Hunterdon, NJ |
1992 | 81 | 80 | 82 | 1878 |
| Middlesex--Somerset--Hunterdon, NJ |
1993 | 80 | 83 | 82 | 1833 |
| Middlesex--Somerset--Hunterdon, NJ |
1994 | 74 | 76 | 82 | 1808 |
| Middlesex--Somerset--Hunterdon, NJ |
1995 | 86 | 75 | 83 | 1809 |
| Middlesex--Somerset--Hunterdon, NJ |
1996 | 97 | 82 | 85 | 1833 |
| Middlesex--Somerset--Hunterdon, NJ |
1997 | 108 | 82 | 88 | 1884 |
| Middlesex--Somerset--Hunterdon, NJ |
1998 | 102 | 84 | 91 | 1957 |
| Middlesex--Somerset--Hunterdon, NJ |
1999 | 101 | 84 | 94 | 2046 |
| Middlesex--Somerset--Hunterdon, NJ |
2000 | 103 | 95 | 99 | 2154 |
| Middlesex--Somerset--Hunterdon, NJ |
2001 | 107 | 94 | 104 | 2272 |
| Middlesex--Somerset--Hunterdon, NJ |
2002 | 113 | 105 | 109 | 2401 |
| Milwaukee--Waukesha, WI | 1992 | 71 | 43 | 56 | 1751 |
| Milwaukee--Waukesha, WI | 1993 | 59 | 37 | 50 | 1567 |
| Milwaukee--Waukesha, WI | 1994 | 85 | 36 | 46 | 1430 |
| Milwaukee--Waukesha, WI | 1995 | 33 | 34 | 44 | 1342 |
| Milwaukee--Waukesha, WI | 1996 | 61 | 31 | 42 | 1295 |
| Milwaukee--Waukesha, WI | 1997 | 29 | 37 | 42 | 1283 |
| Milwaukee--Waukesha, WI | 1998 | 52 | 35 | 43 | 1312 |
| Milwaukee--Waukesha, WI | 1999 | 32 | 40 | 45 | 1376 |
| Milwaukee--Waukesha, WI | 2000 | 39 | 36 | 49 | 1479 |
| Milwaukee--Waukesha, WI | 2001 | 100 | 40 | 54 | 1612 |
| Milwaukee--Waukesha, WI | 2002 | 70 | 48 | 60 | 1797 |
| Minneapolis--St. Paul, MN--WI | 1992 | 60 | 70 | 57 | 3345 |
| Minneapolis--St. Paul, MN--WI | 1993 | 51 | 50 | 54 | 3132 |
| Minneapolis--St. Paul, MN--WI | 1994 | 50 | 49 | 52 | 3000 |
| Minneapolis--St. Paul, MN--WI | 1995 | 50 | 44 | 51 | 2966 |
| Minneapolis--St. Paul, MN--WI | 1996 | 51 | 52 | 51 | 3014 |
| Minneapolis--St. Paul, MN--WI | 1997 | 41 | 54 | 53 | 3138 |
| Minneapolis--St. Paul, MN--WI | 1998 | 50 | 57 | 55 | 3339 |
| Minneapolis--St. Paul, MN--WI | 1999 | 63 | 65 | 59 | 3618 |
| Minneapolis--St. Paul, MN--WI | 2000 | 53 | 33 | 64 | 3970 |
| Minneapolis--St. Paul, MN--WI | 2001 | 67 | 138 | 70 | 4346 |
| Minneapolis--St. Paul, MN--WI | 2002 | 61 | 66 | 77 | 4811 |
| Monmouth--Ocean, NJ | 1992 | 98 | 117 | 95 | 1751 |
| Monmouth--Ocean, NJ | 1993 | 80 | 92 | 97 | 1750 |
| Monmouth--Ocean, NJ | 1994 | 95 | 95 | 100 | 1771 |
| Monmouth--Ocean, NJ | 1995 | 102 | 82 | 104 | 1826 |
| Monmouth--Ocean, NJ | 1996 | 122 | 91 | 109 | 1900 |
| Monmouth--Ocean, NJ | 1997 | 141 | 120 | 115 | 2004 |
| Monmouth--Ocean, NJ | 1998 | 140 | 119 | 122 | 2139 |
| Monmouth--Ocean, NJ | 1999 | 142 | 113 | 130 | 2295 |
| Monmouth--Ocean, NJ | 2000 | 165 | 134 | 139 | 2479 |
| Monmouth--Ocean, NJ | 2001 | 144 | 120 | 149 | 2724 |
| Monmouth--Ocean, NJ | 2002 | 187 | 152 | 161 | 3027 |
| Nashville, TN | 1992 | 79 | 94 | 79 | 1893 |
| Nashville, TN | 1993 | 63 | 80 | 76 | 1851 |
| Nashville, TN | 1994 | 80 | 78 | 74 | 1834 |
| Nashville, TN | 1995 | 70 | 74 | 73 | 1846 |
| Nashville, TN | 1996 | 33 | 71 | 73 | 1884 |
| Nashville, TN | 1997 | 44 | 80 | 74 | 1948 |
| Nashville, TN | 1998 | 91 | 92 | 76 | 2026 |
| Nashville, TN | 1999 | 115 | 66 | 78 | 2115 |
| Nashville, TN | 2000 | 101 | 67 | 81 | 2228 |
| Nashville, TN | 2001 | 98 | 85 | 86 | 2352 |
| Nashville, TN | 2002 | 84 | 72 | 91 | 2481 |
| Nassau--Suffolk, NY | 1992 | 44 | 46 | 43 | 2357 |
| Nassau--Suffolk, NY | 1993 | 41 | 44 | 45 | 2375 |
| Nassau--Suffolk, NY | 1994 | 41 | 34 | 47 | 2430 |
| Nassau--Suffolk, NY | 1995 | 51 | 38 | 51 | 2530 |
| Nassau--Suffolk, NY | 1996 | 61 | 41 | 55 | 2670 |
| Nassau--Suffolk, NY | 1997 | 81 | 58 | 59 | 2859 |
| Nassau--Suffolk, NY | 1998 | 90 | 59 | 65 | 3098 |
| Nassau--Suffolk, NY | 1999 | 84 | 52 | 71 | 3361 |
| Nassau--Suffolk, NY | 2000 | 104 | 75 | 78 | 3674 |
| Nassau--Suffolk, NY | 2001 | 83 | 58 | 86 | 4096 |
| Nassau--Suffolk, NY | 2002 | 111 | 84 | 95 | 4573 |
| New Haven--Meriden, CT | 1992 | 147 | 135 | 4573 | |
| New Haven--Meriden, CT | 1993 | 130 | 133 | 4352 | |
| New Haven--Meriden, CT | 1994 | 131 | 130 | 4165 | |
| New Haven--Meriden, CT | 1995 | 143 | 129 | 4019 | |
| New Haven--Meriden, CT | 1996 | 144 | 127 | 3916 | |
| New Haven--Meriden, CT | 1997 | 140 | 126 | 3855 | |
| New Haven--Meriden, CT | 1998 | 141 | 126 | 3816 | |
| New Haven--Meriden, CT | 1999 | 133 | 125 | 3780 | |
| New Haven--Meriden, CT | 2000 | 136 | 125 | 3775 | |
| New Haven--Meriden, CT | 2001 | 125 | 126 | 3786 | |
| New Haven--Meriden, CT | 2002 | 127 | 126 | 3845 | |
| New Orleans, LA | 1992 | 158 | 142 | 127 | 3726 |
| New Orleans, LA | 1993 | 113 | 144 | 133 | 3855 |
| New Orleans, LA | 1994 | 138 | 155 | 141 | 4068 |
| New Orleans, LA | 1995 | 117 | 140 | 151 | 4367 |
| New Orleans, LA | 1996 | 131 | 143 | 164 | 4719 |
| New Orleans, LA | 1997 | 154 | 143 | 179 | 5144 |
| New Orleans, LA | 1998 | 219 | 201 | 196 | 5632 |
| New Orleans, LA | 1999 | 241 | 258 | 215 | 6164 |
| New Orleans, LA | 2000 | 248 | 206 | 237 | 6722 |
| New Orleans, LA | 2001 | 336 | 296 | 261 | 7337 |
| New Orleans, LA | 2002 | 275 | 249 | 288 | 8057 |
| New York, NY | 1992 | 102 | 97 | 96 | 18978 |
| New York, NY | 1993 | 96 | 104 | 90 | 17764 |
| New York, NY | 1994 | 81 | 98 | 86 | 16874 |
| New York, NY | 1995 | 80 | 77 | 84 | 16368 |
| New York, NY | 1996 | 81 | 80 | 83 | 16306 |
| New York, NY | 1997 | 83 | 70 | 84 | 16686 |
| New York, NY | 1998 | 83 | 71 | 87 | 17470 |
| New York, NY | 1999 | 79 | 62 | 92 | 18512 |
| New York, NY | 2000 | 93 | 102 | 99 | 19852 |
| New York, NY | 2001 | 88 | 206 | 107 | 21348 |
| New York, NY | 2002 | 102 | 112 | 117 | 23133 |
| Newark, NJ | 1992 | 149 | 138 | 132 | 5350 |
| Newark, NJ | 1993 | 136 | 108 | 128 | 5060 |
| Newark, NJ | 1994 | 148 | 115 | 125 | 4822 |
| Newark, NJ | 1995 | 134 | 99 | 122 | 4657 |
| Newark, NJ | 1996 | 130 | 95 | 121 | 4563 |
| Newark, NJ | 1997 | 135 | 104 | 122 | 4537 |
| Newark, NJ | 1998 | 137 | 106 | 123 | 4574 |
| Newark, NJ | 1999 | 147 | 109 | 125 | 4652 |
| Newark, NJ | 2000 | 153 | 123 | 129 | 4762 |
| Newark, NJ | 2001 | 149 | 106 | 133 | 4908 |
| Newark, NJ | 2002 | 169 | 114 | 139 | 5117 |
| Norfolk--Virginia Beach--Newport News, VA--NC | 1992 | 25 | 70 | 44 | 1717 |
| Norfolk--Virginia Beach--Newport News, VA--NC | 1993 | 20 | 51 | 1948 | |
| Norfolk--Virginia Beach--Newport News, VA--NC | 1994 | 26 | 58 | 2145 | |
| Norfolk--Virginia Beach--Newport News, VA--NC | 1995 | 31 | 64 | 2346 | |
| Norfolk--Virginia Beach--Newport News, VA--NC | 1996 | 57 | 72 | 70 | 2546 |
| Norfolk--Virginia Beach--Newport News, VA--NC | 1997 | 67 | 76 | 2738 | |
| Norfolk--Virginia Beach--Newport News, VA--NC | 1998 | 70 | 155 | 82 | 2911 |
| Norfolk--Virginia Beach--Newport News, VA--NC | 1999 | 92 | 160 | 88 | 3113 |
| Norfolk--Virginia Beach--Newport News, VA--NC | 2000 | 73 | 105 | 93 | 3326 |
| Norfolk--Virginia Beach--Newport News, VA--NC | 2001 | 108 | 79 | 99 | 3499 |
| Norfolk--Virginia Beach--Newport News, VA--NC | 2002 | 84 | 76 | 104 | 3738 |
| Oakland, CA | 1992 | 71 | 119 | 106 | 4985 |
| Oakland, CA | 1993 | 78 | 131 | 103 | 4753 |
| Oakland, CA | 1994 | 56 | 125 | 100 | 4529 |
| Oakland, CA | 1995 | 70 | 160 | 97 | 4341 |
| Oakland, CA | 1996 | 62 | 139 | 93 | 4185 |
| Oakland, CA | 1997 | 73 | 130 | 90 | 4078 |
| Oakland, CA | 1998 | 66 | 106 | 86 | 3988 |
| Oakland, CA | 1999 | 68 | 82 | 82 | 3871 |
| Oakland, CA | 2000 | 66 | 78 | 78 | 3746 |
| Oakland, CA | 2001 | 66 | 76 | 73 | 3572 |
| Oakland, CA | 2002 | 58 | 68 | 68 | 3303 |
| Oklahoma City, OK | 1992 | 85 | 126 | 103 | 2357 |
| Oklahoma City, OK | 1993 | 86 | 107 | 100 | 2294 |
| Oklahoma City, OK | 1994 | 90 | 98 | 97 | 2241 |
| Oklahoma City, OK | 1995 | 103 | 107 | 94 | 2210 |
| Oklahoma City, OK | 1996 | 82 | 92 | 93 | 2206 |
| Oklahoma City, OK | 1997 | 94 | 83 | 91 | 2221 |
| Oklahoma City, OK | 1998 | 74 | 99 | 91 | 2244 |
| Oklahoma City, OK | 1999 | 91 | 99 | 91 | 2280 |
| Oklahoma City, OK | 2000 | 90 | 105 | 91 | 2305 |
| Oklahoma City, OK | 2001 | 87 | 99 | 93 | 2356 |
| Oklahoma City, OK | 2002 | 91 | 83 | 94 | 2422 |
| Omaha, NE--IA | 1992 | 45 | 58 | 50 | 740 |
| Omaha, NE--IA | 1993 | 47 | 43 | 50 | 728 |
| Omaha, NE--IA | 1994 | 48 | 47 | 51 | 736 |
| Omaha, NE--IA | 1995 | 50 | 52 | 52 | 766 |
| Omaha, NE--IA | 1996 | 44 | 58 | 54 | 816 |
| Omaha, NE--IA | 1997 | 54 | 73 | 57 | 876 |
| Omaha, NE--IA | 1998 | 50 | 82 | 61 | 945 |
| Omaha, NE--IA | 1999 | 60 | 70 | 66 | 1028 |
| Omaha, NE--IA | 2000 | 62 | 70 | 71 | 1120 |
| Omaha, NE--IA | 2001 | 72 | 88 | 78 | 1221 |
| Omaha, NE--IA | 2002 | 81 | 85 | 85 | 1342 |
| Orange County, CA | 1992 | 108 | 147 | 131 | 8032 |
| Orange County, CA | 1993 | 111 | 159 | 124 | 7441 |
| Orange County, CA | 1994 | 82 | 133 | 117 | 6931 |
| Orange County, CA | 1995 | 83 | 155 | 112 | 6522 |
| Orange County, CA | 1996 | 87 | 151 | 107 | 6200 |
| Orange County, CA | 1997 | 89 | 114 | 102 | 6040 |
| Orange County, CA | 1998 | 82 | 109 | 99 | 5920 |
| Orange County, CA | 1999 | 76 | 94 | 96 | 5769 |
| Orange County, CA | 2000 | 85 | 91 | 93 | 5679 |
| Orange County, CA | 2001 | 79 | 92 | 91 | 5544 |
| Orange County, CA | 2002 | 89 | 109 | 90 | 5451 |
| Orlando, FL | 1992 | 54 | 71 | 50 | 1486 |
| Orlando, FL | 1993 | 45 | 43 | 55 | 1637 |
| Orlando, FL | 1994 | 52 | 64 | 61 | 1833 |
| Orlando, FL | 1995 | 43 | 55 | 68 | 2070 |
| Orlando, FL | 1996 | 61 | 67 | 77 | 2376 |
| Orlando, FL | 1997 | 96 | 84 | 87 | 2766 |
| Orlando, FL | 1998 | 110 | 95 | 98 | 3213 |
| Orlando, FL | 1999 | 146 | 125 | 110 | 3705 |
| Orlando, FL | 2000 | 127 | 120 | 124 | 4283 |
| Orlando, FL | 2001 | 171 | 134 | 139 | 4911 |
| Orlando, FL | 2002 | 156 | 123 | 155 | 5602 |
| Philadelphia, PA--NJ | 1992 | 112 | 118 | 101 | 10801 |
| Philadelphia, PA--NJ | 1993 | 97 | 101 | 106 | 11095 |
| Philadelphia, PA--NJ | 1994 | 112 | 100 | 112 | 11563 |
| Philadelphia, PA--NJ | 1995 | 111 | 95 | 119 | 12207 |
| Philadelphia, PA--NJ | 1996 | 139 | 106 | 129 | 13007 |
| Philadelphia, PA--NJ | 1997 | 165 | 117 | 139 | 14007 |
| Philadelphia, PA--NJ | 1998 | 177 | 132 | 152 | 15164 |
| Philadelphia, PA--NJ | 1999 | 208 | 153 | 166 | 16425 |
| Philadelphia, PA--NJ | 2000 | 218 | 143 | 181 | 17849 |
| Philadelphia, PA--NJ | 2001 | 234 | 179 | 198 | 19430 |
| Philadelphia, PA--NJ | 2002 | 252 | 180 | 217 | 21334 |
| Phoenix--Mesa, AZ | 1992 | 121 | 111 | 6060 | |
| Phoenix--Mesa, AZ | 1993 | 108 | 107 | 5919 | |
| Phoenix--Mesa, AZ | 1994 | 123 | 103 | 5942 | |
| Phoenix--Mesa, AZ | 1995 | 115 | 100 | 6022 | |
| Phoenix--Mesa, AZ | 1996 | 109 | 98 | 6126 | |
| Phoenix--Mesa, AZ | 1997 | 98 | 96 | 6317 | |
| Phoenix--Mesa, AZ | 1998 | 97 | 96 | 6526 | |
| Phoenix--Mesa, AZ | 1999 | 95 | 96 | 6776 | |
| Phoenix--Mesa, AZ | 2000 | 96 | 97 | 7076 | |
| Phoenix--Mesa, AZ | 2001 | 108 | 100 | 7397 | |
| Phoenix--Mesa, AZ | 2002 | 118 | 102 | 7799 | |
| Pittsburgh, PA | 1992 | 39 | 56 | 42 | 1957 |
| Pittsburgh, PA | 1993 | 38 | 51 | 40 | 1844 |
| Pittsburgh, PA | 1994 | 33 | 48 | 41 | 1838 |
| Pittsburgh, PA | 1995 | 33 | 48 | 44 | 1940 |
| Pittsburgh, PA | 1996 | 34 | 53 | 49 | 2146 |
| Pittsburgh, PA | 1997 | 49 | 58 | 57 | 2450 |
| Pittsburgh, PA | 1998 | 46 | 52 | 67 | 2850 |
| Pittsburgh, PA | 1999 | 89 | 63 | 79 | 3320 |
| Pittsburgh, PA | 2000 | 114 | 61 | 94 | 3879 |
| Pittsburgh, PA | 2001 | 160 | 72 | 111 | 4540 |
| Pittsburgh, PA | 2002 | 184 | 115 | 130 | 5323 |
| Portland--Vancouver, OR--WA | 1992 | 220 | 220 | 213 | 7064 |
| Portland--Vancouver, OR--WA | 1993 | 226 | 222 | 208 | 7049 |
| Portland--Vancouver, OR--WA | 1994 | 170 | 188 | 204 | 7061 |
| Portland--Vancouver, OR--WA | 1995 | 198 | 221 | 201 | 7169 |
| Portland--Vancouver, OR--WA | 1996 | 178 | 221 | 200 | 7369 |
| Portland--Vancouver, OR--WA | 1997 | 177 | 233 | 199 | 7593 |
| Portland--Vancouver, OR--WA | 1998 | 178 | 235 | 200 | 7824 |
| Portland--Vancouver, OR--WA | 1999 | 158 | 211 | 201 | 8059 |
| Portland--Vancouver, OR--WA | 2000 | 175 | 241 | 204 | 8300 |
| Portland--Vancouver, OR--WA | 2001 | 164 | 237 | 208 | 8534 |
| Portland--Vancouver, OR--WA | 2002 | 191 | 263 | 213 | 8827 |
| Providence--Fall River--Warwick, RI--MA |
1992 | 62 | 72 | 1531 | |
| Providence--Fall River--Warwick, RI--MA |
1993 | 69 | 75 | 1558 | |
| Providence--Fall River--Warwick, RI--MA |
1994 | 56 | 49 | 78 | 1591 |
| Providence--Fall River--Warwick, RI--MA |
1995 | 91 | 72 | 81 | 1626 |
| Providence--Fall River--Warwick, RI--MA |
1996 | 101 | 81 | 84 | 1670 |
| Providence--Fall River--Warwick, RI--MA |
1997 | 112 | 90 | 87 | 1720 |
| Providence--Fall River--Warwick, RI--MA |
1998 | 124 | 92 | 89 | 1777 |
| Providence--Fall River--Warwick, RI--MA |
1999 | 76 | 75 | 92 | 1824 |
| Providence--Fall River--Warwick, RI--MA |
2000 | 137 | 123 | 95 | 1883 |
| Providence--Fall River--Warwick, RI--MA |
2001 | 74 | 56 | 98 | 1960 |
| Providence--Fall River--Warwick, RI--MA |
2002 | 131 | 70 | 102 | 2046 |
| Raleigh--Durham--Chapel Hill, NC | 1992 | 82 | 90 | 74 | 1797 |
| Raleigh--Durham--Chapel Hill, NC | 1993 | 52 | 62 | 67 | 1661 |
| Raleigh--Durham--Chapel Hill, NC | 1994 | 59 | 68 | 61 | 1545 |
| Raleigh--Durham--Chapel Hill, NC | 1995 | 47 | 52 | 56 | 1454 |
| Raleigh--Durham--Chapel Hill, NC | 1996 | 55 | 49 | 52 | 1378 |
| Raleigh--Durham--Chapel Hill, NC | 1997 | 56 | 44 | 49 | 1321 |
| Raleigh--Durham--Chapel Hill, NC | 1998 | 45 | 42 | 46 | 1279 |
| Raleigh--Durham--Chapel Hill, NC | 1999 | 54 | 38 | 45 | 1254 |
| Raleigh--Durham--Chapel Hill, NC | 2000 | 40 | 48 | 44 | 1244 |
| Raleigh--Durham--Chapel Hill, NC | 2001 | 45 | 46 | 44 | 1255 |
| Raleigh--Durham--Chapel Hill, NC | 2002 | 40 | 37 | 44 | 1285 |
| Richmond--Petersburg, VA | 1992 | 79 | 77 | 1518 | |
| Richmond--Petersburg, VA | 1993 | 53 | 82 | 1620 | |
| Richmond--Petersburg, VA | 1994 | 69 | 88 | 1723 | |
| Richmond--Petersburg, VA | 1995 | 60 | 95 | 1833 | |
| Richmond--Petersburg, VA | 1996 | 99 | 101 | 1952 | |
| Richmond--Petersburg, VA | 1997 | 107 | 2094 | ||
| Richmond--Petersburg, VA | 1998 | 113 | 2237 | ||
| Richmond--Petersburg, VA | 1999 | 164 | 120 | 2372 | |
| Richmond--Petersburg, VA | 2000 | 155 | 127 | 2526 | |
| Richmond--Petersburg, VA | 2001 | 154 | 145 | 133 | 2678 |
| Richmond--Petersburg, VA | 2002 | 128 | 81 | 140 | 2859 |
| Riverside--San Bernardino, CA | 1992 | 112 | 171 | 145 | 9112 |
| Riverside--San Bernardino, CA | 1993 | 116 | 195 | 135 | 8411 |
| Riverside--San Bernardino, CA | 1994 | 79 | 149 | 126 | 7755 |
| Riverside--San Bernardino, CA | 1995 | 84 | 159 | 117 | 7199 |
| Riverside--San Bernardino, CA | 1996 | 74 | 139 | 108 | 6682 |
| Riverside--San Bernardino, CA | 1997 | 66 | 138 | 99 | 6261 |
| Riverside--San Bernardino, CA | 1998 | 68 | 120 | 90 | 5886 |
| Riverside--San Bernardino, CA | 1999 | 60 | 97 | 82 | 5516 |
| Riverside--San Bernardino, CA | 2000 | 50 | 92 | 74 | 5139 |
| Riverside--San Bernardino, CA | 2001 | 43 | 77 | 66 | 4853 |
| Riverside--San Bernardino, CA | 2002 | 42 | 68 | 58 | 4522 |
| Rochester, NY | 1992 | 37 | 44 | 1043 | |
| Rochester, NY | 1993 | 32 | 49 | 45 | 1054 |
| Rochester, NY | 1994 | 40 | 55 | 47 | 1080 |
| Rochester, NY | 1995 | 40 | 46 | 50 | 1126 |
| Rochester, NY | 1996 | 47 | 56 | 54 | 1194 |
| Rochester, NY | 1997 | 60 | 60 | 59 | 1283 |
| Rochester, NY | 1998 | 72 | 63 | 64 | 1392 |
| Rochester, NY | 1999 | 79 | 68 | 70 | 1515 |
| Rochester, NY | 2000 | 91 | 65 | 78 | 1668 |
| Rochester, NY | 2001 | 102 | 88 | 86 | 1853 |
| Rochester, NY | 2002 | 99 | 72 | 95 | 2069 |
| Sacramento, CA | 1992 | 95 | 199 | 154 | 4721 |
| Sacramento, CA | 1993 | 86 | 217 | 149 | 4480 |
| Sacramento, CA | 1994 | 80 | 187 | 144 | 4240 |
| Sacramento, CA | 1995 | 70 | 237 | 138 | 4070 |
| Sacramento, CA | 1996 | 81 | 203 | 132 | 3923 |
| Sacramento, CA | 1997 | 92 | 192 | 126 | 3808 |
| Sacramento, CA | 1998 | 94 | 133 | 120 | 3699 |
| Sacramento, CA | 1999 | 88 | 118 | 113 | 3577 |
| Sacramento, CA | 2000 | 89 | 132 | 106 | 3442 |
| Sacramento, CA | 2001 | 70 | 123 | 98 | 3358 |
| Sacramento, CA | 2002 | 75 | 83 | 90 | 3249 |
| St. Louis, MO--IL | 1992 | 67 | 92 | 64 | 3413 |
| St. Louis, MO--IL | 1993 | 44 | 58 | 60 | 3133 |
| St. Louis, MO--IL | 1994 | 42 | 71 | 57 | 2933 |
| St. Louis, MO--IL | 1995 | 40 | 56 | 55 | 2823 |
| St. Louis, MO--IL | 1996 | 45 | 56 | 54 | 2789 |
| St. Louis, MO--IL | 1997 | 48 | 54 | 55 | 2827 |
| St. Louis, MO--IL | 1998 | 52 | 50 | 57 | 2926 |
| St. Louis, MO--IL | 1999 | 64 | 64 | 60 | 3089 |
| St. Louis, MO--IL | 2000 | 77 | 57 | 64 | 3317 |
| St. Louis, MO--IL | 2001 | 87 | 70 | 70 | 3623 |
| St. Louis, MO--IL | 2002 | 84 | 57 | 77 | 4010 |
| Salt Lake City--Ogden, UT | 1992 | 61 | 80 | 81 | 2246 |
| Salt Lake City--Ogden, UT | 1993 | 71 | 89 | 88 | 2531 |
| Salt Lake City--Ogden, UT | 1994 | 65 | 81 | 94 | 2821 |
| Salt Lake City--Ogden, UT | 1995 | 90 | 129 | 99 | 3099 |
| Salt Lake City--Ogden, UT | 1996 | 97 | 136 | 104 | 3362 |
| Salt Lake City--Ogden, UT | 1997 | 101 | 155 | 108 | 3604 |
| Salt Lake City--Ogden, UT | 1998 | 100 | 153 | 111 | 3796 |
| Salt Lake City--Ogden, UT | 1999 | 79 | 143 | 114 | 3957 |
| Salt Lake City--Ogden, UT | 2000 | 94 | 143 | 116 | 4091 |
| Salt Lake City--Ogden, UT | 2001 | 90 | 129 | 118 | 4156 |
| Salt Lake City--Ogden, UT | 2002 | 92 | 120 | 118 | 4210 |
| San Antonio, TX | 1992 | 200 | 287 | 210 | 6896 |
| San Antonio, TX | 1993 | 147 | 240 | 194 | 6363 |
| San Antonio, TX | 1994 | 159 | 213 | 180 | 5959 |
| San Antonio, TX | 1995 | 122 | 180 | 168 | 5628 |
| San Antonio, TX | 1996 | 105 | 172 | 157 | 5322 |
| San Antonio, TX | 1997 | 125 | 168 | 149 | 5105 |
| San Antonio, TX | 1998 | 144 | 139 | 142 | 4960 |
| San Antonio, TX | 1999 | 141 | 143 | 137 | 4857 |
| San Antonio, TX | 2000 | 122 | 117 | 134 | 4804 |
| San Antonio, TX | 2001 | 143 | 133 | 4800 | |
| San Antonio, TX | 2002 | 124 | 157 | 133 | 4907 |
| San Diego, CA | 1992 | 73 | 120 | 104 | 6910 |
| San Diego, CA | 1993 | 83 | 125 | 102 | 6544 |
| San Diego, CA | 1994 | 81 | 116 | 101 | 6301 |
| San Diego, CA | 1995 | 84 | 132 | 99 | 6119 |
| San Diego, CA | 1996 | 86 | 121 | 98 | 6052 |
| San Diego, CA | 1997 | 91 | 121 | 98 | 6093 |
| San Diego, CA | 1998 | 86 | 103 | 98 | 6190 |
| San Diego, CA | 1999 | 91 | 87 | 98 | 6359 |
| San Diego, CA | 2000 | 109 | 86 | 99 | 6489 |
| San Diego, CA | 2001 | 107 | 99 | 100 | 6656 |
| San Diego, CA | 2002 | 102 | 98 | 102 | 6858 |
| San Francisco, CA | 1992 | 170 | 252 | 218 | 7655 |
| San Francisco, CA | 1993 | 178 | 268 | 221 | 7661 |
| San Francisco, CA | 1994 | 143 | 246 | 223 | 7583 |
| San Francisco, CA | 1995 | 168 | 264 | 223 | 7534 |
| San Francisco, CA | 1996 | 181 | 302 | 221 | 7477 |
| San Francisco, CA | 1997 | 174 | 303 | 218 | 7472 |
| San Francisco, CA | 1998 | 182 | 379 | 213 | 7387 |
| San Francisco, CA | 1999 | 156 | 232 | 207 | 7200 |
| San Francisco, CA | 2000 | 155 | 193 | 198 | 6953 |
| San Francisco, CA | 2001 | 166 | 227 | 189 | 6368 |
| San Francisco, CA | 2002 | 154 | 149 | 177 | 5649 |
| San Jose, CA | 1992 | 100 | 114 | 110 | 4030 |
| San Jose, CA | 1993 | 91 | 107 | 101 | 3644 |
| San Jose, CA | 1994 | 67 | 132 | 93 | 3286 |
| San Jose, CA | 1995 | 67 | 129 | 85 | 3001 |
| San Jose, CA | 1996 | 49 | 124 | 78 | 2767 |
| San Jose, CA | 1997 | 55 | 95 | 72 | 2579 |
| San Jose, CA | 1998 | 48 | 52 | 66 | 2399 |
| San Jose, CA | 1999 | 46 | 61 | 61 | 2222 |
| San Jose, CA | 2000 | 46 | 49 | 57 | 2069 |
| San Jose, CA | 2001 | 38 | 63 | 53 | 1870 |
| San Jose, CA | 2002 | 40 | 71 | 49 | 1661 |
| Sarasota--Bradenton, FL | 1992 | 38 | 87 | 60 | 446 |
| Sarasota--Bradenton, FL | 1993 | 33 | 87 | 71 | 518 |
| Sarasota--Bradenton, FL | 1994 | 74 | 122 | 83 | 602 |
| Sarasota--Bradenton, FL | 1995 | 51 | 83 | 97 | 702 |
| Sarasota--Bradenton, FL | 1996 | 69 | 122 | 112 | 816 |
| Sarasota--Bradenton, FL | 1997 | 95 | 190 | 129 | 954 |
| Sarasota--Bradenton, FL | 1998 | 147 | 180 | 147 | 1112 |
| Sarasota--Bradenton, FL | 1999 | 170 | 179 | 167 | 1286 |
| Sarasota--Bradenton, FL | 2000 | 164 | 191 | 189 | 1484 |
| Sarasota--Bradenton, FL | 2001 | 234 | 227 | 212 | 1736 |
| Sarasota--Bradenton, FL | 2002 | 265 | 206 | 236 | 2035 |
| Scranton--Wilkes-Barre--Hazleton, PA |
1992 | 56 | 40 | 44 | 572 |
| Scranton--Wilkes-Barre--Hazleton, PA |
1993 | 41 | 38 | 46 | 588 |
| Scranton--Wilkes-Barre--Hazleton, PA |
1994 | 47 | 39 | 49 | 614 |
| Scranton--Wilkes-Barre--Hazleton, PA |
1995 | 51 | 43 | 53 | 654 |
| Scranton--Wilkes-Barre--Hazleton, PA |
1996 | 67 | 45 | 58 | 705 |
| Scranton--Wilkes-Barre--Hazleton, PA |
1997 | 78 | 58 | 64 | 765 |
| Scranton--Wilkes-Barre--Hazleton, PA |
1998 | 84 | 85 | 70 | 835 |
| Scranton--Wilkes-Barre--Hazleton, PA |
1999 | 80 | 66 | 78 | 911 |
| Scranton--Wilkes-Barre--Hazleton, PA |
2000 | 101 | 85 | 86 | 996 |
| Scranton--Wilkes-Barre--Hazleton, PA |
2001 | 90 | 79 | 96 | 1100 |
| Scranton--Wilkes-Barre--Hazleton, PA |
2002 | 127 | 93 | 106 | 1222 |
| Seattle--Bellevue--Everett, WA | 1992 | 115 | 142 | 157 | 7187 |
| Seattle--Bellevue--Everett, WA | 1993 | 147 | 187 | 163 | 7469 |
| Seattle--Bellevue--Everett, WA | 1994 | 128 | 183 | 169 | 7672 |
| Seattle--Bellevue--Everett, WA | 1995 | 139 | 240 | 173 | 7913 |
| Seattle--Bellevue--Everett, WA | 1996 | 150 | 258 | 176 | 8187 |
| Seattle--Bellevue--Everett, WA | 1997 | 151 | 247 | 178 | 8523 |
| Seattle--Bellevue--Everett, WA | 1998 | 147 | 241 | 179 | 8770 |
| Seattle--Bellevue--Everett, WA | 1999 | 115 | 207 | 179 | 8886 |
| Seattle--Bellevue--Everett, WA | 2000 | 119 | 227 | 178 | 8905 |
| Seattle--Bellevue--Everett, WA | 2001 | 108 | 234 | 176 | 8786 |
| Seattle--Bellevue--Everett, WA | 2002 | 118 | 214 | 172 | 8529 |
| Springfield, MA | 1992 | 108 | 125 | 115 | 1672 |
| Springfield, MA | 1993 | 106 | 141 | 124 | 1765 |
| Springfield, MA | 1994 | 109 | 122 | 135 | 1874 |
| Springfield, MA | 1995 | 131 | 154 | 146 | 1995 |
| Springfield, MA | 1996 | 146 | 156 | 158 | 2124 |
| Springfield, MA | 1997 | 177 | 179 | 171 | 2280 |
| Springfield, MA | 1998 | 210 | 205 | 184 | 2454 |
| Springfield, MA | 1999 | 195 | 199 | 2638 | |
| Springfield, MA | 2000 | 229 | 214 | 2845 | |
| Springfield, MA | 2001 | 204 | 231 | 3074 | |
| Springfield, MA | 2002 | 245 | 248 | 3370 | |
| Stockton--Lodi, CA | 1992 | 189 | 165 | 161 | 1761 |
| Stockton--Lodi, CA | 1993 | 140 | 159 | 157 | 1708 |
| Stockton--Lodi, CA | 1994 | 122 | 162 | 154 | 1658 |
| Stockton--Lodi, CA | 1995 | 79 | 175 | 151 | 1631 |
| Stockton--Lodi, CA | 1996 | 92 | 207 | 148 | 1616 |
| Stockton--Lodi, CA | 1997 | 100 | 272 | 145 | 1625 |
| Stockton--Lodi, CA | 1998 | 121 | 190 | 143 | 1642 |
| Stockton--Lodi, CA | 1999 | 117 | 161 | 141 | 1673 |
| Stockton--Lodi, CA | 2000 | 119 | 134 | 140 | 1716 |
| Stockton--Lodi, CA | 2001 | 107 | 145 | 139 | 1808 |
| Stockton--Lodi, CA | 2002 | 107 | 179 | 138 | 1884 |
| Syracuse, NY | 1992 | 31 | 41 | 713 | |
| Syracuse, NY | 1993 | 25 | 51 | 38 | 633 |
| Syracuse, NY | 1994 | 30 | 51 | 35 | 566 |
| Syracuse, NY | 1995 | 30 | 35 | 33 | 518 |
| Syracuse, NY | 1996 | 25 | 19 | 31 | 486 |
| Syracuse, NY | 1997 | 26 | 30 | 31 | 471 |
| Syracuse, NY | 1998 | 28 | 28 | 31 | 471 |
| Syracuse, NY | 1999 | 44 | 42 | 33 | 483 |
| Syracuse, NY | 2000 | 35 | 25 | 35 | 510 |
| Syracuse, NY | 2001 | 49 | 32 | 38 | 557 |
| Syracuse, NY | 2002 | 45 | 29 | 42 | 624 |
| Tacoma, WA | 1992 | 102 | 105 | 118 | 1649 |
| Tacoma, WA | 1993 | 92 | 142 | 121 | 1684 |
| Tacoma, WA | 1994 | 87 | 142 | 125 | 1728 |
| Tacoma, WA | 1995 | 103 | 178 | 127 | 1775 |
| Tacoma, WA | 1996 | 109 | 178 | 129 | 1813 |
| Tacoma, WA | 1997 | 126 | 176 | 131 | 1859 |
| Tacoma, WA | 1998 | 133 | 143 | 133 | 1913 |
| Tacoma, WA | 1999 | 118 | 151 | 134 | 1965 |
| Tacoma, WA | 2000 | 129 | 99 | 134 | 1997 |
| Tacoma, WA | 2001 | 120 | 153 | 134 | 2040 |
| Tacoma, WA | 2002 | 131 | 128 | 134 | 2086 |
| Tampa--St. Petersburg--Clearwater, FL |
1992 | 78 | 112 | 78 | 3095 |
| Tampa--St. Petersburg--Clearwater, FL |
1993 | 63 | 84 | 80 | 3100 |
| Tampa--St. Petersburg--Clearwater, FL |
1994 | 71 | 103 | 82 | 3170 |
| Tampa--St. Petersburg--Clearwater, FL |
1995 | 59 | 71 | 87 | 3334 |
| Tampa--St. Petersburg--Clearwater, FL |
1996 | 62 | 88 | 93 | 3578 |
| Tampa--St. Petersburg--Clearwater, FL |
1997 | 79 | 110 | 100 | 3933 |
| Tampa--St. Petersburg--Clearwater, FL |
1998 | 102 | 119 | 109 | 4375 |
| Tampa--St. Petersburg--Clearwater, FL |
1999 | 142 | 148 | 120 | 4872 |
| Tampa--St. Petersburg--Clearwater, FL |
2000 | 131 | 136 | 132 | 5447 |
| Tampa--St. Petersburg--Clearwater, FL |
2001 | 161 | 163 | 146 | 6118 |
| Tampa--St. Petersburg--Clearwater, FL |
2002 | 163 | 136 | 162 | 6898 |
| Toledo, OH | 1992 | 31 | 53 | 39 | 569 |
| Toledo, OH | 1993 | 24 | 45 | 36 | 524 |
| Toledo, OH | 1994 | 26 | 39 | 35 | 495 |
| Toledo, OH | 1995 | 28 | 36 | 34 | 485 |
| Toledo, OH | 1996 | 18 | 39 | 35 | 489 |
| Toledo, OH | 1997 | 38 | 45 | 36 | 508 |
| Toledo, OH | 1998 | 27 | 50 | 39 | 542 |
| Toledo, OH | 1999 | 28 | 44 | 42 | 586 |
| Toledo, OH | 2000 | 60 | 47 | 643 | |
| Toledo, OH | 2001 | 67 | 47 | 52 | 716 |
| Toledo, OH | 2002 | 59 | 48 | 58 | 805 |
| Tucson, AZ | 1992 | 180 | 167 | 2678 | |
| Tucson, AZ | 1993 | 165 | 166 | 2696 | |
| Tucson, AZ | 1994 | 160 | 166 | 2762 | |
| Tucson, AZ | 1995 | 171 | 166 | 2831 | |
| Tucson, AZ | 1996 | 193 | 167 | 2889 | |
| Tucson, AZ | 1997 | 233 | 169 | 2978 | |
| Tucson, AZ | 1998 | 189 | 171 | 3061 | |
| Tucson, AZ | 1999 | 137 | 174 | 3161 | |
| Tucson, AZ | 2000 | 134 | 178 | 3292 | |
| Tucson, AZ | 2001 | 228 | 182 | 3425 | |
| Tucson, AZ | 2002 | 205 | 187 | 3595 | |
| Tulsa, OK | 1992 | 105 | 105 | 106 | 1639 |
| Tulsa, OK | 1993 | 98 | 90 | 107 | 1649 |
| Tulsa, OK | 1994 | 118 | 116 | 108 | 1657 |
| Tulsa, OK | 1995 | 110 | 107 | 109 | 1684 |
| Tulsa, OK | 1996 | 107 | 110 | 111 | 1735 |
| Tulsa, OK | 1997 | 116 | 126 | 113 | 1799 |
| Tulsa, OK | 1998 | 116 | 128 | 114 | 1868 |
| Tulsa, OK | 1999 | 127 | 121 | 116 | 1933 |
| Tulsa, OK | 2000 | 102 | 113 | 119 | 1974 |
| Tulsa, OK | 2001 | 123 | 131 | 121 | 2020 |
| Tulsa, OK | 2002 | 110 | 121 | 124 | 2077 |
| Ventura, CA | 1992 | 87 | 120 | 109 | 1637 |
| Ventura, CA | 1993 | 88 | 124 | 110 | 1607 |
| Ventura, CA | 1994 | 62 | 138 | 111 | 1598 |
| Ventura, CA | 1995 | 94 | 154 | 112 | 1591 |
| Ventura, CA | 1996 | 88 | 173 | 113 | 1604 |
| Ventura, CA | 1997 | 102 | 153 | 115 | 1645 |
| Ventura, CA | 1998 | 102 | 119 | 116 | 1693 |
| Ventura, CA | 1999 | 79 | 113 | 118 | 1754 |
| Ventura, CA | 2000 | 120 | 143 | 121 | 1826 |
| Ventura, CA | 2001 | 96 | 146 | 124 | 1893 |
| Ventura, CA | 2002 | 122 | 130 | 126 | 1995 |
| Washington, DC--MD--VA--WV | 1992 | 56 | 79 | 57 | 5779 |
| Washington, DC--MD--VA--WV | 1993 | 37 | 53 | 53 | 5283 |
| Washington, DC--MD--VA--WV | 1994 | 41 | 57 | 50 | 4939 |
| Washington, DC--MD--VA--WV | 1995 | 49 | 44 | 49 | 4741 |
| Washington, DC--MD--VA--WV | 1996 | 43 | 58 | 49 | 4718 |
| Washington, DC--MD--VA--WV | 1997 | 40 | 46 | 50 | 4839 |
| Washington, DC--MD--VA--WV | 1998 | 51 | 57 | 52 | 5120 |
| Washington, DC--MD--VA--WV | 1999 | 50 | 54 | 56 | 5551 |
| Washington, DC--MD--VA--WV | 2000 | 55 | 62 | 61 | 6138 |
| Washington, DC--MD--VA--WV | 2001 | 66 | 72 | 68 | 6880 |
| Washington, DC--MD--VA--WV | 2002 | 69 | 92 | 76 | 7731 |
| West Palm Beach--Boca Raton, FL | 1992 | 136 | 146 | 114 | 1775 |
| West Palm Beach--Boca Raton, FL | 1993 | 86 | 96 | 117 | 1818 |
| West Palm Beach--Boca Raton, FL | 1994 | 139 | 114 | 120 | 1883 |
| West Palm Beach--Boca Raton, FL | 1995 | 83 | 95 | 125 | 1966 |
| West Palm Beach--Boca Raton, FL | 1996 | 123 | 116 | 130 | 2078 |
| West Palm Beach--Boca Raton, FL | 1997 | 173 | 136 | 136 | 2231 |
| West Palm Beach--Boca Raton, FL | 1998 | 168 | 136 | 144 | 2408 |
| West Palm Beach--Boca Raton, FL | 1999 | 204 | 145 | 152 | 2600 |
| West Palm Beach--Boca Raton, FL | 2000 | 175 | 135 | 161 | 2804 |
| West Palm Beach--Boca Raton, FL | 2001 | 191 | 192 | 171 | 3055 |
| West Palm Beach--Boca Raton, FL | 2002 | 161 | 161 | 182 | 3383 |
| Wichita, KS | 1992 | 53 | 56 | 595 | |
| Wichita, KS | 1993 | 47 | 58 | 55 | 588 |
| Wichita, KS | 1994 | 38 | 56 | 592 | |
| Wichita, KS | 1995 | 48 | 57 | 612 | |
| Wichita, KS | 1996 | 52 | 60 | 650 | |
| Wichita, KS | 1997 | 60 | 64 | 702 | |
| Wichita, KS | 1998 | 64 | 68 | 772 | |
| Wichita, KS | 1999 | 60 | 74 | 844 | |
| Wichita, KS | 2000 | 73 | 81 | 921 | |
| Wichita, KS | 2001 | 83 | 89 | 1012 | |
| Wichita, KS | 2002 | 94 | 98 | 1125 | |
| Wilmington--Newark, DE--MD | 1992 | 215 | 161 | 135 | 1652 |
| Wilmington--Newark, DE--MD | 1993 | 82 | 103 | 141 | 1706 |
| Wilmington--Newark, DE--MD | 1994 | 159 | 149 | 149 | 1789 |
| Wilmington--Newark, DE--MD | 1995 | 126 | 104 | 159 | 1908 |
| Wilmington--Newark, DE--MD | 1996 | 160 | 144 | 170 | 2049 |
| Wilmington--Newark, DE--MD | 1997 | 205 | 178 | 184 | 2216 |
| Wilmington--Newark, DE--MD | 1998 | 238 | 201 | 199 | 2409 |
| Wilmington--Newark, DE--MD | 1999 | 274 | 214 | 215 | 2625 |
| Wilmington--Newark, DE--MD | 2000 | 274 | 231 | 234 | 2865 |
| Wilmington--Newark, DE--MD | 2001 | 294 | 212 | 254 | 3113 |
| Wilmington--Newark, DE--MD | 2002 | 308 | 221 | 276 | 3392 |
| Youngstown--Warren, OH | 1992 | 22 | 40 | 28 | 325 |
| Youngstown--Warren, OH | 1993 | 14 | 27 | 26 | 295 |
| Youngstown--Warren, OH | 1994 | 20 | 26 | 25 | 281 |
| Youngstown--Warren, OH | 1995 | 19 | 30 | 25 | 280 |
| Youngstown--Warren, OH | 1996 | 21 | 39 | 26 | 294 |
| Youngstown--Warren, OH | 1997 | 21 | 35 | 29 | 319 |
| Youngstown--Warren, OH | 1998 | 23 | 45 | 33 | 358 |
| Youngstown--Warren, OH | 1999 | 27 | 34 | 37 | 406 |
| Youngstown--Warren, OH | 2000 | 31 | 52 | 44 | 466 |
| Youngstown--Warren, OH | 2001 | 47 | 39 | 51 | 538 |
| Youngstown--Warren, OH | 2002 | 89 | 50 | 59 | 624 |
Footnotes
For each data series, cells were defined by year and MSA; 11 years × 95 MSAs = 1,045 cells.
Contributor Information
Sudip Chatterjee, National Development and Research Institutes, Inc., 71 West 23rd Street, New York, NY 10010, USA.
Barbara Tempalski, National Development and Research Institutes, Inc., 71 West 23rd Street, New York, NY 10010, USA.
Enrique R. Pouget, National Development and Research Institutes, Inc., 71 West 23rd Street, New York, NY 10010, USA
Hannah L. F. Cooper, Behavioral Science & Health Education, Rollins School of Public Health, Emory University, Atlanta, GA, USA
Charles M. Cleland, College of Nursing, New York University, New York, NY, USA
Samuel R. Friedman, Email: friedman@ndri.org, Department of Epidemiology, John Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; National Development and Research Institutes, Inc., 71 West 23rd Street, New York, NY 10010, USA.
References
- 1.Miller CL, Spittal PM, LaLiberte N, Li K, Tyndall MW, O';Shaughnessy MV, Schechter MT. Females experiencing sexual and drug vulnerabilities are at elevated risk for HIV infection among youth who use injection drugs. J Acquir Immune Defic Syndr. 2002;30:335–41. doi: 10.1097/00126334-200207010-00010. [DOI] [PubMed] [Google Scholar]
- 2.Miller CL, Tyndall M, Spittal P, Li K, LaLiberte N, Schechter MT. HIV incidence and associated risk factors among young injection drug users. AIDS. 2002;16:491–3. doi: 10.1097/00002030-200202150-00025. [DOI] [PubMed] [Google Scholar]
- 3.Fennema JS, Van Ameijden EJ, Van Den Hoek A, Coutinho RA. Young and recent-onset injecting drug users are at higher risk for HIV. Addiction. 1997;92:1457–65. [PubMed] [Google Scholar]
- 4.Doherty MC, Garfein RS, Monterroso E, Brown D, Vlahov D. Correlates of HIV infection among young adult short-term injection drug users. AIDS. 2000;14:717–26. doi: 10.1097/00002030-200004140-00011. [DOI] [PubMed] [Google Scholar]
- 5.Judd A, Hickman M, Jones S, McDonald T, Parry JV, Stimson JV, Hall AJ. Incidence of hepatitis C virus and HIV among new injecting drug users in London: prospective cohort study. BMJ. 2005;330:24–5. doi: 10.1136/bmj.38286.841227.7C. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Hahn JA, Page-Shafer K, Lum PJ, Bourgois P, Stein E, Evans JL, Busch MP, Tobler LH, Phelps B, Moss AR. Hepatitis C virus seroconversion among young injection drug users: relationships and risks. J Infect Dis. 2002;186:1558–64. doi: 10.1086/345554. [DOI] [PubMed] [Google Scholar]
- 7.Des Jarlais DC, Diaz T, Perlis T, Vlahov D, Maslow C, Latka M, Rockwell R, Edwards V, Friedman SR, Monterroso E, Williams I, Garfein R. Variability in the incidence of human immunodeficiency virus, hepatitis B virus, and hepatitis C virus infection among young injecting drug users in New York City. Am J Epidemiol. 2003;157:467–71. doi: 10.1093/aje/kwf222. [DOI] [PubMed] [Google Scholar]
- 8.Hagan H, Thiede H, Weiss NS, Hopkins SG, Duchin JS, Alexander ER. Sharing of drug preparation equipment as a risk factor for hepatitis C. Am J Public Health. 2001;91(1):42–6. doi: 10.2105/ajph.91.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Garfein RS, Doherty MC, Monterroso ER, Thomas DL, Nelson KE, Vlahov D. Prevalence and incidence of hepatitis C virus infection among young adult injection drug users. J Acquir Immune Defic Syndr Hum Retrovir. 1998;18(Suppl 1):S11–9. doi: 10.1097/00042560-199802001-00004. [DOI] [PubMed] [Google Scholar]
- 10.Hahn JA, Page-Shafer K, Lum PJ, Ochoa K, Moss AR. Hepatitis C virus infection and needle exchange use among young injection drug users in San Francisco. Hepatology. 2001;34:180–7. doi: 10.1053/jhep.2001.25759. [DOI] [PubMed] [Google Scholar]
- 11.Kral AH, Lorvick J, Edlin BR. Sex- and drug-related risk among populations of younger and older injection drug users in adjacent neighborhoods in San Francisco. J Acquir Immune Defic Syndr. 2000;24:162–7. doi: 10.1097/00126334-200006010-00011. [DOI] [PubMed] [Google Scholar]
- 12.Thorpe L, Ouellet L, Levy J, Williams I, Monterroso E. Hepatitis C virus infection: prevalence, risk factors, and prevention opportunities among young injection drug users in Chicago, 1997–1999. J Infect Dis. 2000;182:1588–94. doi: 10.1086/317607. [DOI] [PubMed] [Google Scholar]
- 13.Ochoa KC, Hahn JA, Seal KH, Moss AR. Overdosing among young injection drug users in San Francisco. Addict Behav. 2001;26:453–60. doi: 10.1016/s0306-4603(00)00115-5. [DOI] [PubMed] [Google Scholar]
- 14.Cooper HLF, Brady JE, Friedman SR, Tempalski B, Gostnell K, Flom PL. Estimating the prevalence of injection drug use among Black and White adults in large U.S. metropolitan areas over time (1992–2002): estimation methods and prevalence trends. J Urban Health. 2008;85:826–56. doi: 10.1007/s11524-008-9304-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Wright D, Gfroerer J, Epstein J. The use of external data sources and ratio estimation to improve estimates of hardcore drug use from the NHSDA NIDA research monograph, vol 167. Rockville: Office of Applied Studies, Substance Abuse and Mental Health Services Administration; 1997. [PubMed] [Google Scholar]
- 16.Wright D, Gfroerer J, Epstein J. Ratio estimation of hardcore drug use. J Off Stat. 1997;13:401–16. [PubMed] [Google Scholar]
- 17.Archibald CP, Jayaraman GC, Major C, Patrick DM, Houston SM, Sutherland D. Estimating the size of hard-to-reach populations: a novel method using HIV testing data compared to other methods. AIDS. 2001;15(Suppl 3):S41–8. doi: 10.1097/00002030-200104003-00006. [DOI] [PubMed] [Google Scholar]
- 18.Korf D, Reijneveld S, Toet J. Estimating the number of heroin users: a review of methods and empirical findings from the Netherlands. Int J Addict. 1994;29:1393–417. doi: 10.3109/10826089409048716. [DOI] [PubMed] [Google Scholar]
- 19.Galea S, Nandi A, Vlahov D. The social epidemiology of substance use. Epidemiol Rev. 2004;26:36–52. doi: 10.1093/epirev/mxh007. [DOI] [PubMed] [Google Scholar]
- 20.Friedman SR, Pouget ER, Chatterjee S, Cleland CM, Tempalski B, Brady JE, Cooper HLF. Do drug arrest deter drug use? Am J Public Health. 2011;101:344–9. doi: 10.2105/AJPH.2010.191759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Office of Management and Budget. Standards for defining metropolitan and micropolitan statistical areas. Fed Regist. 2000;65:82228–38. [Google Scholar]
- 22.U.S. Bureau of the Census. State and metropolitan area data book, 1997-1998. Washington, DC: US Bureau of the Census; 1998. [Google Scholar]
- 23.Pierce T. Gen-X Junkie: ethnographic research with young white heroin users. Vol. 34. Washington, DC: Subst Use Misuse; 1999. pp. 2095–114. [DOI] [PubMed] [Google Scholar]
- 24.Wallace R, Wallace D. Socioeconomic determinants of health: community marginalization and the diffusion of disease and disorder in the United States. BMJ. 1997;314:1341–5. doi: 10.1136/bmj.314.7090.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.US Department of Health and Human Services. Substance Abuse and Mental Health Services Administration, Office of Applied Studies. Treatment episode data set, 1992-2007 (concatenated) Data Collection Description. 2009:1992–2007. [Google Scholar]
- 26.Beltrami J, Usman HR, Habarta N. HIV counseling and testing at CDC-funded sites, United States, Puerto Rico, and the U S Virgin Islands, 2005. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2010. [Google Scholar]
- 27.Brady JE, Friedman SR, Cooper HLF, Flom PL, Tempalski B, Gostnell K. Estimating the prevalence of injection drug users in the US and in large US metropolitan areas from 1992–2002. J Urban Health. 2008;85:323–51. doi: 10.1007/s11524-007-9248-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Friedman SR, Tempalski B, Cooper HL, et al. Estimating numbers of injecting drug users in metropolitan areas for structural analyses of community vulnerability and for assessing relative degrees of service provision for injecting drug users. J Urban Health. 2004;81(3):377–400. doi: 10.1093/jurban/jth125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Holmberg S. The estimated prevalence and incidence of HIV in 96 large US metropolitan areas. Am J Public Health. 1996;86(5):642–54. doi: 10.2105/ajph.86.5.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Census USBot. Population estimates program dataset. U.S.Bureau of the Census; 2009. [Google Scholar]
- 31.Longford N. Random coefficient models. Oxford: Clarendon Press; 1993. [Google Scholar]
- 32.Singer JD, Willett JB. Applied longitudinal data analysis: modeling change and event occurrence. New York: Oxford University Press; 2003. [Google Scholar]
- 33.Verbeke G, Molenberghs G. Linear mixed models for longitudinal data. New York: Springer; 2000. [Google Scholar]
- 34.Fitzmaurice GM, Ravichandran C. A primer in longitudinal data analysis. Circulation. 2008;118:2005–10. doi: 10.1161/CIRCULATIONAHA.107.714618. [DOI] [PubMed] [Google Scholar]
- 35.Hedeker D. An introduction to growth modeling. In: Kaplan D, editor. Quantitative methodology for the social sciences. Thousand Oaks: Sage Publications; 2004. [Google Scholar]
- 36.Pedhazur EJ, Schmelkin LP. Measurement, design and analysis: an integrated approach. Hillsdale: Lawrence Erlbaum Associates; 1991. pp. 73–6. [Google Scholar]
- 37.European Monitoring Centre for Drugs and Drug Addiction. [Accessed 18 January 2010];EMCDDA Stat Bull. http://stats05.emcdda.europa.eu/en/homeen.html (2005)
- 38.U S Department of Health and Human Services, National Center for Health Statistics. Multiple cause of death file, 1992-2002 (computer file) U S Department of Health and Human Services, National Center for Health Statistics. 2004 [Google Scholar]
- 39.Nunnally JC, Bernstein IH. Psychometric theory. 3rd. New York: McGraw Hill; 1994. [Google Scholar]
- 40.Cohen J. Statistical power analysis for the behavioral sciences. 2nd. Hillsdale: Erlbaum; 1988. [Google Scholar]
- 41.Musto DF. Opium, cocaine, and marijuana in American history. Sci Am. 1991;265:40–7. doi: 10.1038/scientificamerican0791-40. [DOI] [PubMed] [Google Scholar]
- 42.Tracy SW, Acker CJ, editors. Altering American consciousness: the history of alcohol and drug use in the United States. Amherst: University of Massachusetts; 2004. pp. 1800–2000. [Google Scholar]
- 43.The Washington Post/Kaiser Family Foundation/Harvard University. National survey on the public's attitudes towards HIV/AIDS in the US and the World. 2002 July; www.kff.org.
- 44.Crepaz N, Hart TA, Marks G. Highly active antiretroviral therapy and sexual risk behavior. JAMA. 2004;292(2):224–36. doi: 10.1001/jama.292.2.224. [DOI] [PubMed] [Google Scholar]
- 45.Firestone M, Fischer B. A qualitative exploration of prescription opioid injection among street-based drug users in Toronto: behaviours, preferences and drug availability. Harm Reduct J. 2008;5:30. doi: 10.1186/1477-7517-5-30. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Latka M, Ahern J, Garfein RS, Ouellet L, Kerndt P, Morse P, et al. Prevalence, incidence, and correlates of chlamydia and gonorrhea among young adult injection drug users. J Subst Abuse. 2001;13:73–88. doi: 10.1016/s0899-3289(01)00071-2. [DOI] [PubMed] [Google Scholar]
- 47.Thorpe LE, Ouellet LJ, Hershow R, Bailey SL, Williams IT, Williamson J, et al. Risk of hepatitis C virus infection among young adult injection drug users who share injection equipment. Am J Epidemiol. 2002;155:645–53. doi: 10.1093/aje/155.7.645. [DOI] [PubMed] [Google Scholar]
- 48.UNODC and the Global Youth Network. HIV prevention among young injecting drug users. Vienna: UNODC; 2004. http://www.http://www.unodc.org/pdf/youthnet/handbook_hiv_english.pdf. [Google Scholar]
- 49.CDC. Trends in HIV/AIDS diagnoses among men who have sex with men: 33 States, 2001–2006. MMWR. 2008;57:681–6. [PubMed] [Google Scholar]
- 50.Hall HI, Byers RH, Ling Q, Espinoza L. Racial/ethnic and age disparities in HIV prevalence and disease progression among men who have sex with men in the United States. Am J Public Health. 2007;97(6):1060–6. doi: 10.2105/AJPH.2006.087551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Hathazi Lankenau Health status and service utilization among young injection drug users; American Public Health Association Annual Meeting; Washington, DC. November, 2007. [Google Scholar]
- 52.Community-Based HIV Intervention for Young People: Guidance Briefs. UNAIDS Inter-Agency Task Team (IATT) on HIV and young people. Unite Nations, New York: 2008. http://www.unfpa.org/hiv/iatt/docs/unicef.pdf. [Google Scholar]
- 53.Tempalski B, Cleland CM, Pouget ER, Chatterjee S, Friedman SR. Persistence of low drug treatment coverage for injection drug users in large US metropolitan areas. Subst Abuse Treat Prev Policy. 2010;5:23. doi: 10.1186/1747-597X-5-23. [DOI] [PMC free article] [PubMed] [Google Scholar]



