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Abstract

IGF2BP2 is a member of a family of mRNA binding proteins that, collectively, have been shown to bind to several different
mRNAs in mammalian cells, including one of the mRNAs encoding insulin-like growth factor-2. Polymorphisms in the
Igf2bp2 gene are associated with risk of developing type 2 diabetes, but detailed functional characterisation of IGF2BP2
protein is lacking. By immunoblotting with C-terminally reactive antibodies we identified a novel IGF2BP2 isoform with a
molecular weight of 58 kDa in both human and rodents, that is expressed at somewhat lower levels than the full-length
65 kDa protein. We demonstrated by mutagenesis that this isoform is generated by alternative translation initiation at the
internal Met69. It lacks a conserved N-terminal RNA Recognition Motif (RRM) and would be predicted to differ functionally
from the canonical full length isoform. We further investigated IGF2BP2 mRNA transcripts by amplification of cDNA using 59-
RACE. We identified multiple transcription start sites of the human, mouse and rat Igf2bp2 genes in a highly conserved
region only 50–90 nts upstream of the major translation start site, ruling out the existence of N-terminally extended
isoforms. We conclude that structural heterogeneity of IGF2BP2 protein should be taken into account when considering
cellular function.
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Introduction

Mammalian IGF2 mRNA binding proteins (IGF2BPs or IMPs),

also known as VICKZ proteins (for Vg1-RBP/Vera, IMP, CRD-

BP, KOC, ZBP-1), are proteins of ,65 kDa containing two N-

terminal RNA recognition motifs (RRMs) and four hnRNP K-

homology (KH) domains [1]. RRMs [2] and KH domains [3]

function as RNA binding modules in diverse proteins, and also

participate in protein-protein interactions including dimer forma-

tion. All three IGF2BPs bind to at least 6 sites on IGF2 leader 3

mRNA [1] and to a site within the 39-UTR of IGF2 mRNAs [4].

However, each of the IGF2BPs has been independently identified

in other contexts (reviewed in [5,6]): IGF2BP1 is orthologous to

chicken ZBP-1 and mouse CRD-BP, which have been implicated

in sorting b-actin mRNA and stabilizing c-myc mRNA respec-

tively; IGF2BP2 is a splice variant of a p62 protein identified as an

autoantigen in hepatocellular carcinoma; IGF2BP3 is identical to

the KOC protein over-expressed in pancreatic cancer, and

orthologous to Xenopus Vg1-RBP implicated in mRNA traffick-

ing. Studies on IGF2BPs -1 and -3 have indicated diverse mRNA

targets, which lack a common well-defined recognition motif [6,7].

Indeed, over 300 different mRNAs were identified in IGF2BP1-

containing ribonucleoprotein-containing granules in HEK293

cells, among which transcripts encoding proteins involved in

protein secretion and metabolism were highly represented [8].

IGF2BPs have been reported to influence the stability and

localization of target mRNAs, and to act as both inhibitors and

activators of their translation, depending on the sequences

examined and cellular context [1,7,9,10,11,12,13]. Importantly,

differences in activity of individual IGF2BPs towards specific

mRNAs have been clearly demonstrated [11].

The physiological roles of IGF2BPs are as yet unclear [1,6,14].

In mice, all three IGF2BPs are highly expressed in the embryo,

peaking around E12.5 and declining towards birth, with low or

undetectable levels in most adult tissues [1] although high levels

have been observed in many solid tumours. Transgenic over-

expression of IGF2BP1 in mice induced a high level of mammary

tumours [15], while targeted inactivation of the Igf2bp1 gene

resulted in growth retardation and impaired gut development [9].

Transgenic over-expression of IGF2BP3 caused subtle morpho-

logical alterations in the pancreas [16], and loss of function

analysis in Xenopus embryos indicated that the IGF2BP3

orthologue Vg1-RBP is required for establishment of pancreatic

fate within the endoderm [17]. Polymorphisms within intron 2 of

the Igf2bp2 gene influence type 2 diabetes risk [18,19,20,21] and

have been linked to reduced early phase insulin release and other

indices of impaired pancreatic beta cell function [22,23,24].

Another polymorphism in the promoter region of the Igf2bp2 gene

has been linked to adiposity, and hence insulin resistance [25].

Although it has not been conclusively established that polymor-

phisms within the Igf2bp2 gene affect diabetes susceptibility

through changes in the activity of IGF2BP2 protein per se [26],
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it is highly plausible that IGF2BP2 might influence the

development and/or function of the pancreas or adipose tissue

through effects on the expression of IGF2 or other proteins [14].

It would be expected that the specificity and functional

consequences of mRNA binding might differ between isoforms

of a given IGF2BP as well as between family members. A p62

splice variant of human IGF2BP2 has been identified, which lacks

exon 10 encoding 43 amino acids between the KH2 and KH3

domains [27]. There is no experimental evidence for analogous

splice variants of rodent IGF2BP2s, nor of human IGF2BPs -1 and

-3, but public databases predict multiple mRNA transcripts

encoding distinct isoforms of all three human IGF2BPs

(ENSG00000159217, ENSG00000073792, ENSG00000136231)

and of rodent IGF2BP2 (ENSMUSG00000033581, EN-

SRNOG00000025946). Moreover, in rat the genomic sequence

contains an open reading frame of 627 nts upstream of the

methionine codons corresponding to the translation initiation sites

for human and mouse IGF2BP2, compatible with the existence of

an N-terminally extended isoform. Transcription start sites have

not been experimentally determined, but it has been reported that

mRNA encoding the p62 variant of human IGF2BP2 has a 59-

UTR of 435 nts [27].

We observed by Western blotting that IGFBPs -1 and -3 are

each expressed only as a single isoform in human, mouse and rat

tissues and cell lines, but for IGF2BP2 two isoforms were present.

We show here that these IGF2BP2 isoforms arise as a consequence

of translation initiation from different sites, rather than alternative

splicing, such that the smaller isoform lacks an N-terminal RNA

recognition motif. We also show that in human, mouse and rat the

59UTR of ,50–90 nts relative to the canonical translation

initiation site lacks an upstream open reading frame, ruling out

the occurrence of N-terminally extended isoforms.

Results

Identification of IGF2BP2 transcription initiation sites
using 59RLM-RACE

IGF2BP2 sequences on online databases such as NCBI and

Ensembl show significant discrepancies at the 59 ends. However,

no experimental data on the transcription start site of IGF2BP2

have been published, except that of the human p62 splice variant

for which the transcription start site was reported to be 435 nt

upstream of the translation initiation codon [27]. To determine

experimentally the site(s) of transcription intiation, 59 RNA ligase-

mediated rapid amplification of cDNA ends (59 RLM-RACE) was

performed. This method offers a major advantage over traditional

59RACE in that it amplifies cDNA only from full-length, capped

mRNA, therefore allowing identification of the actual 59 ends of

mRNAs. Total RNA was first treated with Calf Intestine Alkaline

Phosphatase (CIP) to remove 59 phosphate from non-mRNAs and

incomplete mRNAs. Samples were then treated with Tobacco

Acid Pyrophosphatase (TAP) to remove the cap structure of intact

mRNAs, leaving a 59 phosphate group on this mRNA subset only,

followed by ligation of an RNA adapter to the decapped mRNAs.

Reverse transcription and subsequent PCR amplification using

gene-specific and adapter-specific primers allows the 59 ends of

mRNA transcripts to be mapped.

59RLM-RACE was performed using total RNA from human

HEK293 fibroblasts, mouse 3T3-L1 preadipocytes and rat

placenta, all of which had previously been demonstrated by RT-

PCR and Western blotting to express IGF2BP2 at moderately

high levels (data not shown). The first round of 59RACE-PCR was

carried out with a forward outer primer corresponding to the

adapter and a reverse primer specific for IGF2BP2. Second round

nested PCR used the first round PCR products as templates, and

two inner primers recognising the adapter and IGF2BP2

sequence. The two IGF2BP2-specific primers were designed in

two regions in exon 6 with 100% sequence identity between

human, mouse and rat so that they could be used for samples from

all three species. In human and mouse, a single band was obtained

after the 59RACE nested PCR reaction (Figure 1B, lane 2 and 3)

with estimated size of ,560 bp. Meanwhile, two bands were

observed in rat (lane 4), one of similar size to the human and

mouse samples and the other of lower molecular weight of

,370 bp. Gel purification, cloning and sequencing of this lower

band revealed that it was a non-specific product. Cloning and

sequencing of the ,560 bp bands from all three samples mapped

the transcription start site of IGF2BP2 to a highly conserved

region 51–90 nt upstream of the translation initiation site

(Figure 1C). At least two transcription start sites were identified

for each species. In human, three sites were positioned 51, 65 and

72 nt upstream of the double Met start codon. In mouse and rat,

the two sites were 86 and 90 nt, and 74 and 79 nt upstream of the

presumed translational initiator codon, respectively.

IGF2BP2 is expressed in two distinct isoforms
The full length human and mouse IGF2BP2 proteins are

comprised of 599 and 592 aa respectively, with a molecular mass

of ,66 kDa [1,28]. Analysis of endogenous IGF2BP2 by

immunoblotting unexpectedly revealed two distinct isoforms of

IGF2BP2 in human, mouse and rat, one at the predicted

molecular weight of ,66 kDa and a smaller species at ,58 kDa

(Figure 2A, panels 1 and 2). This result was observed with two

different antibodies, one directed against the C-terminus of mouse

IGF2BP2 and one against an internal epitope of human IGF2BP2.

Only a single band was observed for both IGF2BP1 and IGF2BP3

(Figure 2A, panels 3 and 4). Two different, specific shRNA

constructs against IGF2BP2 suppressed the expression of both

species in 3T3-L1 cells, while over-expression of transfected

IGF2BP2 cDNA generated both species (Figure 2B), indicating

that they were derived from IGF2BP2 mRNA(s).

It has previously been reported that expression of all three

IGF2BPs is high in embryos but very low in most adult human and

rodent tissues [1]. We therefore examined the expression of

IGF2BP2 isoforms in perinatal rodent tissues (Figure 3). The

58 kDa protein was detected as a minor isoform except in tissues

where the overall expression was comparatively low. Expression of

p58 relative to p66 was higher in kidney and lower in brain

compared to other tissues examined.

In human, it is well known that alternative splicing of IGF2BP2

results in a transcript lacking the short exon 10 and encoding a p62

protein [29]. Recently, an AT-rich regulatory region responding

to the architectural transcription factor HMGA2 has been

identified in the first intron of the IGF2BP2 gene, and this has

been suggested potentially to function as part of an alternative

promoter directing the transcription of a shorter IGF2BP2

transcript lacking exon 1 [30]. However, it is unlikely that the

58 kDa isoform was produced by either alternative splicing or

transcription under an alternative promoter in intron 1 since this

isoform could be generated from the cloned cDNA coding

sequence of IGF2BP2. This indicates that the small isoform is

generated post-transcriptionally, either by protease cleavage from

full-length p66 isoform or by alternative translation initiation via

an Internal Ribosomal Entry Site (IRES) or leaky ribosomal

scanning. Post-translational modifications such as glycosylation

and phosphorylation should make the protein migrate more slowly

on SDS-gels, and are therefore unlikely to account for the smaller

band on Western blot.

Isoforms of IGF2BP2
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Identification of Met69 as the putative alternative
translation initiation site

An inspection of IGF2BP2 mRNA sequence reveals a plausible

alternative initiation codon corresponding to the first internal Met

downstream of the canonical double Met initiation site. Transla-

tion initiation at this internal Met69 would generate a N-

terminally truncated product lacking the first RRM domain

(Figure 4A), with a predicted molecular weight of ,58 kDa, which

matches the molecular weight of the smaller isoform seen on

Western blot. Both nucleotide sequence and protein sequence

around this internal Met69 are highly conserved in various species

(Figure 3B).

Examination of the IGF2BP2 gene sequence also reveals a poor

Kozak consensus [31] around the canonical AUG start codon

while the downstream Met69 is in a strong Kozak context

(Figure 4C), suggesting leaky scanning as the most plausible

mechanism to generate the small p58 isoform.

The small IGF2BP2 isoform is generated by leaky
ribosomal scanning

To test whether the 58 kDa isoform of IGF2BP2 is the product

of alternative translational initiation from the internal Met69,

various mutagenised constructs were made (Figure 5A), in which

the presumed initiator double Met1/2, the internal Met69 and/or

their flaking sequences were mutated, so as to enhance or diminish

translation initiation at one or other of these sites.

Expression from the coding sequence alone resulted in

production of the two isoforms, as did the constructs with

fragments of 59 and 39 UTR sequences (Figure 5B, lanes 3, 4).

When a stronger Kozak sequence was added before the canonical

start codon, the level of the small isoform was significantly reduced

(Figure 5B, lane 5). It should be noted that this is still only a

medium-strength Kozak sequence as the A nucleotide at position

+4 was not changed to a G as in the optimal consensus. Mutation

of the Kozak consensus surrounding the internal Met69 eliminated

production of the small isoform (Figure 5B, lane 6). Similarly,

when the internal Met69 was mutated to Ile, only the large isoform

was detected (Figure 5B, lane 7), whereas mutation of the double

Met1/2 caused only the small isoform to be produced (Figure 5B,

lane 8). Additionally the N-terminally truncated IGF2BP2

construct which was designed to start at the internal Met69 gave

rise to only the small isoform (Figure 5B, lane 9). These results

strongly support the hypothesis that the small IGF2BP2 isoform is

produced by alternative translation initiation via leaky ribosomal

scanning at the internal Met69.

If the smaller isoform was generated by IRES-mediated

initiation, then changing the sequence flanking the canonical

double Met1/2 initiation site should not affect production of the

p58 isoform. In fact, the expression level of the p58 isoform was

significantly decreased after addition of a Kozak consensus

upstream of Met1/2 (Figure 5B, lane 5), allowing us to exclude

IRES-mediated initiation as the source of IGF2BP2 small isoform.

The p58 isoform is also unlikely to be a product of N-terminal

proteolytic cleavage of the full-length p66 isoform, based on its

level of expression from this construct. The Kozak1/2 construct

contained no modification in the coding sequence, and had the

smaller isoform been generated from proteolysis its relative

expression compared to the long isoform should have not been

affected, which was not the case as in seen Figure 5B, lane 5. To

completely rule out proteolysis as an explanation for generation of

the smaller isoform, a single deletion was introduced in IGF2BP2

cDNA at nt 198, upstream of Met69, causing a frameshift and

premature termination (Figure 6A). A Kozak sequence was also

added upstream of Met1/2 to drive expression from this canonical

site. This disturbance affected neither the ORF starting from the

internal Met69 nor the sequence context surrounding this internal

Met. From this frameshift construct (Dnt198), the small isoform

was still generated despite the fact that no full-length isoform was

expressed (Figure 6B). Its level of overexpression relative to the

endogenous protein matched that of the Kozak1/2 construct (lane

Figure 1. Identification of transcription initiation site of
IGF2BP2 by 59RLM-RACE. Total RNA from human HEK293 fibro-
blasts, mouse 3T3-L1 preadipocytes and rat placenta was used as
templates for the RACE experiment. (A) Schematic representation of
59RLM-RACE PCR. Two forward primers recognizing the adapter
sequence, and two reverse primers against exon 6 of human/mouse/
rat IGF2BP2 are shown. The inner primer is 467 nt downstream of the
canonical translational start site in mouse and rat, and 473 nt
downstream in human. (B) Agarose gel electrophoresis of nested PCR
reaction products. Molecular size markers (base pairs) are indicated on
the left. The correct product is indicated by a filled triangle, and the
non-specific product is indicated by an open triangle. M: marker, h:
human, m: mouse, r: rat, 2ve: PCR negative control using water as
template, 2TAP: negative control using RNAs that was not treated with
TAP, therefore could not ligate to the RNA adapter. (C) Sequence
alignment of human, mouse and rat 59UTR as identified by 59RLM-RACE.
The transcription start sites are in bold and underlined. The canonical
translation initiation site is shown in red. The position of the most 59

transcription start site relative to the translation initiation site is
indicated at the end of the sequences.
doi:10.1371/journal.pone.0033140.g001

Isoforms of IGF2BP2
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5, Figure 5B), due to more efficient translation initiation at the

canonical double Met. This experiment allows us to exclude

proteolytic cleavage as the main source of the p58 isoform, and

confirm that the small isoform is generated by alternative

translation initiation from the in-frame Met69 via leaky ribosomal

scanning.

Discussion

The Igf2bp2 gene has been identified as a type 2 diabetes

susceptibility locus [18,19,20,21]. However, rather little is known

about the structure and function of the IGF2BP2 protein, and the

manner in which its activity might influence diabetes risk. In this

study, we identified the transcription start sites in human, mouse

and rat Igf2bp2 genes, and showed that two isoforms of the

IGF2BP2 protein are generated as a result of alternative

translation initiation at the internal Met69.

To determine the transcription start site (TSS) of Igf2bp2, we

carried out 59RLM-RACE. Multiple TSSs were identified in both

human and rodents, which all mapped to a highly conserved

region 51–90 nt upstream of the canonical translation initiation

site of IGF2BP2. This is considerably shorter than the 435 nt

59UTR of the human splice variant p62 previously reported [27].

However a BLAST of this 435 nt sequence against the human

genome reference sequence revealed that only the first 62 nts

upstream of the canonical translation initiation site match the

human Igf2bp2 sequence. The remaining 373 nts of this reported

59UTR are identical to TSC22 domain family member 1, isoform

1 which is located on human chromosome 13, while human

Figure 2. Detection of a novel IGF2BP2 isoform in vivo. A.
Expression of endogenous IGF2BP1/2/3 expression in human, rat and
mouse. Samples (10 mg of total protein) from human HEK293 cells, rat
placenta, mouse placenta, mouse embryo E18 (mE18) and 3T3-L1 cells
were resolved by 10% SDS-PAGE and analysed by Western blot using an
antibody against an internal fragment of human IGF2BP2 (Abnova)
(panel 1) and antibodies against the C-terminus of mouse IGF2BP2/1/3
(CRB Ltd) (panels 2, 3 and 4). B. Knockdown and overexpression of
IGF2BP2 in 3T3-L1 preadipocytes using retrovirus. 3T3-L1 cells were
treated with control scrambled shRNA (Scr) or two independent shRNA
constructs targeting endogenous IGF2BP2 (sh1-BP2 and sh2-BP2) (left
panels). An empty control vector (pBabe) and a vector containing
IGF2BP2 cDNA sequence (BP2/pBabe) were also introduced into 3T3-L1
cells to overexpress the protein (right panels). Samples (10 mg of total
protein) from human HEK293 cells, rat placenta, mouse placenta, mouse
embryo E18 (mE18) and 3T3-L1 cells were resolved by 10% SDS-PAGE

and analysed by Western blot using antibodies against the C-terminus
of mouse IGF2BP2/1/3 (CRB Ltd) (panels 1, 2 and 3). In both
experiments untreated 3T3-L1 cells are in the left-most lane. Positions
of molecular weight markers are indicated.
doi:10.1371/journal.pone.0033140.g002

Figure 3. Tissue distribution of IGF2BP2 isoforms. Expression of
IGF2BP2 was analysed by Western blotting in tissues from 3-day old rat
(A) and E19 mouse embryo (B). Total cellular proteins in lysates
prepared from the tissues indicated (25 mg/lane) were resolved by 10%
SDS-PAGE and blots were probed with antibody to IGF2BP2 C-terminal
peptide (CRB Ltd). Positions of molecular weight markers are indicated
to the right.
doi:10.1371/journal.pone.0033140.g003

Isoforms of IGF2BP2
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IGF2BP2 is located on chromosome 3 at 3q27.2. Therefore the

long 59UTR reported for p62 was a cloning artefact. The 59UTR

of human IGF2BP2 included in the reference sequences

(NM_001007225 and NM_006548) is 79 nts. A previous study

involving 59 RLM-RACE analysis of RNA isolated from murine

NIH-3T3 fibroblasts [30] found the most 59 TSS of IGF2BP2 was

84 nt upstream of the translation start site, and 29 nt downstream

of the most 59 TSS obtained from the Database of Transcription

Start Sites (http://dbtss.hgc.jp/), similar to our results. It is well-

known that in mammals, transcription does not initiate at a single

site, but rather at multiple sites across a small region, and that

alternative TSS usage depends on tissue, CpG islands, promoter

structures and imprinting [32]. In this study, we only sequenced a

small number of clones from 59RACE-PCR products, six for each

species, and identified 2–3 TSSs. It remains possible that other less

common Igf2bp2 transcriptional start sites might be utilised under

certain conditions or in other cell types.

The rat genomic Igf2bp2 sequence contains an open reading

frame of 627 nts upstream of the double Met codons which

correspond to translation initiation sites for human and mouse

IGF2BP2. Identification of TSSs less than 100 nt upstream of the

Figure 5. The p58 isoform of IGF2BP2 is generated by leaky
ribosomal scanning. A. A schematic representation of mIGF2BP2
mutants. Only the sequences surrounding the canonical translation
initiation site and the internal Met69 are shown. The two putative
translation initiation sites are in red. Cds, wild-type coding sequence of
IGF2BP2; UTR, wild-type IGF2BP2 with 34 nt 59UTR and 336 nt 39UTR
sequences included; Kozak1/2, wild-type IGF2BP2 with added Kozak
sequence upstream of the canonical starting codon, 1/2Ile, the first and
second ATG codon was mutated to ATC; 69Ile, the internal Met69 codon
was mutated to ATC, mutKozak69, the Kozak consensus sequence
flanking the internal Met69 was mutated; D59, the first 66 codons
including the first and second ATG codons were deleted. B. Protein
analysis of mouse IGF2BP2 mutants expressed in 3T3-L1 preadipocytes
(upper panels) and NIH-3T3 fibroblasts (lower panels) using retrovirus
vectors. Untreated cells, and cells transfected with the empty vector
pBabe, were used as controls. Cellular proteins (10 mg/lane) were
resolved by 10% SDS-PAGE and blots were probed with antibody to
IGF2BP2 C-terminal peptide (CRB Ltd) and with antibody to the p85
subunit of PI3-kinase as a loading control.
doi:10.1371/journal.pone.0033140.g005

Figure 4. Identification of Met69 as the putative alternative
translation initiation site. A. Schematic representation of IGF2BP2
and locations of the canonical initiation site at Met1/2 (solid arrow) and
the putative alternative translational initiation site at Met69 (broken
arrow). B. Protein sequence alignment of the 59 region of IGF2BP2 in
human, chimpanzee, cow, mouse and rat,. Two putative translational
initiation sites are shown by arrows with solid and broken lines,
respectively. C. Nucleic acid sequence alignment of IGF2BP1/2/3
translational initiation sites and the surrounding sequences. Bases that
match the consensus are in upper case, while those that do not match
the consensus are in lower case. The start codons are in red, and the
most two important positions in the Kozak consensus are in bold.
doi:10.1371/journal.pone.0033140.g004

Isoforms of IGF2BP2

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e33140



double Met codons in rat rules out the existence of longer

transcripts formerly annotated as rat IGF2BP2 mRNA sequences.

The mouse genomic sequence is homologous to that of the rat over

this region, and also contains the upstream AUG codon, but the

presence of two in-frame stop codons downstream eliminates

potential expression from this uORF. The human and rodent

genomic sequences diverge ,270 nt upstream of the canonical

translation initiation site, and no equivalent sequence to the rodent

uORF is found in human. Since the TSS of rat as identified in this

study is in a region highly homologous to that of human and

mouse, we believe the translation initiation site of rat Igf2bp2 is at

the double Met, as in the other species. Moreover, Western blot of

rat placenta did not detect any immunoreactive proteins of ,800

amino acids, such as would be generated from the upstream AUG.

However, given the existence of an extended in-frame uORF in

the rat genomic sequence, the possibility cannot be completely

ruled out that larger isoforms of rat IGF2BP2 might be generated

in a tissue-specific manner by alternative promoter usage.

Although Western blotting with a C-terminally reactive

antibody provided no evidence for isoforms of IGF2BP2 larger

than the canonical 66 kDa protein in rodents or humans, it did

reveal the presence of a novel smaller isoform of ,58 kDa in all

species. As demonstrated by site-directed mutagenesis, the small

isoform is produced by alternative translational initiation at

Met69. This isoform thus lacks the first 68 amino acids

corresponding to the RRM1 domain. The relative expression of

66 kDa and 58 kDa isoforms showed modest species and tissue

differences. The long isoform was consistently the more abundant

although the ratio of short/long isoform was higher in kidney and

lower in brain compared to other tissues examined. These

observations leave open the possibility that relative expression of

the two isoforms might be subject to regulation.

Alternative translation initiation has long been recognised and is

not uncommon [33]. In some instances it is used as a mechanism

to generate protein isoforms with different intracellular localiza-

tion, expression patterns or physiological functions [34,35,36].

There is no obvious localization signal in the RRM1 domain of

IGF2BP2, and deletion of the two RRM domains in the homolog

IGF2BP1 has been shown to have no effect on sub-cytoplasmic

localization of the protein in NIH3T3 cells [37]. The relative

protein expression of the two IGF2BP2 isoforms in different

tissues, at different stages of development or under different

physiological conditions is difficult to study as the protein is

expressed at very low levels in most adult tissues except gonads

[38]. It is interesting that isoforms of the RDM1 protein showed

differing responses to heat shock dependent on RRM domains.

While the expression of long N-terminal isoforms with intact 59

RRM domain remained unchanged, N-terminal truncated

isoforms lacking this domain had their expression modulated after

heat shock [39]. It is therefore possible that the two isoforms of

IGF2BP2 could be differentially regulated by external stimuli.

The first RRM domain of IGF2BP2, which is absent in the

small isoform, contains highly conserved RNP1 and RNP2 motifs

important for RNA recognition, in contrast to the second RRM

domain which has poor RNP signatures [2,40]. In addition to

binding to RNA, RRM domains can participate in protein-protein

interaction and facilitate inter- or intra-molecular dimerisation of

RRM domain-containing proteins [2,40]. Thus loss of the RRM1

domain in the small isoform might affect its binding affinity and

specificity to both RNA and protein partners, as well as its own

structure, dimer formation, and stability as seen in other RRM-

containing proteins such as hnRNP Q, PARN and nPTB

[41,42,43]. In the case of the closely related IGF2BP1, a construct

lacking both RRM domains bound H19 RNA with 5-fold lower

affinity than the full-length protein, although the RRM1/2 di-

domain did not itself bind this RNA in a mobility-shift assay [37].

Thus RRM domains in IGF2BPs may function to modulate the

RNA-binding activity of the KH domains.

In conclusion, we demonstrate here the complexity of Igf2bp2

gene expression. Transcription starts at multiple sites in a short

region highly homologous in human and rodents to generate

transcripts with a relatively short 59UTR (60–90 nts). Alternative

translation initiation at the canonical double Met1/2 and the

internal Met69 generates two isoforms of IGF2BP2 protein.

Further study on functional differences between the two isoforms

may provide insight into how cells regulate the expression and

activity of these two isoforms and may shed light on how

polymorphisms in Igf2bp2 sequences contribute to the risk of

developing diabetes.

Materials and Methods

Animals
All studies on animal tissues were approved by the University of

Cambridge Ethical Review Committee and conducted according

to the Home Office Animals (Scientific Procedures UK) Act, 1986.

Cell culture
NIH3T3, 3T3-L1 and HEK293 cells were from ECACC

(http://www.hpacultures.org.uk/) and BOSC293 cells from

ATCC (http://www.atcc.org/). NIH3T3 and 3T3-L1 cells were

Figure 6. The p58 isoform of IGF2BP2 is not generated by
protease cleavage. A. A schematic representation of the frameshift
mutation. A single nucleotide deletion at position 198 resulted in a
premature stop codon in the ORF starting at the double Met but did
not affect the downstream ORF starting from the internal Met69. A
Kozak sequence was also added upstream of the canonical double Met.
B. Western blot analysis of the frameshift construct expressed in 3T3-L1
preadipocytes. Empty vector (pBabe) or the frameshift construct
(Dnt198) was introduced into the cells using retrovirus. Cellular proteins
(10 mg/lane) were resolved by 10% SDS-PAGE and blots were probed
with antibody to IGF2BP2 C-terminal peptide (CRB Ltd) and with
antibody to the p85 subunit of PI3-kinase as a loading control. Positions
of molecular weight markers are indicated to the right.
doi:10.1371/journal.pone.0033140.g006
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grown in Dulbecco’s modified Eagle’s medium (DMEM) supple-

mented with 10% newborn calf serum. HEK293 and BOSC293

cells were propagated in DMEM supplemented with 10% fetal

bovine serum. All cells were cultured in a humidified incubator

with 5% CO2 at 37uC.

Retroviral constructs and site-directed mutagenesis
Oligonucleotide sequences of knockdown constructs and PCR

primers are given in Table 1. Complementary oligonucleotides for

knockdown shRNA constructs were designed using Dharmacon’s

siDESIGN web tool with BamHI and EcoRI ends, and annealed

in 10 mM Tris-HCl (pH 7.4), 50 mM NaCl. Annealed sequences

sh1-F/sh1-R, sh2-F/sh2-R, Scr-F/Scr-R were cloned into the

retroviral vector pSIREN-RetroQ (Clontech).

All overexpression and mutagenesis constructs contained

restriction sites BglII and EcoRI, and were ligated into pBabe-

puro digested with BamHI and EcoRI. Full length mouse

IGF2BP2 coding sequence was amplified from clone 5354659

(Geneservice) using primers IGF2BP-Retro-F and IGF2BP2-

Retro-R (Cds construct). In this construct the 59 and 39UTR

sequences are derived from the vector polylinker. To make the

construct that included parts of the endogenous Igf2bp2 59UTR

and 39UTR (UTR construct) primers BP2-UTR-F and BP2-UTR-R

were used. To add an optimised Kozak sequence upstream of the

AUG start codon (Kozak1/2 construct), forward primer BP2-

Kozak-F was used instead. To mutate the first two Met codons in

the coding sequence (1/2Ile construct), forward primer BP2-1/

2Ile-F was used. To create a 59 truncated construct (D59), forward

primer sBP2-F was used.

Three other constructs were generated by site-directed

mutagenesis using Stratagene’s QuikChange Lightning Site-

Directed Mutagenesis kit according to the manufacturer’s

protocol. BP2-Kozak/pBabe-puro was used as the template. The

internal Met69 was mutated to Ile (69Ile construct) using primers

BP2-69Ile-F and BP2-69Ile-R. The Kozak sequence surrounding

Met69 was mutated using primers BP2-mKozak69-F and BP2-

mKozak69-R (mutKozak69 construct). A single nucleotide deletion

at nt198 (Dnt198 construct) was created using primers FS68-F and

FS68-R.

Cell transfection and retroviral infection
Retroviral constructs were transfected into BOSC293 packaging

cells using Lipofectamine 2000 (Invitrogen). Retrovirus was

harvested after 48 h and used with polybrene (16 mg/ml) to infect

3T3-L1 cells. Cells expressing the constructs were subsequently

selected by adding puromycin to the final concentration of 4 mg/

ml.

Western blotting
Mouse and rat tissues were removed and snap frozen

immediately after sacrifice. Tissues were later thawed on ice,

and homogenized in ice-cold lysis buffer (50 mM HEPES pH 7.4,

150 mM NaCl, 10 mM EDTA, 30 mM NaF, 10 mM Na4P2O7,

1% Triton X-100, 1 mM Na3VO4, 0.5% v/v protease inhibitor

cocktail; 100 mg tissue/ml lysis buffer) using an Eppendorf-fitted

pestle-homogenizer. Cultured cells were washed with PBS and

solubilised in lysis buffer. Lysates were cleared by centrifugation

for 5 min at 16000 g to remove cell debris. Extracted proteins

were mixed with 46 loading buffer (200 mM Tris-HCl pH 6.8,

4% SDS, 40% glycerol, 100 mM DTT, 0.08% w/v bromophenol

blue) and heated at 95uC for 5 min before loading onto SDS-

polyacrylamide gels. Proteins were transferred to PVDF mem-

branes which were blocked in TBS containing 5% (w/v) dried milk

before incubation with antibody. An antibody against human

IGF2BP2 was obtained from Abnova. Rabbit polyclonal anti-

peptide antibodies were generated against the C-terminal

Table 1. Sequences of oligonucleotides and primers.

sh1-F GATCCGGGTAGACATCCACAGAAATTCAAGAGATTTCTGTGGATGTCTACCCTTTTTTCTCGAGG

sh1-R AATTCCTCGAGAAAAAAGGGTAGACATCCACAGAAATCTCTTGAATTTCTGTGGATGTCTACCCG

sh2-F GATCCTGACAAGAGAAGAGGCAAATTCAAGAGATTTGCCTCTTCTCTTGTCATTTTTTCTCGAGG

sh2-R AATTCCTCGAGAAAAAATGACAAGAGAAGAGGCAAATCTCTTGAATTTGCCTCTTCTCTTGTCAG

Scr-F GATCCGTGCGCTGCTGGTGCCAACTTCAAGAGAGTTGGCACCAGCAGCGCACTTTTTTCTCGAGG

Scr-R AATTCCTCGAGAAAAAAGTGCGCTGCTGGTGCCAACTCTCTTGAAGTTGGCACCAGCAGCGCACG

IGF2BP-Retro-F CCCGAGATCTATGATGAACAAGCTGTACA

IGF2BP2-Retro-R AAATGAATTCTTACTTGCTGCGCTGTGG

BP2-Kozak-F TTTTAGATCTGCCACCATGATGAACAAGCTG

BP2-1/2Ile-F TTTTAGATCTGCCACCATCATCAACAAGCTGTACATTGGGAACCTG

sBP2-F CCCGAGATCTAAAATCATGGAAGTTGAC

BP2-UTR-F TTTTAGATCTCCACGCGTCCGC

BP2-UTR-R TTTTGAATTCGCTTTGAGCATGTTCAC

BP2-69Ile-F GAATTGCATGGGAAAATCATCGAAGTTGACTACTCAGTCTC

BP2-69Ile-R GAGACTGAGTAGTCAACTTCGATGATTTTCCCATGCAATTC.

BP2-mKozak69-F ATGGGAAACTTATGCAAGTTGACTACTCAGTCTCTAAAAAGCTAAGGAGC

BP2-mKozak69-R AACTTGCATAAGTTTCCCATGCAATTCCACTTTACCCGAGAG

FS68-F GGGTAAAGTGGAATTGCATGGAAAATCATGGAAGTTGACT

FS68-R AGTCAACTTCCATGATTTTCCATGCAATTCCACTTTACCC

BP2-RACE-Outer CCTTTCCGATGATGGCACCAA

BP2-RACE-Inner GGCGAATTCGGGATGTAGGAAATCTTGAAGG.

doi:10.1371/journal.pone.0033140.t001
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QHQKGQSNLAQARRK, QEQRYPQGVAPQRSK, and

QQKALQSGPPQSRRK sequences of mouse IGF2BP1,

IGF2BP2 and IGF2BP3 respectively (CRB Ltd). Primary

antibodies were used at a dilution of 1/10000 and peroxidase-

labelled polyclonal goat secondary antibodies (Dako) at a dilution

of 1/1000. The blots were developed using enhanced chemilumi-

nescence reagents in accordance with the manufacturer’s instruc-

tions (Pierce).

59RLM-RACE
59 RNA ligase mediated rapid amplification of cDNA ends (59

RLM-RACE) was carried out using Ambion’s FirstChoice RLM-

RACE kit according to the manufacturer’s protocol. Total RNA

from human HEK293 fibroblasts, mouse 3T3-L1 preadipocytes

and rat placenta was used as templates. For the first and second

rounds of RACE-PCR, IGF2BP2-specific primers BP2-RACE-

Outer and BP2-RACE-Inner were used.
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