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Abstract

Apicomplexan parasites secrete and inject into the host cell the content of specialized secretory organelles called rhoptries,
which take part into critical processes such as host cell invasion and modulation of the host cell immune response. The
rhoptries are structurally and functionally divided into two compartments. The apical duct contains rhoptry neck (RON)
proteins that are conserved in Apicomplexa and are involved in formation of the moving junction (MJ) driving parasite
invasion. The posterior bulb contains rhoptry proteins (ROPs) unique to an individual genus and, once injected in the host
cell act as effector proteins to co-opt host processes and modulate parasite growth and virulence. We describe here two
new RON proteins of Toxoplasma gondii, RON9 and RON10, which form a high molecular mass complex. In contrast to the
other RONs described to date, this complex was not detected at the MJ during invasion and therefore was not associated to
the MJ complex RON2/4/5/8. Disruptions of either RON9 or RON10 gene leads to the retention of the partner in the ER
followed by subsequent degradation, suggesting that the RON9/RON10 complex formation is required for proper sorting to
the rhoptries. Finally, we show that the absence of RON9/RON10 has no significant impact on the morphology of rhoptry,
on the invasion and growth in fibroblasts in vitro or on virulence in vivo. The conservation of RON9 and RON10 in Coccidia
and Cryptosporidia suggests a specific relation with development in intestinal epithelial cells.
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Introduction

Toxoplasma gondii is a protozoan parasite belonging to the

phylum Apicomplexa that comprises various parasites responsible

for many human and animal diseases such as toxoplasmosis,

malaria (Plasmodium spp.), or cryptosporidiosis (Cryptosporidium spp.).

Although asymptomatic in healthy humans, toxoplasmosis might

lead to severe complications in firstly-infected pregnant women

and immuno-compromised patients. As an obligate intracellular

parasite, T. gondii actively invades host cells by an actin-myosin-

dependent mechanism (for a review [1]) that also requires the

coordinated exocytosis of proteins located in apical secretory

organelles [2], namely the micronemes and rhoptries which are

characteristic of the Apicomplexa phylum (for a review [3]).

Successful invasion proceeds through several distinct steps

including apical attachment, formation of a moving junction

(MJ), progression of the parasite through the junction and

concomitant establishment of the parasitophorous vacuole (PV)

within which the parasite will further reside and replicate.

Micronemal proteins are mostly adhesins secreted during

invasion and then expressed onto the parasite surface and allow

motility, recognition and attachment to the host cell through

interactions with receptors expressed onto the host cell surface [4].

It has been recently shown that in P. falciparum, interaction

between the micronemal protein EBA175 and glycophorin A

expressed onto the erythrocyte surface is sufficient to trigger

rhoptry secretion [5], suggesting that in addition to mediating

attachment, this ligand/receptor recognition is the first step of an

intracellular signaling cascade mediated by the cytosolic tail of

microneme proteins [6] and leading to rhoptry discharge.

Rhoptries are club-shaped elongated organelles divided into two

distinct suborganellar compartments, the bulbous part and the

more anterior thin duct (or neck) through which rhoptry proteins

are secreted (for a review [7]) but nothing is known about the

determinants responsible for maintaining this shape. A proteomic

study of the T. gondii rhoptry content led to the identification of

about 40 rhoptry proteins, some of which restricted to the bulb

(ROPs) and others to the neck (RONs) [8]. Concomitant to the

first molecular characterization of RON proteins [8] came the

demonstration that RON4 was secreted and localized to the MJ

during invasion [9,10]. The MJ is a tight connection between the

parasite and host cell plasma membranes that forms at the apical

pole and moves progressively to the posterior end of the parasite as

it enters (hence the name ‘‘moving junction’’). As it serves as an

anchor to propel the parasite into the PV, MJ formation is

necessary for successful invasion. Although known at the structural

level for three decades [11], the MJ molecular composition and

organization has been unraveled only recently. It is now well
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established that its formation relies on the coordinated secretion of

both micronemes and rhoptries [9]. Indeed, the micronemal

protein AMA1 is secreted and expressed onto the parasite surface,

while the rhoptry neck proteins RON2/4/5/8 are secreted into

the host cell, with RON2 being inserted as an integral trans-

membrane protein into the host plasma membrane allowing a

direct interaction with AMA1 [12,13,14], while RON4, RON5

and RON8 are translocated beneath the host cell plasma

membrane [12]. The secretion of ROP proteins follows RONs

discharge [15] but unlike RONs, ROPs are targeted to the PV

membrane, to the PV lumen or to the host cell nucleus or cytosol

where they hijack the host machinery to modulate the immune

response and hence, participate in host cell survival and virulence

[16]. ROPs belonging to the ROP2 family have been extensively

studied and shown to harbor structural conservation of a protein

kinase fold [17]. So far, ROP16 and ROP18 solely have been

shown to be active secreted kinases that represent key virulence

factors [18,19,20,21].

Rhoptries biogenesis is driven by vesicular trafficking from the

Golgi apparatus. Rhoptries are first detected as immature

organelles, called pre-rhoptries, which are large vesicles containing

a heterogenous dense material, located between the Golgi and the

apical area of developing tachyzoites. Several ROPs undergo

proteolytic maturation late in the secretory pathway, in the

transition step between immature and mature rhoptry. This

processing is not a prerequisite for correct targeting of rhoptry

proteins [22,23] or assembly of the RON2/4/5/8 complex [12].

As many rhoptry proteins have been shown to be key players in

T. gondii invasion, replication and virulence, a better understand-

ing of the rhoptries components along with a characterization of

their biological function seems to be crucial. In this study, we have

identified two novel rhoptry neck proteins named RON9 and

RON10 that are conserved in Coccidia and Cryptosporidia and form a

highly stable hetero-complex distinct from the MJ complex

AMA1/RON2/4/5/8. Genetic disruption of RON9 or RON10

allowed us to demonstrate that the complex formation is required

for proper targeting to the rhoptry neck; a Dron9parasite is

therefore likely a functional RON9-RON10KO. Furthermore,

analysis of the RON9-RON10KO parasites did not detect any

defect in development in HFF in vitro, and in T. gondii RH strain

virulence in vivo.

Results

Monoclonal antibody 2A7 (mAb2A7) recognizes a
rhoptry neck antigen

We investigated the localization of the protein recognized by

mAb 2A7 raised against a rhoptry enriched fraction [24].

Immunofluorescence assays (IFAs) carried out on intracellular T.

gondii tachyzoites showed labeling of the apical pole anterior to the

known rhoptry bulb protein ROP1, and colocalization with

RON2 staining, suggesting a rhoptry neck localization(Fig. 1A).

Immunoelectron microscopy performed on intracellular parasites

with mAb 2A7 confirmed this cellular location (Fig. 1B).

mAb 2A7 reacts with a new rhoptry neck protein named
RON9

Immuno-detection with mAb 2A7 on a T. gondii tachyzoite

lysate in non reduced conditions showed a major band migrating

far above the 204 kDa MW marker while in reduced conditions

the molecular mass of the protein was found close to 204 kDa

(Fig. 2A), suggesting that mAb 2A7 recognized a protein from a

homo- or hetero- protein complex linked by disulfide bonds. Based

on its cellular location, we named this protein RON9. A set of

lower bands showing decreasing intensity and regular spacing was

systematically observed, even when freshly egressed parasites were

used for SDS-PAGE, which could suggest that RON9 was

subjected to proteolysis. The molecular identification of RON9

was confirmed by immuno-affinity chromatography using mAb

2A7 coupled to sepharose-CnBr activated beads and a T. gondii

soluble lysate. Following extensive washes, proteins were eluted

and separated onto a one dimensional acrylamide gel. Silver

staining revealed two distinct bands (Fig. 2B), one with a molecular

mass corresponding to RON9 and a second one around 140 kDa.

Both proteins were in-gel digested with trypsin and the resulting

peptides were analyzed by liquid-chromatography coupled to mass

spectrometry in an ionic trap. Two peptides corresponding to

RON9 were identified, GADVMSQDIR and APIH-

LAAAPSSFDVVPAK, that matched in the ToxoDB database

[25] with the T. gondii prediction TGME49_108710 encoding a

hypothetical protein of 1108 amino acids with a predicted

molecular mass comprised between 122 and 127 kDa. The single

peptide recovered from the 140 kDa protein with the sequence

SEAEEAIASK matched with the T. gondii TGME49_061750

prediction corresponding to a hypothetical protein with a

predicted molecular mass of 92 kDa. This protein will be referred

hereafter as RON9HP (RON9 hypothetical partner, see above).

Sequencing revealed that RON9 cDNA extends in its 59 region

into the TGME49_108600 prediction located upstream

TGME49_108710, and thus leads to the biosynthesis of a 1277

Figure 1. mAb 2A7 recognizes a rhoptry neck protein. (A) Co-
immunofluorescence-staining on intracellular tachyzoites with the
rhoptry bulb marker anti-ROP1, the rhoptry neck marker RON2 and
mAb 2A7. Scale bar = 5 mm. (B) Electron microscopy of T. gondii
parasites showing the rhoptry neck labeling with mAb 2A7 (black
arrow). Scale bar = 0.5 mm.
doi:10.1371/journal.pone.0032457.g001

Rhoptry Neck Complex RON9-RON10
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amino acids protein with a predicted molecular weight of 135 kDa

and a pI of 4.4 (Figure S1). To confirm that the TGME49_108600

gene encoded the rhoptry neck protein RON9, specific sera were

produced. Antibodies were raised either against a GST-recombi-

nant protein comprising the peptides sequences identified in mass

spectrometry (anti-RON9rec, see Fig. S1), or against the repeated

sequence QANASQSSETPAEENAEEPKQAEE of RON9 (re-

ferred here as anti-PEST) described as a PEST repetition by

PestFind (http://emboss.bioinformatics.nl/cgi-bin/emboss/epest-

find) because of its richness in proline, glutamic acid, serine and

threonine residues (see later). In western blot, both the anti-

RON9rec and anti-PEST antibodies recognized a protein

migrating around 204 kDa in a T. gondii lysate (Fig. 2C). By

IFA, the anti-PEST serum recognized an antigen co-localizing

with mAb 2A7 in intracellular parasites (Fig. 2D), while anti-

RON9rec did not react (data not shown). To further confirm the

RON9 molecular identification, we performed immuno-purifica-

tions using mAb 2A7 and showed that the anti-PEST serum

recognized the same protein band as mAb 2A7 (Fig. 2E). Taken

together, these results clearly identify RON9 as a 1277 amino

acids protein and its coding sequence has been deposited in

Genebank under accession number JQ655737.

Identification of RON10 as a rhoptry neck partner for
RON9

We then investigated the molecular identity of the RON9HP

protein recovered with RON9 by immuno-affinity (Fig. 2B).

Antibodies were raised against a GST-recombinant protein

comprising the peptide sequence identified in mass spectrometry

(anti-RON9HP) (Fig. S2). In western blot, the anti-RON9HP

detected a major band of the expected size (140 kDa) and

additional fainter bands (Fig. 3A) and gave in IFA, in addition to a

diffuse signal in the cytosol, punctate dots at the apical end of the

parasite suggesting a possible rhoptry neck localization (Fig. S3).

To bypass the issues of antibodies specificity, we genetically

engineered a T. gondii strain expressing a HA-tagged version of

RON9HP at the endogenous locus, as depicted in figure 3B. The

presence of the HA3 tag at the C-terminus of RON9HP gene

(TGME49_061750) was verified by PCR using a forward primer

located upstream the C-terminal fragment cloned in the pHA3-

LIC-DHFR and a reverse primer encompassing the HA3 tag. An

expected fragment of 2.1 kb was amplified from the gDNA of

RON9HP-HA3 parasites while no amplification was obtained

using the Dku80 gDNA as a control (Fig. 3C). In western blot, the

HA-tagged protein migrated at the same size as the major band

revealed by anti-RON9HP (Fig. 3A). To investigate the localiza-

tion of the RON9HP-HA3 protein, IFAs were performed on

intracellular tachyzoites with anti-HA antibodies and revealed an

apical labeling that perfectly co-localized with the rhoptry neck

marker RON2 and also with RON9 (Fig. 3D). This localization

was further confirmed by immunoelectron microscopy as shown in

figure 3E, allowing us to rename this protein RON10.

To further confirm that RON10-HA3 was the protein identified

in complex with RON9, immuno-purifications were performed on

Figure 2. Molecular characterization of RON9. (A) Whole cell lysates of Dhxgprt were separated by SDS-PAGE, in non reduced (NR) or reduced
(R) conditions, and mAb 2A7 was used to probe the membrane. (B) RON9 and RON9HP were affinity purified with mAb 2A7 from Dhxgprt whole cell
lysate. Proteins identification was performed by mass spectrometry and subsequent searches against Toxoplasma database. (C) Western-blot using
mAb 2A7, or anti-RON9rec antibodies produced against a TgRON9 recombinant-GST protein or anti-PEST antibodies produced against the TgRON9
PEST-repetition peptide. The three sera recognize the same protein migrating at a high molecular mass. Scale bar = 5 mm. (D) Co-immunostaining of
intracellular Dhxgprt parasites with mAb 2A7 and anti-PEST antibodies. (E) Proteins from Dhxgprt lysates were immuno-purified using mAb 2A7, then
separated by SDS-PAGE and probed with either mAb 2A7 or anti-PEST antibodies.
doi:10.1371/journal.pone.0032457.g002

Rhoptry Neck Complex RON9-RON10
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RON10-HA3 lysate using mAb 2A7 and revealed in western-blot

with the same antibody, or anti-PEST, or anti-HA (Fig. 3F). As

expected, RON10-HA3 was co-immunopurified along with

RON9 protein. Reverse immuno-affinity purifications were also

carried out using anti-RON10 antibodies followed by immuno-

detection with the anti-RON10 or anti-RON9 antibodies (Fig. 4A).

The results indicated that anti-RON10 antibodies were able to co-

immunopurify the RON9 protein and that RON10 was recovered

after RON9 immuno-purification, thus confirming the RON9-

RON10 interaction.

RON9 and RON10 form a high molecular mass complex,
distinct from the RON2/4/5/8-AMA1 junctional complex

Next, we sought to assess the nature of the RON9-RON10

interaction by attempting to disrupt the complex with the use of

0.6% SDS as described previously [12]. As shown in figure 4B,

both RON9 and RON10 were still co-immunoprecipitated with

anti-RON9 or anti-RON10 antibodies, thereby showing that the

binding between these two proteins was highly stable. In addition,

immuno-detection revealed that these two proteins did not enter

the gel in non reduced conditions while the two proteins were

perfectly detected in reduced conditions (Fig. 4C). Taken together,

these data suggest that RON9 and RON10 form a stable high

molecular complex likely linked via disulphide bridges.

We had demonstrated in a previous study the existence at the

MJ of a molecular complex formed by the rhoptry neck proteins

RON2/4/5/8 and the micronemal protein AMA1 [12]. To

determine if the RON9-RON10 complex was part of the

junctional RONs-AMA1 complex, T. gondii proteins were

solubilised under conditions that preserved the MJ complex [10]

and proteins were immuno-purified using anti-RON9 antibodies

(mAb 2A7) and subsequently revealed with anti-RON9, anti-

RON10, anti-AMA1 or anti-RON4 antibodies. Immuno-detec-

tion with the same antibodies was performed on tachyzoites lysate

Figure 3. RON9HP is a rhoptry neck protein, renamed RON10. (A) Western-blot carried on Dku80 cell lysate reveals a major band at 140 kDa
with anti-RON9HP antibodies. A protein of the same size is recognized with anti-HA antibodies on RON9-HP-HA3 parasites. (B) Scheme depicting the
C-terminal HA tagging of the endogenous copy of RON9HP (TGME49_061750). A C-terminal fragment of RON9HP gene was cloned in frame with an
HA epitope in pHA3-LIC-DHFR vector. Vector linearization followed by Dku80 parasites transfection allowed the obtention of a RON9HP-HA3

population by single homologous recombination event. (C) To verify the correct genomic integration of the vector into the RON9HP locus, PCR
reactions were performed on gDNA from the parental Dku80 strain or RON9HP-HA3 parasites using primers ML176 and ML292 depicted by the arrows
in (B). PCR allowed amplification of a 2.5 kb product from the recombinant parasites while no amplification was obtained with the parental strain. As
a control, amplification of ATG3 gene [58] was obtained with both gDNA using primers ML339 and ML340. (D) IFAs were carried on RON9HP-HA3

parasites with anti-HA antibodies and mAb 2A7 or anti-RON2-4 antibodies. Scale bar = 5 mm. (E) Electron microscopy performed on RON9HP-HA3

parasites labelled with anti-HA antibodies shows staining of the rhoptry neck. Scale bar = 0.5 mm. (F) Proteins from RON10-HA3 parasites were
immuno-purified with mAb 2A7 an run on SDS-PAGE prior to detection using mAb 2A7, anti-PEST or anti-HA antibodies.
doi:10.1371/journal.pone.0032457.g003

Rhoptry Neck Complex RON9-RON10
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to ascertain proteins identification. While anti-RON9 immuno-

purified both RON9 and RON10 as expected, AMA1 or RON4

proteins were not detected, suggesting that the RON9-RON10

complex was distinct from the RONs-AMA1 complex. Although

not being part of the junctional complex, we examined if RON9

and RON10 would also follow the MJ. For this, we performed

IFAs on invading parasites under permeabilization conditions

optimized to detect only the material secreted by the parasite [26],

but we were unable to detect RON9 and RON10 using the

different sera available or anti-HA antibodies on invading

RON10-HA3 expressing parasites (data not shown). To test

whether RON9 and RON10 could be secreted into the host cell,

we performed invasion assays in the presence of cytochalasin D, an

actin inhibitor, that prevents the parasites from invading the host

but still allows rhoptry secretion [27]. These abortive invasions

lead to the formation of e-vacuoles that contain secreted material

as described previously. While the positive control ROP1 was

clearly detected in the e-vacuoles, no RON9 or RON10 staining

was observed in the host cell (data not shown).

Bioinformatic analysis
The TgRON9 sequence harbours an N-terminal predicted

signal peptide, as expected for a secreted rhoptry protein, and a

predicted C-terminal transmembrane domain (Fig. S1). BLAST

Figure 4. RON9 and RON10 form a highly stable complex, distinct from the AMA1/RON2/4/5/8 junctional complex.
Immunopurification assays (A, B and D) were performed on lysates of Dhxgprt parasites in the presence of 1% NP40 (A) or 0.6% SDS (B) as
described previously [12] with anti-RON9 (IP aRON9) or anti-RON10 (IP aRON10) antibodies. Immuno-purified proteins were detected using the same
antibodies, as mentioned on the top of the figure, following SDS-PAGE separation in reduced condition. (C) Whole cell lysates of Dhxgprt were
separated by SDS-PAGE, in non reduced (NR) or reduced (R) conditions, and mAb 2A7 (aRON9) and aRON10 (aRON9HP) were used to probe the
membrane. The arrows indicate the size of the expected protein for each antibody and its corresponding molecular mass. (D) To verify the
identification of the proteins co-immunopurified with mAb 2A7 (IP lanes), Western-blot was simultaneously carried out on a tachyzoites lysate (WB
lanes) and revealed with secondary anti-mouse alone, mAb 2A7, anti-RON10, anti-AMA1 or anti-RON4 as mentioned on the top. The major band at
110 kDa indicated with an asterisk corresponds to a protein present in the ascitic fluid that binds to protein G-sepharose and was consistently
released during the elution step (except when antibodies were CNBr cross-linked to sepharose, as in Fig. 2B).
doi:10.1371/journal.pone.0032457.g004
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analysis showed that RON9 displays orthologues in Cryptosporidium

(cgd4_2420), Neospora caninum (NCLIV_053290) and Eimeria

(ETH_00015380) only (Fig. S4). While the N-terminal part of

the proteins was highly divergent between species, 6 predicted

ankyrin domains and one Sushi domain or CCP (complement

control protein) were conserved in the C-terminal part of all the

RON9 sequences, except CpRON9 that harbours only 5 ankyrin

domains (Fig. S1, S4). The ankyrin repeats are a 33 amino-acids

motif found in many eukaryotic and prokaryotic proteins and are

well described protein-protein interaction domains (for a review

[28]). The Sushi domain is found in many complement proteins as

well as in adhesion proteins and is characterized by four invariant

cysteine residues, an almost invariant tryptophan, as well as highly

conserved proline and glycine residues [29]. In TgRON9, all these

residues seem to be conserved, except tryptophan. Several internal

repeats of 21 amino acids located in the N-terminal part of

TgRON9 were detected (Fig. S5) and predicted as PEST sequ-

ences (or motifs) using PestFind (http://emboss.bioinformatics.nl/

cgi-bin/emboss/epestfind), due to their richness in proline (P),

glutamic acid (E), serine (S) and threonine (T) residues. PESTs

have been described as targeting signals for protein degradation by

the ubiquitin-proteasome system and are found in short-lived

proteins [30]. Interestingly, the RON9 orthologues do not display

these repeats, except NcRON9 but the repeated sequence is much

longer (34 amino acids) and different from that of TgRON9

(Fig. S5).

BLAST analysis showed that TgRON10 displays orthologues in

Cryptosporidium (cgd8_2530) and Neospora (NCLIV_025730) (Fig.

S6). TgRON10 also displays a predicted signal peptide in its N-

terminus but no known domains or motifs have been identified.

The Cryptosporidium orthologue contains, as RON9, a Sushi domain

and six 29 bp repeats (Fig. S5).

Disruption of RON9 results in mislocalization of RON10
We then investigated the role of RON9-RON10 by a genetic

disruption approach. To generate a RON9 knock-out parasite line

(Dron9) in the Dku80 background, 59 and 39 flanking regions of the

RON9 gene were independently cloned on both side of HXGPRT

resistance marker in the pminiHXGPRT plasmid (Fig. 5A). The

resulting construct was transfected in Dku80 parasites, recombi-

nant parasites were selected, and clonal populations were screened

by IFA for the absence of the RON9 protein. Replacement of the

RON9 gene by the HXGPRT marker was verified by PCR in the 59

and 39 regions using one primer located outside the flanking region

and another one in the HXGPRT gene, as depicted in figure 5B. As

shown in figure 5C in comparison to the Dku80 strain, RON9 was

not detected in the two Dron9 clones while RON2 was still

expressed in the control and Dron9populations. Western blot

confirmed the absence of RON9 in the Dron9 parasites as

compared to the parental strain (Fig. 5D). Altogether, these results

demonstrate the successful disruption of the RON9 locus and show

that RON9 is not essential for in vitro propagation of T. gondii. As

both Dron9 clones displayed a similar profile, all subsequent

analyses were performed with clone 1.

Since we had demonstrated that RON9 and RON10 form a

complex, we investigated the cellular location of RON10 in the

absence of its RON9 partner. For this purpose, a Dron9 parasite

has been re-engineered in a RON10-HA3 background and named

Dron9-R10HA (Fig. 6A and Fig. S7). IFA performed on Dron9-

R10HA parasites revealed that RON10 was not associated with

the neck of the rhoptry, as demonstrated by the absence of co-

localization with RON4 (Fig. 6 B). In most parasites, no staining

was observed with an anti-HA antibody (Fig. 6A, top), but in some

cases, an intense punctate labeling throughout the cytoplasm but

mostly perinuclear was detected (Fig. 6A, bottom). In order to test

for a possible stage specificity of the staining, we performed co-

immunolabeling with an anti-IMC1 serum, which allows the

visualization of the inner membrane complex of both mother and

daughter cells during endodyogeny [31]. The punctate RON10

labeling was only observed in parasites undergoing endodyogeny

in Dron9-R10HA strain, but not in non-dividing parasites (Fig. 6C).

A dual labeling with anti-ISP1 antibodies that stain the apical cap

of the inner membrane complex in mother and daughter cells [32]

confirmed this restricted expression pattern of RON10 to parasites

in division (Fig. 6D). Next, to more precisely determine at which

step and in which compartment of the secretion pathway RON10

was either retained or mislocalized, we used the anti-proROP4

antibodies [33] as a pre-rhoptry marker that signed the rhoptry

biogenesis and transfected the Dron9-R10HA strain with the Der1-

GFP plasmid [34] to label the ER. While, with parental

RON10HA parasites, RON10 was observed in the rhoptry neck

of mother cells as well as in discrete new foci corresponding to pre-

rhoptries of daughter cells (Fig. 6E), in the Dron9-R10HA strain,

no co-localization of proROP4 and RON10HA was ever found

although both markers were systematically simultaneously ob-

served. In contrast a perfect co-localization with the ER marker

was observed (Fig. 6F). All these results showed that RON10 is

synthesized at the same time as other rhoptry proteins and

correctly routed to the ER, but that in the absence of its partner

RON9, RON10 does not reach the pre-rhoptry compartment,

stacks in the ER and is probably degraded.

Disruption of RON10 prevents RON9 trafficking to the
rhoptries

Similarly, we investigated the localization of RON9 in the

absence of RON10. We engineered a Dron10 strain by single

homologous cross-over in which the full length RON10 gene was

disrupted and replaced by a truncated version comprising the first

3 exons in frame with a Ty tag (Fig. 7A). The correct integration of

the vector in the RON10 locus was verified by PCR (Fig. 7B).

Western-blot analyses of the Dron10 parasites showed the absence

of RON10 and the concomitant detection of two lower bands with

anti-Ty antibodies that were not detected in the control strain

(Fig. 7C). Analysis of the Dron10 parasites by IFA revealed that in

the absence of RON10, most parasites did not show any detectable

RON9 labeling. When detected, RON9 was not located in the

rhoptry neck but instead showed a peri-nuclear labeling

reminiscent of what we observed for RON10 in the absence of

RON9, suggesting that similarly, RON9 did not traffic beyond

the ER without its partner RON10 (Fig. 7D). Therefore, RON9

and RON10 form a necessary complex while trafficking to the

rhoptries and the absence of one prevents the correct routing

of its partner.Because RON9 deletion resulted in defective targeting

of RON10 and subsequent degradation of the RON10 partner,

the Dron9 knock-out parasite is likely a functional RON9 and

RON10 knockout and was thereafter referred to as RON9-

RON10KO.

RON9-RON10KO parasites exhibit normal rhoptry
morphology, normal invasion and intracellular
replication in vitro, and normal virulence in a mouse
model

In order to determine whether the deletion of RON9 and the

absence of RON10 from rhoptries had any effect on rhoptry

structure, we analyzed the parasites by electron microscopy. This

study did not reveal any differences in the electron density or

ultrastructure of the rhoptries, indicating that the RON9-RON10

Rhoptry Neck Complex RON9-RON10
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complex is not a key structural determinant for defining these

features (data not shown).

We then assessed the replication rate of the RON9-RON10KO

parasites as compared to the parental Dku80. To this end, HFFs

were infected for 18 h prior to formaldehyde fixation and counting

of the number of parasites per vacuoles. Our results showed no

significant differences between the parental strain and the RON9-

RON10KO parasites (Fig. 8A). Next, we compared the invasion

capacity of the RON9-RON10KO strain with that of the parental

Dku80 and observed no significant differences in the number of

intracellular or extracellular parasites, thus indicating that the

deletion of RON9 did not affect the invasion capacity of the

parasites (Fig. 8B).

It has already been described that knock-out parasites, despite

displaying a normal invasion capacity in vitro, might be impaired in

their virulence in vivo [35]. Therefore, the two strains were

compared for their virulence in mice. All the parasites used in this

study were of the RH strain, a type 1 strain, which typically kills

mice 7–10 d after i.p. infection with a single tachyzoite. As

presented in Fig. 7C, all mice died between days 8 and 10 after

infection with 20 parasites, indicating that the lack of RON9-

RON10 complex does not decrease virulence in mice.

Figure 5. Generation of Dron9 parasites. (A) Scheme depicting the strategy used to obtain a Dron9 strain. The 59 and 39 flanking regions (FR) of
RON9 were cloned on both sides of HXGPRT selection marker, and the vector was linearized with KpnI prior transfection of Dku80 parasites. Following
a double homologous recombination event, RON9 was replaced by HXGPRT. The arrows represent the primers ML503/ML134 and ML136/ML504 used
to verify the integration at the 59 (p59) and 39 (p39) side respectively. (B) PCR reactions to check the vector integration at the RON9 locus were
performed on the gDNA of two independent clones of Dron9 parasites. gDNA of Dku80 strain was used as a control and amplification of the ATG3
gene was used as a control of gDNA integrity. As expected, DNA fragments were amplified in the Dron9 clones with the integration PCR while no
DNA could be amplified from the parental strain. Primers ML339 and ML340 in T. gondii ATG3 gene allowed DNA amplification for the 3 gDNAs tested.
(C) mAb 2A7 and anti-RON2 antibodies were used in IFA experiments to verify the absence of expression of RON9 in Dron9 parasites, compared to
the control Dku80. Scale bar = 5 mm. (D) Western-blot using mAb 2A7 was performed on control Dku80 and on Dron9 parasites, thus confirming the
absence of RON9 in the mutant strain. Detection of AMA1 protein was used as a loading control.
doi:10.1371/journal.pone.0032457.g005
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Discussion

In the past few years, rhoptry proteins specifically located in the

rhoptry neck have been described and shown to take part in the

formation of the so-called moving junction, a close apposition of

the plasma membranes of both the parasite and its host cell, which

allows the parasite to actively propel itself into the nascent

parasitophorous vacuole. Here, we report the characterization of

two novel rhoptry neck proteins, RON9 and RON10 that form a

new complex independent of the MJ complex. In addition, we

were unable to detect this complex at the MJ. The rhoptries are

secretory organelles that inject proteins into the host cell where

RONs have been so far shown to associate to the host cell

membrane part of the MJ (RON2/RON4/RON5/RON8) while

ROPs are injected into the host nucleus (ROP16 [19], PP2C [36]),

the host cytosol (Toxofilin [37], ROP13 [23]) or associated to the

nascent PV membrane (ROP2 family including ROP18 and

ROP5 [18,38,39]. Though clearly located in the rhoptry neck in

Figure 6. RON10 is mis-targeted in Dron9 parasites. To follow RON10HA biosynthesis in time and space, co-localization experiments have been
performed on Dron9-R10HA parasites or RON10HA parasites as a control. Anti-HA antibody was used to follow RON10 fate, while anti-RON9 (A) and
anti-RON4 (B) were used to label the rhoptry neck, anti-IMC1 antibodies (C) and anti-ISP1 antibodies (D) allowed us to follow the endodyogeny
process during cells replication. Anti-proROP4 antibodies allowed detection of pre-rhoptries (E) and co-transfection of DER1-GFP plasmid allowed
detection of the ER (F). Scale bars = 5 mm.
doi:10.1371/journal.pone.0032457.g006
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intracellular parasites, RON9 and RON10 could not be detected

after invasion, when rhoptries are discharged in the host cell. The

absence of detection out of the parasite could be due either to an

excessive dilution impairing detection using antibodies or to the

possibility that RON9 and RON10 might be structural compo-

nents of the rhoptry neck not secreted during invasion. This

hypothesis still requires further investigations.

We have demonstrated that RON9 and RON10 form a highly

stable complex. In the absence of RON9, RON10 is retained in

the ER in parasites that undergo endodyogeny and is further

degraded during the end of the cell cycle. Similar observations for

RON9 were made when RON10 was disrupted. These data

strongly argue for an interaction between RON9 and RON10

during their trafficking through the secretory pathway en route for

the rhoptries. The fact that in the absence of one partner, the other

one was found neither in the Golgi, nor in the PV space or at the

plasma membrane but instead is stacked in the ER in dividing

parasite and disappeared after division, might indicate that RON9

and RON10 do not reach the Golgi because they are not correctly

folded (with which it forms a disulfide bridge hetero-complex), and

then are eliminated by a retrieval transfer to a degradation

compartment. Protein-protein interaction required for proper

trafficking to rhoptry has already been described in Plasmodium

[40] but is the first example in T. gondii. Truncation of the C-

terminus of the rhoptry protein RAP1 (rhoptry associated protein

1) results in disruption of its interaction with RAP2/RAP3

(rhoptry associated proteins 2 and 3) with which it forms a low

molecular weight complex and causes RAP2 (and probably RAP3)

to be retained in the ER [40].

RON9 contains a set of repetitions enriched in proline (P),

glutamic acid (D), aspartic acid (E) and serine (S) or threonine (T)

typical of PEST sequences. These sequences are targets for rapid

degradation and it is well known that caspase cleavage sites are

commonly found within PEST motifs [41]. It is proposed that after

cleavage of a PEST sequence, the exposed termini serve as

unstructured initiation site for ubiquitin-proteasome dependent

and independent degradation, and this would explain the inherent

susceptibility to proteolysis among proteins containing PEST

motifs. Considering RON9, we suggested that the PEST

repetitions would be also subjected to proteolysis and that the

successive digestions of the PEST sequences would explain the

presence of lower bands of decreasing intensity and regular

spacing present under the major band corresponding to RON9 in

western blot. Whether RON9 is subjected in vivo to caspase

degradation or whether these bands correspond to degradation

after lysis remains to be determined. RON9 also contains a Sushi

domain (or CCP for complement control protein). This domain is

also present in TgRON1 [42], which is the ortholog of the P.

falciparum apical sushi protein PfASP1 [42], also detected in the

rhoptry neck [43]. Finally, RON9 contains ankyrin repeats, which

Figure 7. RON9 is mis-localized in Dron10 parasites. (A) Scheme depicting the RON10 disruption strategy. Folllowing a single cross-over event,
the RON10 wild type locus is replaced by a truncated version in frame with a Ty tag. The arrows represent the primers ML493/ML802 used to verify
the 59 integration at the RON10 locus (p59). (B) The correct vector integration was verified by PCR using primers ML493/ML802 (p59), and primers
ML936/ML937 located in the RON2 gene were used as a positive control. (C) Western-blot using anti-RON10 antibodies was performed on Dku80 or
Dron10 parasites, thus confirming the absence of RON10 in the Dron10 strain. Anti-Ty antibodies show truncated forms of RON10 in the Dron10
parasites compared to the control, and detection of RON4 was used as a loading control. (D) IFAs were performed on Dku80 or Dron10 parasites to
follow RON10 and RON9 localizations. Scale bar = 5 mm.
doi:10.1371/journal.pone.0032457.g007
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are the most common protein–protein interaction motif in nature,

and is predominantly found in eukaryotic proteins but also in

pathogenic or symbiotic bacterial pathogens which deliver ANK-

containing proteins into eukaryotic cells through secretion systems,

where they mimic or manipulate various host functions. The

ankyrin repeat is a 33-residues motif that often occurs in tandem

arrays, which cooperatively fold into structures that mediate

molecular recognition via protein–protein interactions [44] and

are involved in many cellular functions in eukaryotes, such as

inhibition or development of tumors, transcriptional regulation,

cell cycle, oncogenesis, signal transduction, and modulation of the

inflammatory response mediated by NF-kB [28]. Genomic

analysis of viruses that infect eukaryotic cells has also revealed a

large number of ank genes [45] where they are implicated in host

cell tropism and permissiveness [46]. The presence of such repeats

in RON9 suggests a potential interaction with host cell proteins

upon invasion that remains to be explored.

In order to address the function of RON9/RON10 complex in

T. gondii, we have generated Dron9 parasites, which, based on

RON10 mis-localization and degradation observations, likely

corresponds to a RON9/RON102 phenotype. These parasites

were not altered in HFF invasion capacity in vitro, neither in

replication and tachyzoite virulence in vivo. Since neither RON9

nor RON10 are conserved across the Apicomplexa phylum, we

had assumed that these proteins might not be involved in a crucial

conserved mechanism shared by apicomplexan parasites. Howev-

er, homologues of RON9 and RON10 have been detected in

Eimeria spp., which could highlight a more specialized function for

these proteins in the Coccidia. Orthologues have been also found in

Cryptosporium spp., another apicomplexan parasite of humans and

other vertebrates. Cryptosporidium zoites attach to the apical

membrane of host cells but, in contrast to other apicomplexans,

do not form a moving junction and do not invade the cytoplasm of

the host cells, but induce host-cell membrane protrusion that

encapsulates the parasite [47]. Therefore Cryptosporidium resides

within a PV that has an extracytosolic location between the apical

plasma membrane and the host cytoplasm, where a zone of tight

contact is observed. In addition, and in striking contrast with other

Apicomplexa, Cryptosporidium induces the recruitment and remod-

eling of host cell actin at the site of entry [48]. According to these

major differences, the conserved AMA1/RON2/RON4/RON5

complex is absent from the Cryptosporidium genome [49]. The

conservation of RON9-RON10 in the genome of Cryptosporium

therefore further argues against a participation of this complex in

the MJ formation. The primary site of infection for Coccidia, as well

as Cryptosporidium spp., is the epithelial cells of the gastrointestinal

tract. The RON9-10 complex might therefore be linked to the

interaction with a brush border membrane, which may need to be

locally disorganized by the parasite before building the PV.

Another possibility could be that secretion of the RON9-RON10

complex into the host cell involves molecular mimicry of host

proteins to modulate specific epithelial cell processes as for

pathogenic bacteria with ankyrin-containing proteins. Alternative-

ly, RON9 and RON10 could be involved in cell and tissue tropism

by driving a specific interaction between these Apicomplexa and

the epithelial cells of the gastrointestinal tract.

Materials and Methods

Strains, culture
Tachyzoites of the RH hxgprt- strain of T. gondii deleted for

hypoxanthine guanine phosphoribosyl transferase (DHX strain)

[50] or RH KU80- deleted for the KU80 gene Dku80 strain) [51]

were used throughout the study. Parasites were maintained on

human foreskin fibroblasts (HFFs) in RPMI medium (Gibco BRL)

supplemented with 5% foetal calf serum (FCS), 1% glutamine and

1% penicillin-streptomycin. The monocytic cell line THP-1

(ATCC TIB-202) was maintained as suspension culture in RPMI

1640 medium (Invitrogen), supplemented with 10% FCS.

For T. gondii transfections, 1,5.107 extracellular tachyzoites were

collected by centrifugation, washed once in cytomix buffer [52]

and resuspended in 800 ml of cytomix supplemented with 3 mM

Figure 8. Dron9 parasites do not display any defect in
replication and invasion in vitro, nor in virulence in vivo. (A)
The intracellular replication of Dron9 parasites was compared to that of
the parental Dku80, 18 h post-infection. For this, the number of
parasites per vacuole was counted after anti-SAG1 labeling of the
parasite surface. Values represent means 6 standard deviations (SD),
n = 3, of 4 independent assays. (B) Invasion assays were carried out on
freshly released highly synchronized tachyzoites. Invasion was allowed
to take place for 5 min prior cells fixation and IFA processing as
described in material and methods section. Values represent means 6
standard deviations (SD), n = 3, from a representative experiment out of
3 independent assays. (C) Deletion of RON9 did not reduce virulence in
mice. Twenty tachyzoites of the indicated strains were injected i.p. into
Balbc mice (n = 20), and mouse survival was monitored daily for 15 d.
doi:10.1371/journal.pone.0032457.g008
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ATP and 3 mM reduced glutathione. 20–80 mg of DNA was used

for each transfection. The electroporation conditions used were as

follows: 2.02 kV, 25 mF, 50 V. Following electroporation, trans-

fected parasites were immediately deposited onto HFFs monolay-

ers in fresh complete medium. To select for recombinant parasites,

mycophenolic acid (20 mg/ml) and xanthine (50 mg/ml) or

pyrimethamine at 1 mM were added in the medium.

Molecular biology
Total RNA was extracted from T. gondii tachyzoites using RNA

extraction kit (Qiagen). cDNA amplification was performed using

the Superscript first strand synthesis kit (Invitrogen) as described

by the manufacturer. cDNA fragments of TGME49_108600,

TGME49_108710 and TGME49_061750 were amplified using

the high fidelity Phusion polymerase (Finnzymes) and primers

ML174 to ML177, ML200 to ML203, ML493, ML494, and

ML552 to ML554 (Table S1), and further cloned into the pCR-

Blunt II-TOPO vector (Invitrogen). After sequencing, the

complete open reading frame of RON9 and RON10 was

reconstituted from the overlapping cDNA sequences.

To engineer a RON10-HA strain, the C-terminal part of

RON10 was cloned in the pHA3-LIC-DHFR vector using the

ligation independent cloning procedure and primers ML420 and

ML421 (Table S1), as described previously [51]. The resulting

vector was linearized with SnaBI prior to parasite transfection.

Correct insertion at the endogenous locus was verified by PCR

using primers ML176 and ML292.

For the Dron9 construct, 59 and 39flanking regions of 1992 bp

and 2011 bp respectively of RON9 were amplified by PCR from T.

gondii Dhxgprt gDNA using primers ML439 to ML442 (Table S1).

59 and 39 PCR fragments were cloned subsequently in the

pminiHXGPRT plasmid [50] in NotI/BamHI and HindIII/KpnI

sites respectively. The resulting vector was linearized with KpnI

prior to parasite transfection.

To engineer a Dron10 strain, an internal 1000 bp region of

RON10 was amplified by PCR using primers ML875 and ML876

(Table S1) and subsequently cloned KpnI/NsiI into pTUB8-

MycGFPPfMyoAtailTy-HX [53]. Following linearization with

BstEII, the vector was transfected in T. gondii parasites.

Immuno-affinity purification, and Western blotting
To identify the complex immuno-purified by mAb 2A7, mAb

immunoglobulins were purified from ascitic fluid by affinity

chromatography on protein B Sepharose 4B and cross-linked to

CnBR-activated Sepharose 4B (GE Healthcare), then immuno-

affinity purification was done as described previously [10]. For all

the other immuno-affinity purifications, antibodies were bound to

20 ml of protein G-sepharose (Amersham). Binding was allowed to

proceed for 2 h in 1 ml PBS, followed by 3 washes in 0.1 M Tris-

HCl pH 8.0, 1 M NaCl. Immuno-precipitations were performed

with 5.108 parasites solubilized in lysis buffer (50 mM Tris-HCl

pH 8.3, 150 mM NaCl, 4 mM EDTA, 1 mM PMSF, 1% Nonidet

40 (NP40)) for 1 h at 4uC. The lysate was centrifuged 1 h at 12000

g and the supernatant was incubated overnight with immunosor-

bents at 4uC under gentle agitation. Immunosorbents were then

washed 5 times in washing buffer 1 (50 mM Tris-HCl pH 8.3,

1 M NaCl, 0.5% NP40), and once in washing buffer 2 (5 mM

Tris-HCl pH 6.8). Bound antigens were eluted during 5 min in

SDS-PAGE loading buffer at 95uC and subjected to electropho-

resis.

Proteins were separated by SDS-PAGE in the presence

(reduced) or absence (non-reduced) of 100 mM DTT, transferred

to nitrocellulose and subjected to Western blot analysis as

previously described [26].

Mass spectrometry and bioinformatic analyses
Immunoprecipitated proteins were resolved by SDS-PAGE,

stained with colloidal Coomassie blue, excised and digested with

trypsin (sequencing grade, Promega, Madison, WI), as described

[54]. Samples were analysed by nanoflow HPLC-nano-electro-

spray ionization on a Bruker Esquire 3000+ion trap (Bremen,

Germany) coupled with an LC-Packings HPLC (Amsterdam, the

Netherlands) as described previously [10]. All MS/MS spectra

were searched against the T. gondii entries of Swiss-Prot and

Trembl databases (http://www.expasy.ch), or ESTs and genomic

release of ToxoDB 3.0 database (http://www.toxodb.org) (Kis-

singer et al., 2003) by using the Mascot v 2.0 algorithm (http://

www.matrixscience.com). All significant hits were manually

inspected.

Sequences analyses were performed using SMART (http://

smart.embl-heidelberg.de/), Pfam (http://pfam.sanger.ac.uk/

search?tab = searchSequenceBlock/), Prosite (http://www.expasy.

ch/tools/scanprosite/), SignalP (http://www.cbs.dtu.dk/services/

SignalP/), TMpred (http://www.ch.embnet.org/software/

TMPRED_form.html), Radar (http://www.ebi.ac.uk/Tools/

Radar/index.html), PestFind (http://emboss.bioinformatics.nl/

cgi-bin/emboss/epestfind), and CLUSTAL (http://www.ebi.ac.

uk/Tools/msa/clustalw2/) bioinformatic programs.

Immunofluorescence assay (IFA) and electron
microscopy

Cells were fixed in methanol for 7 min or in 4% paraformal-

dehyde (PAF) for 30 min, washed and permeabilized with 0.1%

Triton6100 or with 0.05% saponin in PBS for 10 min. Saturation

was performed in PBS supplemented with 10% FCS (PBS-

10%FCS) for 1 h. Primary antibodies were diluted in PBS-2%

FCS before addition to the cells and further incubated for 1 h.

After 3 washes in PBS, cells were incubated with Alexa conjugated

secondary antibodies (Sigma) diluted in PBS-2% FCS. When

required, nuclei were stained with Hoechst. Finally the coverslips

were washed and mounted onto microscope slides using

Immumount (Calbiochem). Images were collected either i) with

a Leica DMRA2 microscope equipped for epifluorescence, the

images being recorded with a COOLSNAP CCD camera

(Photometrics) driven by the Metaview software (Universal

Imaging Co.) or ii) with a Zeiss Axioimager epifluorescence

microscope and images were recorded with a Zeiss Axiocam

MRm CCD camera driven by the Axiovision software (Zeiss), at

the Montpellier RIO imaging facility. The antibodies dilutions

used in this study were as follows: mouse mAb 2A7 (1:200) [24],

rabbit anti-RON2-4 (1:500) [13] mouse or rabbit anti-HA

(ClonTech, 1:200), rat anti-RON9 (1:200) (this study), rabbit

anti-PEST (1:200) (this study), rat anti-RON10 (1:200) (this study),

rabbit anti-IMC1 (1:1000) [55], mouse anti-ISP1 (1:1000) [32],

mouse mAb T4 2E5 anti-SAG1 (1:1000) [56], rabbit anti-ROP1

(1:1000) (J.F. Dubremetz and O. Mercereau-Puijalon, unpublished

results).

For immunoelectron microscopy, tachyzoites infected cells were

fixed with 4% formaldehyde and 0.05% glutaraldehyde in PBS for

15 min, dehydrated in ethanol and embedded in LR White

(London Resin Co.). Thin sections were collected on parlodion-

carbon-coated nickel grids and floated for 30 min on 2.5% non fat

dry milk and 0.1% Tween-20 in PBS (PBS-milk-Tween). The grids

were saturated for 1 h with 500 mg protein A/ml PBS, transferred

successively for 2 h each on dilutions of mouse ascitic fluid,

followed by anti-mouse IgG-IgM rabbit antibodies, and by 10 nm

protein A-gold in PBS-milk-Tween. Sections were stained with 4%

uranyl acetate in water and observed with a Hitachi H600

microscope.
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Cryoimmuno electronmicroscopy: HFF infected for 18 h with

tachyzoites were fixed with 4% paraformaldehyde-0.05% glutar-

aldehyde in 0.2 M phosphate buffer pH 7.4 for 90 min. The

monolayer was then scraped off the bottom of the dish and

pelleted. The pellet was infiltrated with a solution containing

2.3 M sucrose-10% polyvinyl pyrrolidone in 0.1 M phosphate

buffer pH 7.4 for 4 h and then frozen in liquid nitrogen. Sections

were made at 2100uC with a Leica Ultracut equipped with an

FC4 attachment and were collected on 10% FCS in PBS (PBSS).

Immunolocalization was performed by successive incubations of

the sections with ascitic fluid, rabbit anti-mouse IgG, and 10 nm

Protein A-gold in PBSS. The grids were then stained with a methyl

cellulose uranyle acetate mixture and observed with a Jeol 1200

EX microscope.

Recombinant proteins and specific anti-sera production
DNA sequences corresponding to amino acids 908 to 1203 or

350 to 687 of RON9 (Genbank JQ655737) and RON10 (Genbank

JQ655738) proteins respectively were obtained by PCR from T.

gondii tachyzoites cDNA with primers ML174/ML175 and

ML176/ML177 respectively. They were then subcloned into

pCR-Blunt II-TOPO vector and further cloned into the BamHI

and Xho1 sites of pGEX-4T-3 (GE healthcare). Following

transformation into E. coli C41 cells, the synthesis of recombinant

GST-tagged RON9 and RON10 proteins was induced with

0.5 mM isopropyl 1-thio-D-galactopyranoside for 2 h at 37uC.

The bacterial pellet was dispersed in PBS containing 2 mM

EDTA and 2 mM PMSF, and supplemented with a complete

mixture of protease inhibitors (Roche Applied Science). Cells were

broken using a French press (Thermo Spectronic) at 10,000 p.s.i.,

then centrifuged at 7.700 g for 20 min at 4uC. The fusion proteins

were purified by electro-elution after SDS–PAGE under denatur-

ing conditions.

Rats were immunized twice two weeks apart with 100 mg

proteins in Freund’s complete adjuvant and boosted with two

successive injections of 50 mg proteins in incomplete adjuvant at

two weeks intervals. Pre-immune sera were collected prior to the

first immunization and rat anti-RON9 and anti-RON9HP (anti-

RON10) sera were collected 3 weeks after the final boost and

subsequently analyzed by IFA and immunoblot.

A 24 residues peptide (QANASQSSETPAEEPKQAEE) com-

prising the entire repeat sequence of RON9 was synthesized by

Covalab (Villeurbane, France), and used to immunize rabbits and

generate anti-PEST serum.

In vitro and in vivo phenotypic characterization of RON9-
RON10KO parasites

To assess T. gondii intracellular replication, 2.105 tachyzoites

were inoculated onto HFFs monolayers in a 24 wells plate and

parasites replication was stopped 18 h or 24 h post-infection by

fixation in 4% PAF. To facilitate parasites counting, infected cells

were permeabilized with saponin and labelled with anti-SAG1

antibody. The number of parasites per vacuole was counted under

the microscope to measure intracellular replication.

For invasion assays, 5.106 freshly released tachyzoites were

synchronized using a K+ buffer shift [57] during 20 min at 37uC
and subsequently allowed to invade for 5 min in invasion buffer.

Invasion was stopped by fixation in 4% PAF and parasites were

further processed for IFA. Prior to triton permeabilization,

extracellular parasites were labelled with anti-SAG1 antibodies,

while following permeabilization, intracellular parasites were

stained with anti-ROP1 antibodies. All the subsequent steps were

performed as described above in the IFA section.

To assess the virulence in vivo, 20 tachyzoites were injected i.p.

into 20 female BALB/c mice at 8 weeks of age. Survival of the

mice was checked daily. In order to monitor an equal viability of

tachyzoites from the KO and WT strains, samples of the parasites

used for infection were used to infect THP-1 cells at a ratio of 5

cells per parasite and incubated at 37uC for 24 h. Parasite

multiplication was assessed by DNA extraction and real-time PCR

of a T. gondii specific sequence.

Ethics statement
This study was conducted according to European Union

guidelines for the handling of laboratory animals and the

immunization protocol for antibody production in rats was

conducted at the animal house of the Centre de Recherche de

Biochimie Macromoléculaire (Montpellier) and approved by the

Committee on the Ethics of Animal Experiments (Languedoc-

Roussillon, Montpellier) (Permit Number: D34-172-4, delivered

on 20/09/2009).

Statistical analysis
Statistical analyses were performed in GraphPad Prism 4 for

Windows, with Students’s t-test (unpaired, equal variance, two-

tailed test) for comparisons with data that fit a normal distribution.

Survival of mice was represented as Kaplan-Meier plot using

GraphPad Prism 5. Levels of significance were determined with

the Logrank test using GraphPad.

Supporting Information

Figure S1 TgRON9 protein sequence following cDNA
sequencing. Specific sequences or domains identified by

bioinformatic analyses include the N-terminal signal peptide

(pink), 12 PEST repetitions (light blue), 6 ankyrin domains (light

red), 1 Sushi domain (blue) and 1 putative transmembrane domain

at the extreme C-terminus (red). The TgRON9 protein sequence

used to generate anti-RON9rec antibodies corresponds to the grey

bar, while the peptides leading to TgRON9 identification by mass-

spectrometry are shown in green.

(PDF)

Figure S2 TgRON10 protein sequence following cDNA
sequencing. Bioinformatic analyses led to the identification of a

signal peptide in the N-terminus of RON10 (pink), The

TgRON10 protein sequence used to generate anti-RON9HP (or

anti-RON10) antibodies is highlighted in grey, while the single

peptide leading to TgRON10 identification by mass-spectrometry

is shown in green.

(PDF)

Figure S3 IFA localization of RON9HP on intracellular
Dhxgprt parasites fixed with 4% PAF using anti-
RON9HP serum. Partial co-localization of mAb 2A7 and

anti-RON9HP labeling was observed, suggesting a possible

rhoptry neck localization of RON9HP.

(PDF)

Figure S4 Protein alignment of RON9 orthologues.
BLAST analysis of TgRON9 protein sequence revealed RON9

orthologues in Eimeria tenella (EtRON9), Neospora caninum

(NcRON9) and Cryptosporidium parvum (CpRON9). Amino-acid

conservation between the different species is highlighted in grey

and black. TgRON9 signal peptide, ankyrin and sushi domains

and transmembrane domain are shown by blue arrows on top of

the alignment. The ankyrin domain that is not conserved in

CpRON9 is shown in light red.

(PDF)

Rhoptry Neck Complex RON9-RON10

PLoS ONE | www.plosone.org 12 March 2012 | Volume 7 | Issue 3 | e32457



Figure S5 Search for repetitions in RON9 and RON10
orthologues using Radar program (http://www.ebi.ac.
uk/Tools/Radar/index.html) led to the identification of
12 repeats of 21 bp in TgRON9, 14 repeats of 34 bp in
NcRON9 and 5 repeats of 29 bp in CpRON10.
(PDF)

Figure S6 Protein alignment of RON10 orthologues,
including sequences of T. gondii (TgRON10), N. cani-
num (NcRON10) and C. parvum (CpRON10). Amino-acid

conservation between the different species is highlighted in grey

and black.

(PDF)

Figure S7 Generation of Dron9-R10HA parasites. (A)

PCR reactions to check for replacement of RON9 gene with

HXGPRT as shown in figure 5A were performed on gDNA of

RON10HA (lane 1) or Dron9-R10HA parasites (lane 2). Correct

integration of the vector was verified on the 59 (p59) and 39 (p39)

side of the recombination event. PCR amplificatin of the ATG3

gene was used as a control of gDNA integrity. As expected, DNA

fragments were amplified from the Dron9-R10HA population with

the integration PCRs while no DNA could be amplified from the

parental strain. Primers in T. gondii ATG3 gene allowed DNA

amplification for the 3 gDNAs tested. (B) Western-blot performed

on RON10HA (lane 1) or Dron9-R10HA (lane 2) lysates shows that

RON9 is not detected in the Dron9-R10HA parasites using mAb

2A7 (anti-RON9), while RON10 and RON4 are revealed with

anti-HA and mAb 4H1 respectively in the Dron9-R10HA

parasites.

(PDF)

Table S1 Primers used in this study.

(XLSX)
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