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Abstract

There are substantial geographic variations in coronary heart disease (CHD) mortality rates in England that may in part be
due to differences in climate and air pollution. An ecological cross-sectional multi-level analysis of male and female CHD
mortality rates in all wards in England (1999–2004) was conducted to estimate the relative strength of the association
between CHD mortality rates and three aspects of the physical environment - temperature, hours of sunshine and air
quality. Models were adjusted for deprivation, an index measuring the healthiness of the lifestyle of populations, and
urbanicity. In the fully adjusted model, air quality was not significantly associated with CHD mortality rates, but temperature
and sunshine were both significantly negatively associated (p,0.05), suggesting that CHD mortality rates were higher in
areas with lower average temperature and hours of sunshine. After adjustment for the unhealthy lifestyle of populations
and deprivation, the climate variables explained at least 15% of large scale variation in CHD mortality rates. The results
suggest that the climate has a small but significant independent association with CHD mortality rates in England.
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Introduction

Geographical inequalities in coronary heart disease (CHD)

mortality rates in England are substantial and persistent. Since the

late 1970s, male CHD mortality rates have been at least 30% higher

in the North of England than in the South East, and the differences

between North and South for female rates have been even larger

[1]. Small scale geographic variations also exist, with female

mortality rates for CHD in local authorities in the South East of

England more than double those of the lowest in the same region,

and neighbouring wards within local authorities experiencing CHD

mortality rates that are considerably different [2]. If all local

authorities shared the same CHD mortality rate as Kensington &

Chelsea then there would be over 32,000 fewer deaths from CHD in

England every year [1]. The fact that low mortality rates are

attained in some areas implies that they are an achievable target

with modern standards of prevention and treatment.

It is unclear how much of the geographic variation in CHD in

England is a result of differences in the physical environmental.

This paper explores the impact of climate and air pollution on

geographic variation in CHD mortality rates. Plausible mecha-

nisms for the effect of these factors on CHD have been suggested.

Cold weather increases blood pressure, blood cholesterol, blood

viscosity (thereby increasing the risk of thrombosis), and could

induce a mild inflammatory response thereby increasing blood

coagulability [3]. Low exposure to sunlight could increase blood

cholesterol levels, since laboratory studies have shown that sunlight

is a catalyst for the synthesis of a precursor for cholesterol

(squalene) into vitamin D [4]. Exposure to air pollution can

provoke an inflammatory response, which increases blood

coagulability (and hence risk of thrombosis), the association

between air pollution and lung disease could also affect CHD

via hypoxia, and air pollution may possibly affect the autonomic

nervous system leading to heart rate variability [5]. The temporal

influence of climate and air pollution on CHD rates has previously

been demonstrated either in time-series analyses [6–8] or in

seasonal mortality patterns [9], and geographic variation in

cardiovascular disease mortality rates in Sheffield [10] and in

the US is associated with air pollution [11]. Previous studies that

have addressed geographical variations in CHD have either used

data on individuals collected from different sites but have been

under-powered at the area-level to consider more than one

environmental variable simultaneously [12,13], or have used area-

level data and have been unable to adjust analyses adequately for

behavioural risk factors for CHD [14,15]. This paper addresses

these gaps in the literature by reporting an analysis of the

association between climate and air pollution and CHD mortality

rates in a large dataset of small areas, using an area-level measure

of the prevalence of behavioural risk factors introduced, that we

have previously used to investigate the role of deprivation and

unhealthy lifestyle on geographic variations in CHD [16]. The aim

of this is to estimate the amount of geographic variation in CHD

mortality rates in England that is a result of climate and air

pollution after adjustment for the behavioural risk factor profile of

populations, deprivation and urbanicity.

Methods

The analyses reported in this paper utilise ecological regression

models, with all standard table wards as the unit of analysis.
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Standard table wards are a statistical set of boundaries based on

the electoral ward boundaries as of 1st January 2003. Henceforth

these areas are referred to simply as ‘wards’. There are 7,929

wards in England, which can be grouped into 355 local authorities

(LAs). Mortality data were provided by the Office for National

Statistics for the years 1999 to 2004 (inclusive) stratified by sex,

ward and five year age group. The mortality data included all

deaths in England where CHD was recorded as the primary cause

of death (for 1999 and 2000, ICD codes 410–414; for 2001–2004,

ICD codes I20–25). Change in ICD coding over the data

collection period is thought to have had little impact on reporting

of CHD mortalities [17]. Rates were constructed using mid-2001

population data stratified by sex, ward and five year age group,

collected for the 2001 UK census, and were directly standardised

to the European Standard Population.

Data on the physical environment
Data on mean maximum temperature and total hours of

sunshine were provided by the Meteorological Office for 37

English weather stations for every month between 2000 and 2002.

The data were used to generate model-based ward-level estimates

of mean maximum temperature and total hours of sunshine for

each month between 2000 and 2002 using second order trend

surface modelling [18], where the climate estimates from the

weather stations were used as the dependent variables in a

regression model with grid references of the weather stations as the

independent variables. The resulting models were used to estimate

mean maximum temperature and total hours of sunshine for all

wards in England, using the central grid reference for each ward.

The modelled monthly estimates were then combined to produce

aggregated estimates for the period 2000–2002.

Air pollution data were collected in 2001 for the development of

the physical environment domain of the Index of Multiple

Deprivation 2004 [19]. The data were drawn from the National

Atmospheric Emissions Inventory which estimated annual mean

concentrations of benzene, nitrogen dioxide, sulphur dioxide and

particulates for all 1 km grid scores within the United Kingdom,

using data on location of roads, housing, agriculture and point

sources of emissions (e.g. power stations) [20]. These data were

used to model estimated annual mean concentrations for each

super output area in England. In addition, a single measure – the

air quality index – was constructed that is a standardised index of

levels of the four pollutants with comparison to recognised safe

levels [21]. The air quality index was used in the analyses reported

here, after aggregation to ward level by producing averages of the

super output area estimates, weighted by population.

Data on unhealthy lifestyle
An index of unhealthy lifestyle was used as a measure of the

behavioural risk factor profile of populations. This index was

derived from a principal components analysis of five sets of ward-

level synthetic estimates of the prevalence of cardiovascular risk

factors, specifically consumption of less than five portions of fruit

and vegetables per day [22], body mass index. = 30 kg/m2 [22],

blood pressure. = 160/95 mmHg [22], blood cholester-

ol. = 6.5 mmol/l [22], and current smoking [23]. The develop-

ment of the index of unhealthy lifestyle is described elsewhere [16],

and an assessment of the validity of the included synthetic

estimates is described elsewhere [24].

Data on deprivation and urbanicity
Deprivation and urbanicity are other potential confounders of

the relationship between climate, air pollution and CHD mortality

rates. Deprivation in England is higher in the North than in the

South (following a similar gradient to mean temperature and hours

of sunshine), and air pollution is higher in more urban areas. The

deprivation index used in these analyses was the ward-level

Carstairs index [25], generated using data from the 2001 census at

ward level [26]. The index is a sum of the z scores of census

variables regarding unemployment, overcrowding, car ownership

and low social class. The urbanicity variable was a categorisation

of all wards into one of three groups: coastal and countryside,

urban, and metropolitan. This categorisation was based on the

Office for National Statistics area classification variable, which

categorises all wards in the United Kingdom into nine super-

groups, 17 groups and 27 subgroups, based on a cluster analysis on

demographic structure, household composition, housing, socio-

economic status, employment, and industry [27]. The categorisa-

tion of English wards into the nine supergroups, and then into the

urbanicity variable used in this paper, is displayed in table 1.

Statistical techniques
Initially exploratory data analysis techniques were used to

investigate correlations between the exposure variables and assess

the distribution of the outcome variables. Then baseline multi-

level regression models (wards nested in local authorities (LAs))

were built with male and female CHD mortality rates as outcome

variables, in order to get a baseline measurement of residual

variance at ward-level and LA-level. Then univariate and

multivariate multi-level models were built with the physical

environment, unhealthy lifestyle index and deprivation variables

as exposure variables. Inclusion of variance at ward-level and LA-

level is important as climate and air pollution vary on different

spatial scales. Finally, equivalent spatial error regression models

were built with the same exposure and outcome variables. These

were built to assess whether the associations derived in the multi-

level models were adversely affected by spatial autocorrelation

bias. Results from the multi-level models were the primary

outcomes, as they allow for an assessment of how much variance is

explained by the exposure variables both at ward-level and LA-

level. These results are used as proxies for explanation of ‘small-

scale’ variation (e.g. variation in CHD mortality rates within a city)

and ‘large-scale’ variation (e.g. variation in CHD mortality rates

between regions of England, such as the North and South). The

estimation technique used for the multi-level modelling was

iterative generalised least squares (IGLS), and the spatial error

Table 1. Categorisation of English wards (n = 7,932) by the
Office for National Statistics (ONS) area classification variable
and the urbanicity variable used for this paper.

Urbanicity
variable ONS area classification Wards (%) Population (%)

Coastal and
countryside

Coastal and countryside 1,838 (23) 8.14M (16)

Accessible countryside 899 (11) 2.79M (6)

Urban Industrial hinterlands 1,211 (15) 9.46M (19)

Traditional manufacturing 524 (7) 4.69M (9)

Built up areas 163 (2) 0.95M (2)

Student communities 306 (4) 2.64M (5)

Suburbs and small towns 2,504 (32) 14.90M (30)

Metropolitan Prospering metropolitan 169 (2) 1.86M (4)

Multicultural metropolitan 318 (4) 4.01M (8)

doi:10.1371/journal.pone.0032787.t001
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modelling used maximum likelihood techniques, ensuring that the

results of the multi-level models and the spatial error models are

comparable.

Results

Both male and female ward-level age-standardised CHD

mortality rates were reasonably normally distributed, and hence

suitable for regression analyses. Table 2 shows descriptive statistics

for the dependent and independent variables. Eight wards featured

zero female CHD deaths in the six year data collection period –

these wards were retained in the data analysis as they had little

impact on the distribution of the outcome variables. Both

maximum temperature and hours of sunshine showed little

variance (a range of only 3.2uC and 400 hours of sunshine

annually). These two variables were also correlated (r = 0.63), and

were negatively correlated with both the unhealthy lifestyle and

deprivation indices. Air pollution was significantly higher in more

urban areas.

The ward-level and LA-level variance in the baseline models is

shown in table 3. For men, 73% of the total geographic variation

in CHD mortality rates was at ward-level, and 74% of the total

geographic variation in female CHD mortality rates was at ward-

level, with the remainder at local authority-level. This suggests that

the average variance in CHD rates for wards within a local

authority was three times higher than the variance between local

authorities within England, and hence that small scale geographic

variations in CHD rates are larger than large scale geographic

variations. Univariate analyses (models A, B and C, table 4)

showed that each of the exposure variables were strongly

associated with both male and female CHD mortality rates. In

both male and female multivariate models, the beta coefficient for

sunshine was strongly attenuated when included alongside

temperature and air pollution (model D, table 4). The multivariate

models containing only climate and air pollution variables

explained a considerable amount of variance at LA-level (56%

and 60% in male and female mortality models, respectively) but

very little of the ward-level variance.

Table 4 also shows the results for the multi-level model that

includes all of the exposure and confounding variables (model F).

Nearly 80% of LA-level variance in both male and female CHD

mortality rates was explained, and around 20% of the ward-level

variance. Beta coefficients for the climate and air pollution

variables were heavily attenuated after inclusion of the confound-

ing variables. The maximum temperature variable showed a

significant negative association with both male and female CHD

rates after adjustment for deprivation, urbanicity and unhealthy

lifestyle, and sunshine was also independently (though weakly)

associated with CHD rates. The air quality index variable showed

only a small association with CHD mortality rates after adjustment

for confounding variables (this association was non-significant for

men).

The physical environment variables contribute little to the

explanation of ward-level variation. However, they clearly

contribute to the explanation of LA-level variance in mortality,

even after adjustment for urbanicity, the unhealthy lifestyle and

deprivation indices: the models containing only the confounding

variables (model E) explained around 65% of the LA-level

variance, whereas this increased to nearly 80% in the final model

(model F).

The spatial error univariate and multivariate models showed

good agreement with the multi-level models, suggesting that

spatial autocorrelation bias has not substantially affected these

findings. The parameter estimates in the spatial error models

tended to be closer to zero than in the multi-level models,

demonstrating that spatial autocorrelation (when unaccounted for)

tends to result in a bias away from the null hypothesis. The

difference in the parameter estimates between the multi-level and

spatial error models was generally in the region of around 10% to

20% (results not shown).

Discussion

Statement of principal findings
Two local climate measures (mean daily maximum temperature

and total hours of sunshine) and a measure of air pollution were

found to explain - without accounting for other factors - nearly

60% of large scale geographic variation in CHD mortality rates

but did little to explain small scale geographic variations in CHD

rates. The strength of the relationships was strongly attenuated

when deprivation, urbanicity and behavioural risk factor profiles of

populations were added as explanatory variables. A substantial

amount of large scale geographic variation in CHD rates is

explained by physical environment variables even after adjustment

for deprivation, urbanicity and behavioural risk factor profiles of

populations – at least 10% of large scale variation in mortality

rates. These models suggest that the climate has a small but

independent association with CHD mortality rates in England – a

ward with the lowest observed temperature had 40 more male

deaths per 100,000 and 25 more female deaths per 100,000 than a

ward with highest observed temperature, all else being equal. In

comparison, applying excess winter mortality from CHD for

England in 2004/05 [9] to temporal differences in temperature in

England [28] suggests an increase in CHD mortality of

approximately 3 deaths per 100,000 for men and 2 deaths per

100,000 for women. This suggests that the association between

climate and CHD mortality rates shown in these analyses may be

due to residual confounding, but it should be noted that temporal

variations and geographic variations in CHD mortality rates due

to temperature are not directly comparable. If environmental

exposures contribute more to long-term cumulative risk rather

than short-term risk, then it’s plausible that geographic variation is

indeed a much larger contributor than seasonal variation. The

fully adjusted analyses suggest that air pollution has a small

association with geographic variation in CHD mortality rates,

however this finding may be due to over-adjustment - one of the

mechanisms of the impact of urbanicity on health is via air

pollution levels. However, without adjusting for urbanicity (such as

model D), the association between air pollution and CHD

mortality rates may be confounded by other mechanisms for the

urban-health relationship, such as access to healthcare. Since the

air quality index is a more direct measure of air pollution than the

urbanicity variable, the limited association of air pollution with

CHD shown in the fully adjusted model seems the most plausible

interpretation of these results.

Strengths and weaknesses of the study
This is the first instance of a study of geographic variation in

small area CHD rates that accounts for behavioural risk factor

profiles of populations, deprivation, and a number of measures of

the physical environment within the same set of analyses. The

multi-level design of the analyses allowed for the explanation of

large scale and small scale geographic variation in CHD rates

simultaneously, which allowed for disentanglement of the

influence of variables that are effective at the different scales.

The spatial error models allowed for an assessment of whether the

multi-level models were prone to spatial autocorrelation bias,

which was shown not to be the case. The systematic approach to

Climate, Air Pollution and CHD
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building models that was utilised here allowed for a comprehensive

assessment of the impact of confounding, and for some

disentanglement of the amount of geographic variation that is

explained by the climate and air pollution variables.

The results presented in this paper are derived from ecological

cross-sectional analyses. Because of the cross-sectional nature of

the studies, the results cannot confirm causal relationships. The

relationship between climate and CHD rates presented here may

be a result of residual confounding. Economic deprivation,

unhealthy lifestyles and the climate generally follow the same

North-South gradient in England, and the associations shown in

the analyses may be a result of errors in the measurement of

economic deprivation and unhealthy lifestyles, or could be due to

unmeasured and potentially confounding factors such as utilisation

and quality of health care. A previous study of women in 23 towns

in Great Britain suggested that controlling for aspirin and statin

use (as a proxy for health service utilisation) removed the residual

variance in adjusted cardiovascular prevalence rates in England

(but not in Scotland) [13], suggesting that this residual confound-

ing could explain the associations with climate found here.

However, the longitudinal impact of climate on CHD mortality

rates is well established, so a potential impact of climate on CHD

mortality rates is plausible. The ecological nature of the study

design implies that the results cannot provide any information

about how the explanatory variables affect individuals [29]. For

example, the results imply that the average temperature of an area

Table 2. Summary statistics, correlation co-efficient matrix of the continuous exposure variables, and mean of exposure variables
by urbanicity category (wards, n = 7,929).

Variable Range Interquartile range Standard deviation Mean Median

CHD mortality rate per 100,000, men 24.4 to 525.3 142.5 to 212.1 53.6 179.9 174.9

CHD mortality rate per 100,000, women 0.0 to 336.2 63.0 to 100.6 29.7 83.6 80.5

Mean max. temp (uC) 11.2 to 14.4 13.5 to 14.4 0.6 13.9 14.1

Sunshine (000s hrs/yr) 1.3 to 1.7 1.4 to 1.6 0.1 1.5 1.5

Air quality index (SDs) 0.4 to 2.2 0.9 to 1.3 0.3 1.1 1.1

Unhealthy lifestyle, men (SDs) 26.7 to 5.3 21.2 to 1.2 1.8 0.0 20.1

Unhealthy lifestyle, women (SDs) 26.2 to 5.6 21.3 to 1.3 1.8 0.0 20.1

Deprivation (SDs) 25.7 to 16.5 25.4 to 15.1 3.5 20.1 21.0

Coastal & countryside (n, %) Urban (n, %) Metropolitan (n, %)

Urbanicity 2737, 35% 4708, 59% 484, 6%

Correlation co-efficient matrix

Mean max. temp Sunshine
Air quality
index

Unhealthy
lifestyle, men

Unhealthy
lifestyle, women Deprivation

Mean max. temp 1.00

Sunshine 0.63 1.00

Air quality index 0.21 20.07 1.00

Unhealthy lifestyle, men 20.43 20.40 20.07 1.00

Unhealthy lifestyle, women 20.44 20.39 20.12 0.99 1.00

Deprivation 20.19 20.17 0.42 0.57 0.51 1.00

Mean of continuous exposure variables by urbanicity category

Variable Coastal & countryside Urban Metropolitan p for trend

Mean max. temp (uC) 13.8 14.0 14.7 ,0.001

Sunshine (000s hrs/yr) 1.5 1.5 1.6 ,0.001

Air quality index (SDs) 0.9 1.2 1.6 ,0.001

Unhealthy lifestyle, men (SDs) 20.1 0.2 21.4 0.001

Unhealthy lifestyle, women (SDs) 20.1 0.3 22.1 ,0.001

Deprivation (SDs) 21.8 0.3 6.0 ,0.001

SDs = Standard Deviations.
doi:10.1371/journal.pone.0032787.t002

Table 3. Residual variance at ward-level (n = 7,929) and local
authority-level (n = 354) for baseline (no exposure variables)
and final models (MODEL L).

BASELINE FINAL

Variance
Standard
Error Variance

Standard
Error

MEN Ward-level 2,096.4 34.1 1,580.2 25.7

LA-level 779.7 66.3 166.1 18.1

WOMEN Ward-level 660.8 10.7 547.6 8.9

LA-level 226.8 19.5 53.5 6.0

doi:10.1371/journal.pone.0032787.t003

Climate, Air Pollution and CHD
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has an impact on CHD rates within that area, but they do not tell

us anything directly about how the temperature of an area affects

the individuals living in the area, or whether certain individuals

within the area are more at risk than others. Risk factors for CHD

tend to accrue over the life course [30], and so examining a cross-

sectional relationship with the physical environment and un-

healthy lifestyle will tend to under estimate the impact of these

variables. This is particularly problematic as the analyses did not

take account of migration between wards in England. The

exposure and the confounding variables used in these analyses

are derived from a number of different data sources and using

different techniques. It is therefore difficult to assess the degree of

uncertainty in the results that is due to measurement error, but this

is likely to have had some impact on the results.

Comparison with other studies
The results presented here are in general agreement with the UK

literature on geographic variation in CHD rates, in that not all of

the variation in CHD rates can be explained by lifestyle factors

alone. The British Regional Heart Study (BRHS) provides the most

comparable results for the impact of climate on geographic

variation in heart disease in England, despite the widely differing

methodology employed in the study compared with the analyses

reported here. Analysis of phase one of the BRHS (which utilised

ecological analyses of CHD mortality rates in 253 towns) suggested

that in 1969–73 climate variables had a modest effect on variation in

local CHD mortality rates after adjustment for deprivation [14],

which is a similar result to those reported here. Phase two of the

study (a cohort study of 7735 men in 24 British towns, followed up

for fifteen years) showed that temperature explains around 30% of

the between-towns variance in CHD incidence rates that remained

after adjustment for social class and individual-level risk factors [12].

Again, this is in broad agreement with the results reported here –

that the climate has a modest effect on CHD rates after adjustment

for differences in the behavioural risk factor profile of populations

and socio-economic status.

The results of this paper extend the results of phase one of the

BRHS in the following ways: all wards in England were included

in the analysis; a measure of the behavioural risk factor profile of

populations of areas was included; an exploration of both small

scale and large scale geographic variation in CHD rates was

conducted; including wards from rural areas allowed for urbanicity

to be included as a potential explanatory variable; more

sophisticated estimates of air pollution and climate were used,

which allowed for modelled estimates of these measures to be

applied to all wards in England. The results of this paper

complement the results of phase two of the BRHS, but extend the

interpretations to women and to men of all ages. In addition, the

analyses reported here were sufficiently powered at the area-level

to allow for inclusion of several environmental variables in the

models simultaneously.

The results presented here suggest that air pollution has a small

positive association with CHD mortality rates in small areas. A

similar finding was shown by Maheswaran et al. in an analysis of

census enumeration districts in Sheffield [10], where nitrogen

oxide levels were significantly associated with increased CHD

mortality rates (smaller, non-significant associations were also

Table 4. Beta coefficients for multi-level regression models for physical environment exposure variables in univariate (MODELS A–
C) and multivariate (MODEL D) analyses, and after further adjustement for confounding variables (MODELS E–F).

MODEL A MODEL B MODEL C MODEL D MODEL E MODEL F

Beta coefficients in models for male CHD mortality rates

Mean max. temp (uC) 227.7** 232.7** 212.5**

Sunshine (000s hrs/yr) 2162.6** 218.2 227.3*

Air quality index (SDs) 54.4** 56.6** 5.8

Urban{ 2.0 1.9

Metropolitan{ 25.9 28.0*

Unhealthy lifestyles (SDs) 6.5** 5.0**

Deprivation (SDs) 7.2** 7.2**

Ward-level variance explained 0% 0% 3% 3% 25% 25%

LA-level variance explained 43% 34% 28% 56% 68% 79%

Beta coefficients in models for female CHD mortality rates

Mean max. temp (uC) 215.5** 217.2** 27.9**

Sunshine (000s hrs/yr) 290.2** 214.2 214.3*

Air quality index (SDs) 23.7** 26.5** 5.7**

Urban{ 0.5 0.4

Metropolitan{ 2.9 1.2

Unhealthy lifestyles (SDs) 4.1** 3.3**

Deprivation (SDs) 3.0** 3.0**

Ward-level variance explained 0% 0% 2% 2% 17% 17%

LA-level variance explained 45% 35% 22% 60% 62% 76%

SDs – Standard Deviations;
{in comparison to coastal and countryside wards;
*significant at p,0.05;
**significant at p,0.01.
doi:10.1371/journal.pone.0032787.t004

Climate, Air Pollution and CHD
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shown for carbon monoxide and particulates). Interestingly, the

Sheffield analysis showed no association between air pollution and

CHD hospital admissions, suggesting that air pollution may

increase the risk of sudden death from CHD (although residual

confounding could not be ruled out). Secondary analysis of a

cohort study restricted to US metropolitan areas with estimates of

particulate air pollution [11] also showed small but significant

increases in cardiovascular deaths for residents in areas with

increased air pollution (for both current and former smokers).

Implications and further research
The analyses reported here suggest that, on top of excess winter

mortality, CHD mortality rates in the coldest parts of England are

generally higher compared to the warmest parts (although this

association may be due to residual confounding). Whilst this

difference is small compared to differences in the lifestyle of

populations, if the relationship is shown to be causal then it is an

area which could be targeted in order to reduce geographic

inequalities in CHD. Analyses of excess winter mortality in

different regions of Europe have shown that the excess mortality is

generally greater in countries with milder climates and this has led

researchers to suggest that the impact of a cold climate on

cardiovascular health can be substantially reduced if the

population were better prepared for cold weather by improving

household heating and insulation and wearing more appropriate

clothing during cold periods of the year [31,32]. Interventions

such as these would be beneficial for reasons other than improving

cardiovascular health. Cold weather has been implicated in the

development of a number of conditions such as respiratory disease,

particularly in elder people. Improvements in home heating have

the potential to improve quality of life, and increased insulation of

homes would reduce fuel use thereby saving household finances

and reducing greenhouse gas emissions. Further research should

be conducted to determine cost-effective interventions to reduce

the impact of climate on coronary heart disease mortality. Such

interventions have the potential to reduce geographic inequalities

in health in England. With regard to air pollution, the results of

this study are inconclusive as to whether raised levels of air

pollution in urban areas lead to increased levels of CHD in

comparison to rural areas. This needs further investigation, using

more refined small area data of air pollution (preferably directly

measured), CHD incidence and confounding variables (e.g. small

area prescription rates for aspirins/statins, access to health care

etc.), and including small areas drawn from rural and urban areas.
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