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Abstract

The fungus C. albicans uses adhesins to interact with human epithelial surfaces in the processes of colonization and
pathogenesis. The C. albicans ALS (agglutinin-like sequence) gene family encodes eight large cell-surface glycoproteins
(Als1-Als7 and Als9) that have adhesive function. This study utilized C. albicans Dals mutant strains to investigate the role of
the Als family in oral epithelial cell adhesion and damage, cytokine induction and activation of a MAPK-based (MKP1/c-Fos)
signaling pathway that discriminates between yeast and hyphae. Of the eight Dals mutants tested, only the Dals3 strain
showed significant reductions in oral epithelial cell adhesion and damage, and cytokine production. High fungal:epithelial
cell multiplicities of infection were able to rescue the cell damage and cytokine production phenotypes, demonstrating the
importance of fungal burden in mucosal infections. Despite its adhesion, damage and cytokine induction phenotypes, the
Dals3 strain induced MKP1 phosphorylation and c-Fos production to a similar extent as control cells. Our data demonstrate
that Als3 is involved directly in epithelial adhesion but indirectly in cell damage and cytokine induction, and is not the factor
targeted by oral epithelial cells to discriminate between the yeast and hyphal form of C. albicans.
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Introduction

C. albicans is a commensal fungus of the human oro-

gastrointestinal and vaginal tracts [1,2]. When the immune system

is compromised, or when the normal microbiota are disrupted,

debilitating and often recurring mucosal diseases can result. C.

albicans, the most common clinical Candida isolate, uses adhesins,

hypha formation, phenotypic switching and production of

extracellular hydrolytic enzymes to interact with its human host

[3–6]. Among C. albicans adhesins is the Als (agglutinin-like

sequence) family, encoded by eight distinct genetic loci (ALS1 to

ALS7, ALS9; [7,8]). Als proteins have a similar structure, including

an N-terminal secretory signal sequence, followed by an NT

domain of approximately 320 amino acids, a T domain of

approximately 104 amino acids, a TR domain of head-to-tail

copies of a Ser/Thr-rich repeated sequence, and a Ser/Thr-rich C

domain of variable size and sequence. Mature Als molecules are

large glycoproteins that are linked to b-1,6 glucan in the C. albicans

cell wall [9]. For example, the estimated sizes for mature Als1 and

Als3 are 600 and 440 kDa, respectively.

Because of its proposed similarity to functional domains of other

adhesion proteins, the Als NT domain is often studied in the

absence of the remainder of the mature molecule. X-ray

crystallography and NMR were used to solve the structure of

the Als9-2 (amino acids 18–328) and Als1 (amino acids 18–329)

respectively [10]. This work showed highly similar structures

for the two proteins that feature two tandem Dev-IgG type

immunoglobulin domains and a cavity, with an invariant Lys

residue, which binds to the C-terminal carboxyl group of peptides

with broad binding specificity. It is very likely that these structural

features will be found in the corresponding fragments from the

remaining proteins in the Als family, although the other structures

must still be solved. Als proteins, particularly Als3, contribute to

biofilm formation, mediate epithelial invasion and induce

epithelial cell damage [11]. Als3 has been the focus of considerable

investigation since it is produced so abundantly on the surface of

germ tubes and hyphae [12], providing a potential intersection

between adhesive function and hypha formation. Hypha forma-

tion is also very important in mucosal pathogenicity [13–15].

As part of our studies of interactions between C. albicans and oral

epithelial cells, we discovered a mechanism that enables oral

epithelial cells to discriminate between C. albicans yeast and hyphae

via a mitogen-activated protein kinase (MAPK) signaling pathway

[16–19]. This discriminatory mechanism targets C. albicans hyphae

and constitutes activation of the MAPK phosphatase MKP1 and

c-Fos transcription factor, which are involved in the induction and
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regulation of a proinflammatory cytokine response. Since the ALS

gene family is expanded in C. albicans and has adhesion/invasion

functions, we sought to determine the role of this family in

epithelial adhesion and induction of cell damage. Furthermore,

given that Als3 is abundant on hyphae, we wanted to determine

whether Als3 is the moiety that mediates activation of the MAPK-

based MKP1/c-Fos signaling pathway leading to cytokine

induction.

Materials and Methods

Growth of C. albicans strains and the epithelial cell line
C. albicans strains used in this work included the wild-type strain

SC5314 [20] and strains in which both alleles of an individual ALS

gene were deleted. The collection of mutants included 1467 (Dals1;

[21]), 2342 (Dals2/PMal-ALS2; [22]), 1843 (Dals3; [21]), 2034

(Dals4; [22]), 2373 (Dals5; [23]), 1420 (Dals6; [23]), 1429 (Dals7;

[23]) and 2028 (Dals9; [24]). Strain CAI4 [25], a Ura-negative

derivative of SC5314 was the parent for each of the mutant strains.

CAI4 was transformed with plasmid CIp10 that encodes the URA3

gene [26] for the purposes of creating a Ura3-positive control for

this work. This strain is referred to as ‘CAI4’ throughout the

manuscript. C. albicans strain 2322 was also used as a control [27].

This strain is the Dals3 mutant, into which a copy of the ALS3

large allele from strain SC5314 was reintegrated into the ALS3

locus. C. albicans were grown in YPD medium (1% yeast extract,

2% peptone, 2% dextrose) overnight at 30uC to saturation prior to

experimentation. Experiments used a buccal epithelial squamous

cell carcinoma line, TR146 [28]. TR146 monolayers were grown

in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented

with 10% fetal bovine serum (FBS). Prior to experiments, TR146

confluent monolayers were serum-starved overnight and serum-

free DMEM used during the next day’s experiments.

Adherence assay and morphological analysis
TR146 oral epithelial cell monolayers were grown to confluence

in six-well tissue culture plates and serum-starved overnight. 100,

200 or 300, depending on the assay, C. albicans yeast cells were

added to replicate wells containing 1 ml serum-free DMEM for

90 min at 37uC and 5% CO2. C. albicans contact with epithelial

cells is a strong inducer of hypha formation, and by 90 min

significant germ tube formation has already occurred. Following

incubation, non-adherent C. albicans cells were removed by

aspiration. Each well was washed twice with 1 ml PBS, and

overlaid with molten Sabouraud’s dextrose agar (SDA) at 45uC.

Plates were then incubated at 30uC for 24 h, and the resulting

colonies counted. Replicate control plates of the initial inoculum

were also incubated and the resulting colonies counted. Percent

adherence was calculated as (mean adherent CFU/mean total

CFU)6100. The experiments were repeated on two separate

occasions. For morphological analysis, CAI4 and Dals3 strains

were inoculated onto TR146 monolayer cultures at a MOI of 10.

After 90 min monolayers were fixed in 10% buffered formalin and

examined by differential interference contrast (DIC) microscopy at

6400.

Cell damage assay
TR146 confluent monolayers were grown in 24-well tissue

culture plates. C. albicans yeast cells were added to TR146

monolayers and incubated at 37uC and 5% CO2 for 24 h. A

fungal:epithelial cell multiplicity of infection (MOI) between 0.01

and 10 was used. Control wells contained PBS alone. Following

incubation, culture supernatant was collected and assayed for

lactate dehydrogenase (LDH) using the Cytox 96 Non-Radioactive

Cytotoxicity Assay kit (Promega) according to manufacturer’s

instructions. A recombinant porcine LDH (Sigma-Aldrich) was

used to generate a standard curve and sample values extrapolated

from the curve. The assay was conducted using a single well on

three separate occasions. Replicate LDH measurements were

made on the single well. Data were analyzed using a two-tailed t-

test with p,0.05 considered significant.

Measurement of cytokine levels
C. albicans cells were added to TR146 monolayers, grown in 24-

well tissue culture plates, and incubated as described above. At

24 h, culture supernatants were used to measure cytokine levels

(IL-1a, IL-6, G-CSF, GM-CSF) using the Fluorokine MAP

cytokine multiplex microbead assay kits (R&D Systems), coupled

with the Bioplex 200TM machine according to the manufacturer’s

protocol. The assay was conducted using a single well on three

separate occasions. Replicate cytokine measurements were made

on the single well. Data were analyzed using a two-tailed t-test

with p,0.05 considered significant.

Western blotting
Western blotting was used to assess phosphorylation of MKP1

and induction of c-Fos in TR146 monolayers that were incubated

with C. albicans. C. albicans yeast cells were added to the TR146

monolayers, grown in 12-well tissue culture plates, and incubated

for 2 h at 37uC and 5% CO2. Epithelial cells were lysed using a

modified RIPA lysis buffer (50 mM Tris-HCl (pH 7.4), 150 mM

NaCl, 1 mM EDTA, 1% Triton X-100, 1% sodium deoxycholate,

0.1% SDS) containing inhibitors of protease (Perbio, UK) and

phosphatase (Sigma-Aldrich, UK). The lysate was incubated on

ice for 30 min and centrifuged for 10 min in a refrigerated

microfuge. Supernatants were assayed for total protein using the

BCA Protein Quantitation kit (Perbio, UK). Protein (15 mg) was

separated on a 12% NuPAGE Bis:Tris minigel (Invitrogen, UK)

before transfer to a PVDF membrane (GE Healthcare). a-actin

was used as a loading control. Membranes were incubated with

primary (1:1000 dilution) and secondary (1:10,000 dilution)

antibodies and developed using Immobilon chemiluminescent

substrate (Millipore, UK). Rabbit monoclonal antibodies to

human phospho-MKP1 and c-Fos were purchased from Cell

Signaling Technologies (New England Biolabs, UK). Mouse

monoclonal antibody to human a-actin was purchased from

Millipore and goat anti-mouse and anti-rabbit horseradish

peroxidase (HRP)-conjugated antibodies were from Jackson

Immunologicals Ltd (Stratech Scientific, UK). The assay was

conducted on four independent occasions, inoculating a single

TR146 well with each C. albicans strain.

Stimulation of epithelial monolayers with recombinant
Als3

Soluble, purified NT-Als3 was prepared as described previously

[12]. Briefly, a vector encoding the first 329 amino acids of Als3

and a hexa-His tail was transformed into Pichia pastoris. Soluble

Als3 was secreted from the recombinant strain, producing a

protein (amino acids 18 to 329) from which the secretory signal

sequence was cleaved. The protein was purified by His-Trap

column chromatography (GE Healthcare), dialyzed against

phosphate buffered saline and its concentration determined using

the Bradford method (Bio-Rad). The NT-Als3 protein was added

to TR146 monolayers in the context of the cell damage, cytokine

induction, MKP1 phosphorylation and c-Fos assays described

above. Concentrations added ranged from 0.3–10 mg/ml. Assays

C. albicans Als Proteins in Epithelial Infection
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were conducted on two separate occasions. Controls included PBS

alone. Data analysis followed the methods described above.

Results

Dals3 has reduced adhesion and damage to oral
epithelial cells

The TR146 oral epithelial carcinoma cell line is one of the most

common cell lines currently used to investigate C. albicans-oral

epithelial cell interactions [13,14,16–18,29,30]. We tested each of

the Dals mutants for its ability to adhere to TR146 cells after

90 min of co-incubation. Only the Dals3 mutant was defective in

adhesion in this assay, with approximately 30–40% reduced

adhesion compared to control strains (Fig. 1a). Notably, the

percentage of Dals3 cells forming germ tubes and the morphology

of the germ tubes could not be distinguished from the wild-type

strain (Fig. 1b). The Dals3 strain was also the only one of the set of

Dals mutants to show significantly decreased damage to TR146

cells following 24 h of incubation (Fig. 2a). Although damage to

TR146 cells was reduced by nearly 75% for the Dals3 strain, a

small amount of epithelial cell damage was still observed. Because

adhesion is a prerequisite for invasion and subsequent cell damage,

this result is consistent with the adhesion assay data. Notably, at

24 h, the Dals3 strain showed decreased adhesion to the TR146

monolayer compared with the control (data not shown).

Because the Dals3 mutant showed significant reductions in the

adhesion and cell damage assays, the assays were repeated to

include the control strain 2322, into which an ALS3 allele was

reintegrated. Restoration of wild-type adhesion (Fig. 1b) and cell

damage (Fig. 2b) for this strain suggested that the results observed

for the Dals3 mutant were attributable directly to loss of Als3.

Variation between biological replicates was evident when

comparing the various assays. For example, cell damage data for

the Dals3 mutant varied between experiments (compare Fig. 2a

and b); however, in both instances the trends were the same and

damage caused by the Dals3 strain was reduced significantly

compared to the control. It was also unclear why the ALS3

reintegrant strain 2322 showed higher LDH levels than strains

SC5314 and CAI4, however, the strain clearly demonstrated

rescue of the cell damage phenotype.

Reduced capacity of Dals3 to induce epithelial cytokines
One marker of epithelial activation in response to an invading

pathogen is the induction of a pro-inflammatory cytokine

response. The ability of Dals mutants to induce cytokines from

epithelial cells has not been investigated previously. Because of

their role in adhesion to epithelial cells, one would expect that Als-

epithelial receptor interactions at the cell surface might trigger

cytokine production. We assessed whether Dals mutants were able

to induce cytokine production in TR146 cells 24 h following

inoculation with C. albicans at a MOI of 0.01. In this assay, only the

Dals3 mutant was deficient in inducing G-CSF, GM-CSF, IL-6

and IL-1a (Fig. 3a), which we previously demonstrated as being

the main read-out cytokines induced by C. albicans for TR146 cells

[16]. Repetition of the cytokine assays using the ALS3 reintegrant

control strain showed that the results observed for the Dals3

mutant were due to the loss of Als3 (Fig. 3b).

Dals3 induces MKP1 phosphorylation and c-Fos
production

Epithelial cells discriminate between the yeast and hyphal form

of C. albicans via a MAPK-based mechanism that targets the

hyphal form, which involves MKP1 and c-Fos activation [16].

Given that the Dals3 mutant forms normal germ tubes/hyphae in

the epithelial cell culture conditions used in these experiments, but

was deficient in adhesion (Fig. 1), damage induction (Fig. 2) and

cytokine production (Fig. 3), we hypothesized that Als3 may be the

target on C. albicans hyphae that mediates discrimination between

the yeast and hyphal form. Therefore, we screened the ability of

the Dals mutants to induce MKP1 phosphorylation or c-Fos

production. Because 2 h was the time point previously shown to be

optimal for characterization of the discriminatory response [16], it

was used for this assay. MKP1 phosphorylation and c-Fos

production were induced by the Dals strains to a similar degree

as by wild-type/parent cells (Fig. 4). This result indicated that

deletion of individual ALS genes did not affect activation of

epithelial cells via MPK1 or c-Fos and that Als3 was unlikely to be

the hyphal moiety targeted by epithelial cells to discriminate

between the yeast and hyphal form of C. albicans. Given that the

Dals3 mutant was markedly reduced in its ability to cause epithelial

damage (Fig. 2), the data also suggested that MKP1 or c-Fos

Figure 1. Adhesion of C. albicans Dals mutants to TR146 oral epithelial cell monolayers. C. albicans yeast cells (100 cfu) were added to
TR146 monolayers and incubated at 37uC for 90 min. Each Dals strain was tested individually and compared to the wild-type strain SC5314 (URA3/
URA3) and the CAI4 control (ura3::URA3). After extensive washing, molten (45uC) Sabouraud’s dextrose agar was added and the plates were then
incubated at 30uC for 24 h for colony development of adhered C. albicans cells. Results were expressed as the percentage of adhered C. albicans cells.
Data represent mean values 6 SEM and are representative of two independent experiments. * p,0.05 compared to CAI4. (A) % adherence of Dals
strains; only Dals3 showed significantly decreased adhesion to TR146 monolayers. (B) The parent strain CAI4 and the Dals3 strain were added to
TR146 oral epithelial cells and incubated at 37uC for 90 min. The monolayers were then formalin fixed and morphology was assessed by DIC
microscopy at 6400.
doi:10.1371/journal.pone.0033362.g001
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activation was, in part, not directly correlated to damage as

indicated previously [16].

Increasing the fungal burden of Dals3 rescues damage
and cytokine phenotypes

Our previous work demonstrated that epithelial activation and

cytokine production in TR146 cells is dependent on fungal

burdens [16]. Because the Dals3 mutant exhibited poor epithelial

adherence, we hypothesized that this phenotype may account for

the poor ability of Dals3 to induce damage and a cytokine

response, since damage and cytokine induction require sustained

hypha formation and epithelial activation [13,17,18]. Thus, it was

possible that the deficiencies in the epithelial damage and cytokine

responses for the Dals3 strain may be because the threshold level of

activation was not reached due to insufficient numbers of Dals3

cells adhering to and invading the epithelial cells.

First, we tested whether the percentage of adherence was

increased if higher initial doses of Dals3 yeast cells were used.

Although we did not observe an increase in the percentage of

adherent cells by increasing the MOI, a greater number of Dals3 cells

adhere to the epithelial cells as a result (Fig. 5a). The Dals3 shows a

50% reduction in adherence compared with the wild type strain

CAI4. By increasing the number of Dals3 cells by 50% (from ,200

(low dose) to ,300 (high dose)) we observed a similar amount of

adhered cells as with the parent strain when 50% fewer cells are

used. This demonstrates that while the percentage of adherent cells

does not change, more cells adhere if the number of cells is increased.

Next, we attempted to rescue the damage and cytokine

phenotypes by increasing the Dals3 dose to the threshold activation

level. We first inoculated TR146 monolayers for 24 h with

SC5314, CAI4 and Dals3 at a MOI ranging from 0.01 to 10.

Increasing the Dals3 burden 10-fold (from MOI of 0.01 to 0.1) was

sufficient to initiate cell damage, albeit at a lower level than the

wild-type/control strains (Fig. 5b). However, at a MOI of 10,

Dals3 induced damage at similar levels as the wild-type/control

strains, potentially indicating that a similar number of Dals3 cells

were adhering and invading epithelial cells as the wild-type/

control strains at an MOI of 0.1. The importance of fungal

burdens was further supported by the observation that the LDH

levels caused by SC5314 and CAI4 peaked and reached a plateau

at a MOI of 1. Presumably, most or all TR146 cells were degraded

at 24 h using this MOI, so increasing the MOI to 10 could not

further increase epithelial damage. The Dals3 strain continued to

increase LDH levels to a MOI of 10, consistent with the

observation that the strain adhered poorly and required a greater

fungal cell number to cause epithelial damage.

Next, we investigated whether the increased fungal burden could

induce epithelial cytokine production by infecting TR146 cells for

24 h with C. albicans SC5314, CAI4 or Dals3 using MOIs of 0.01

and 0.1. Similar to the cell damage results, increasing fungal burden

10-fold was sufficient to induce cytokine production (Fig. 5c). For

IL-1a, the increased MOI of the Dals3 strain produced cytokine

levels similar to the control strains. Since IL-1a is associated with

cell damage [31,32], this result was consistent with the data that

demonstrated increases in LDH when the Dals3 strain was used at a

MOI of 0.1 (Fig. 5b). Together, the data suggested that the lack of

damage and cytokine production observed for Dals3 at 24 h at lower

MOIs was most likely due to its poor ability to adhere to and invade

oral epithelial cells. Increasing the MOI restores all phenotypes by

ensuring sufficient numbers of Dals3 cells adhere thus reaching the

threshold level for activation. This also further demonstrates that a

threshold level is required for epithelial cell activation (supporting

our previous work [16], which is dependent on how many cells

initially adhere. Furthermore, because cell damage and cytokine

production were restored by increasing Dals3 burden, it was unlikely

that Als3 was a hyphal factor that directly induced epithelial

damage and cytokine production.

Although Als3 was unlikely to be the hyphal factor that directly

activates epithelial cells, we hypothesized that C. albicans hyphal

adhesion/anchoring to epithelial cells was a prerequisite for

epithelial activation. In other words, sufficient numbers of hyphae

first need to adhere to epithelial cells to enable the hyphal factor that

activates MKP1/c-Fos to be present in sufficient quantity. Because

we previously determined the threshold level of MKP1-C-Fos

activation by wild-type C. albicans (SC5314) to be around a MOI of 1

[16] and that Dals3 adheres poorly to oral epithelial cells (Fig. 1), we

reduced the Dals3 MOI from 10 to 1 with the prediction that

MKP1/c-Fos activation would be reduced. As predicted, C. albicans

Dals3 at a MOI of 1 only minimally induced MKP1 phosphorylation

and c-Fos (Fig. 5d), further supporting the importance of fungal

burdens and threshold levels of activation in C. albicans infection.

Recombinant NT-Als3 does not induce epithelial
damage, cytokines, MKP1 phosphorylation or c-Fos
production

The phenotypes observed for the Dals3 mutant suggested that

Als3 might be required for initial epithelial adhesion, but not for

direct induction of cell damage, cytokines or activation of the

epithelial hypha discriminatory response. To test these ideas

Figure 2. Induction of cell damage by C. albicans Dals mutants. C.
albicans yeasts were added to TR146 monolayers and incubated under
standard conditions for 24 h. A fungal:epithelial cell MOI of 0.01 was
used. Cell culture medium was collected and assessed for lactate
dehydrogenase (LDH) release as a measure of epithelial cell damage
induced by C. albicans Dals mutants (A) or the ALS3 reintegrant strain
(B). Data represent mean values 6 SEM and are representative of three
independent experiments. * p,0.05 compared to CAI4. The Dals3 strain
was the only one that showed significantly reduced cell damage
compared to the control. Reintegration of a wild-type ALS3 allele
restored cell damage capability to the strain.
doi:10.1371/journal.pone.0033362.g002

C. albicans Als Proteins in Epithelial Infection
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further, we stimulated TR146 epithelial monolayers with a

purified recombinant portion of the Als3 protein [12]. This

protein, called NT-Als3, includes amino acids 18 to 329 of the

Als3 molecule and has an adhesive function [10]. We predicted

that NT-Als3 would not induce cell damage, cytokine production,

MKP1 phosphorylation or c-Fos because (i) Dals3 activated both

MKP1 phosphorylation and c-Fos similar to the wild-type control

at standard MOIs (Fig. 4) and (ii) damage and cytokine production

were restored by increasing the Dals3 fungal burden (Fig. 5). NT-

Als3 did not induce cytokine production (Fig. 6a), cell damage

(Fig. 6b), MKP1 phosphorylation or c-Fos activation (Fig. 6c)

despite testing multiple concentrations of protein. These data

supported the conclusion that the N-terminal adhesive domain of

Als3 was not responsible for directly activating immune responses

or hyphal discrimination in oral epithelial cells.

Discussion

The goal of this work was to investigate the role of Als proteins

in epithelial adhesion and damage, and cytokine production. We

Figure 3. Cytokine induction by C. albicans Dals mutants. C. albicans yeasts were added to TR146 epithelial cell monolayers and incubated
under standard conditions for 24 h. A fungal:epithelial cell MOI of 0.01 was used. Cell culture medium was collected and cytokine levels measured
using a multiplex microbead assay. Data represent mean values 6 SEM and are representative of three independent experiments. * p,0.05
compared to CAI4. (A) The Dals3 strain was the only one that showed significantly reduced cytokine production compared to the control.
Reintegration of a wild-type ALS3 allele restored the native cytokine production to the strain (B).
doi:10.1371/journal.pone.0033362.g003

C. albicans Als Proteins in Epithelial Infection
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also evaluated whether Als3 is the moiety that mediates activation

of the MAPK-based MKP1/c-Fos signaling pathway. We found

that Als3 makes an important contribution to C. albicans adhesion

to TR146 oral epithelial cells, and subsequent epithelial damage,

and that loss of Als3 results in reduced capacity of C. albicans to

induce epithelial cytokines. The reduction in epithelial damage

and cytokine production observed for the Dals3 strain was rescued

by increasing the fungal burden in association with the epithelial

cells. We found that Dals3 cells are still able to induce MKP1

phosphorylation and c-Fos production, indicating Als3 is not the

target on C. albicans hyphae that mediates discrimination between

the yeast and hyphal form. We also found that the soluble NT

domain of Als3 was not sufficient to induce epithelial damage,

cytokine production, MKP1 phosphorylation or c-Fos production.

The ability of Dals strains to adhere to TR146 cells was studied

previously in a different context. TR146 cells are the same as those

used to produce recombinant human oral epithelium (RHE),

marketed by SkinEthic (www.skinethic.com). The interaction

between individual Dals strains and oral RHE was described in

previous publications [21–24]. The Dals3 strain was noted to have

markedly reduced adhesion relative to the control strain. This

assessment was made microscopically by counting C. albicans cells

adhered to thick sections of the RHE. Using this analysis, the

Dals2/PMal-ALS2 strain also showed decreased adhesion to TR146,

compared with the control. Microscopic inspection of thick

sections also showed decreased RHE destruction by the Dals3

strain, and also by the Dals1 strain at 8 h post-inoculation.

Other assays have drawn conclusions about adhesion of Dals

mutants to epithelial cells. Using freshly collected buccal epithelial

cells (BECs), the Dals3 strain showed significantly reduced

adhesion relative to the control. Unexpectedly, the Dals5, Dals6,

and Dals7 strains showed nearly a two-fold increase in adhesion to

BECs. Phan et al. [33] used a differential fluorescence assay to

identify association between C. albicans and epithelial cells from the

FaDu pharyngeal carcinoma cell line. They concluded that Als3 is

not involved in adhesion to epithelial cells, but is involved in

invasion. In the adhesion assays described here, only the Dals3

strain showed a significant decrease in adhesion, compared with

control strains. Overall, a variety of approaches has been used to

address the role of Als proteins in interactions between C. albicans

and epithelial cells, with some variability in the conclusions.

Undoubtedly, the differing assay configurations, such as whether

yeast cells or germ tubes are inoculated into the assay, assay

timing, and the fungal burden used for each study, contribute to

these differences. Regardless of the differences, the conclusion that

Als3 plays a greater role in epithelial cell interactions than the

remainder of the Als proteins, is consistent across the body of

evidence, and our results further support this conclusion.

These data raise the question of why Als3 has a greater role in

epithelial interactions between C. albicans germ tubes and epithelial

cells than the other Als proteins. Among the possible explanations

are relative Als protein abundance and spatial distribution on the

germ tube, and functional interchangeability between the various

Als proteins. Studies of ALS gene expression provided the first

clues to the possible relative abundance of Als proteins (reviewed

in [7]). Some ALS genes are regulated by large increases and

decreases in transcriptional level, while others are transcribed

consistently at lower levels. ALS3 has a large increase in

transcription when C. albicans yeast cells are placed into growth

conditions that promote hypha formation [34]. Analysis using

Als3-specific monoclonal antibodies visualized the great abun-

dance and broad distribution of Als3 over the entire surface of C.

albicans hyphae [12]. This abundance and distribution promote the

greatest opportunity for contact with epithelial cells, potentially

resulting in the greatest phenotypic effect on adhesion.

Previously, a potential role for Als1 and Als5 in epithelial

adhesion was suggested [35], which seems inconsistent with our

results that demonstrate lack of an adhesive change in C. albicans

strains from which ALS1 or ALS5 were deleted. However, results in

the earlier study were observed for S. cerevisiae strains in which each

ALS gene was overexpressed. The overexpression strains have a

uniform, thick coat of Als protein, unlike the wild-type abundance

and distribution of the Als1 and Als5 on wild-type C. albicans

[36,37]. Understanding the differences in protein presence in each

experimental approach provides consistent conclusions from

seemingly disparate results: Als1 or Als5 can mediate epithelial

cell adhesive interactions, given a sufficient abundance on the cell

surface. These observations further solidify our conclusion that the

greatest phenotypic effect is observed for Als3, because of its

abundance and broad coverage of C. albicans hyphae. Experiments

to address the functional interchangeability of Als proteins have

not been fully explored.

Since adhesion is a prerequisite for invasion and Als3 is also an

invasin, the reduced ability of Dals3 to adhere is sufficient to

account for its significantly reduced ability to cause subsequent cell

damage. Because the Dals3 mutant is able to form normal germ

tubes and hyphae, its inability to adhere and invade epithelial cells

most likely explains why the Dals3 mutant was also unable to

induce cytokines, since cytokine induction requires sustained

adhesion and invasion by hyphae [13,17,18]. This conclusion is

supported by data showing that induction of epithelial damage and

cytokine production could be restored by simply increasing the

fungal burden of Dals3 10-fold (from MOI of 0.01 to 0.1).

Therefore, our data support the notion that a threshold level first

needs to be reached to fully activate epithelial cells and that this

depends on how many cells have initially adhered. Notably, the

lack of invasion by Dals3 at lower MOIs (0.01) also correlates with

the lack of IL-1a production (a cytokine associated with cell

damage), which again could be restored by increasing the fungal

burden of Dals3 10-fold (to MOI of 0.1).

Recently, we found that epithelial cells are strongly activated by

C. albicans hyphae via a MAPK-based mechanism constituting

MKP1 phosphorylation and c-Fos activation, contributing to

cytokine production and associated with cell damage [16] thus

initiating a ‘danger response’. It is known that C. albicans entry into

epithelial cells via induced endocytosis is mediated via E-cadherin

through a mechanism that is actin-dependent and requiring

Figure 4. Activation of MKP1 and c-Fos signaling by C. albicans
Dals mutants. C. albicans yeasts were added to TR146 oral epithelial
cell monolayers and incubated under standard conditions for 2 h.
Results from a fungal:epithelial cell MOI of 10 are shown here. Epithelial
cell lysates were separated by SDS-PAGE and Western blotted to detect
MKP1, c-Fos or a-actin (positive control). Data are representative of four
independent experiments. There was no difference in MKP1 or c-Fos
between control C. albicans strains (SC5314 and CAI4) and the Dals
mutants.
doi:10.1371/journal.pone.0033362.g004
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clathrin [38]. Therefore, although the predominant function of

Als3 is to mediate epithelial adherence and entry, we hypothesized

that once inside the epithelial cells Als3 may trigger the epithelial

cell danger response mechanism (specifically MKP1 phosphory-

lation and c-Fos production), thus enabling epithelial cells to

discriminate between the yeast and hyphal form. However, the

Dals3 mutant was able to induce MKP1 phosphorylation and c-

Fos equally as well as wild-type/parent cells whilst NT-Als3 was

Figure 5. Adhesion, cell damage, cytokine production and activation of MKP1 and c-Fos by C. albicans Dals3 at different MOIs. C.
albicans CAI4 yeast cells (200 cfu) and C. albicans Dals3mutant yeast cells (200 cfu - low dose or 300 cfu - high dose) were added to TR146
monolayers and incubated for 90 min to determine the number of colonies and the percentage of adherence (A). C. albicans Dals3 mutant, the
parent strain CAI4 and wild-type strain SC5314 were added to TR146 oral epithelial cells under standard culture conditions for 2 h or 24 h at a
fungal:epithelial cell MOI ranging between 0.01 and 10. Induction of cell damage assessed by LDH release (B) and the production of cytokines by
multiplex microbead assay (luminex) (C) were assayed in the cell culture medium supernatants at 24 h. (D) Induction of MKP1 phosphorylation and
c-Fos at 2 h (MOI of 1). Data represent mean values 6 SEM and are representative of duplicate experiments. * p,0.05 compared to CAI4.
doi:10.1371/journal.pone.0033362.g005

Figure 6. Stimulation of oral epithelial cells with NT-Als3 recombinant protein. Different concentrations of NT-Als3 ranging from 0.3–
10 mg/ml and wild-type strain SC5314 were applied to TR146 oral epithelial cells and incubated at 37uC in 5% CO2 for 24 h (A, B) or 2 h (C) as
described in Materials and Methods. Cell culture medium was collected and assessed for production of cytokines (A) and LDH release (B). (C) Total
protein was isolated and induction of MKP1 phosphorylation and c-Fos assessed. Bands are shown relative to a-actin loading control. SC5314 was
used in all assays at a fungal:epithelial cell MOI of 0.01 (A, B) or 10 (C). Data represent mean values 6 SEM and are representative of duplicate
experiments. * p,0.05; ** p,0.01 compared to SC5314.
doi:10.1371/journal.pone.0033362.g006
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unable to directly induce MKP1 phosphorylation or c-Fos. These

data indicate that Als3 does not activate the yeast-hyphal

discriminatory signaling response in oral epithelial cells and that

its role is most likely confined to promoting C. albicans adhesion

and to mediating initial invasion of C. albicans via induced

endocytosis. However, we note that these conclusions are based in

part on NT-Als3 (albeit supported by the Dals3 data), so we cannot

exclude that other regions of the Als3 protein may be involved in

epithelial cell activation through other indirect mechanisms.

Additional investigations are underway to identify the C. albicans

hypha factor that mediates activation of the MAPK-based MKP1/

c-Fos signaling pathway.
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