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Abstract

Dissection of host-pathogen interactions is important for both understanding the pathogenesis of infectious diseases and
developing therapeutics for the infectious diseases like various infectious keratitis. To enhance the knowledge about
pathogenesis infectious keratitis, a random 12-mer peptide phage display library was screened against cultured human
corneal epithelial cells (HCEC). Fourteen sequences were obtained and BLASTp analysis showed that most of their
homologue counterparts in GenBank were for defined or putative proteins in various pathogens. Based on known or
predicted functions of the homologue proteins, ten synthetic peptides (Pc-A to Pc-J) were measured for their affinity to bind
cells and their potential efficacy to interfere with pathogen adhesion to the cells. Besides binding to HCEC, most of them
also bound to human corneal stromal cells and umbilical endothelial cells to different extents. When added to HCEC culture,
the peptides induced expression of MyD88 and IL-17 in HCEC, and the stimulated cell culture medium showed fungicidal
potency to various extents. While peptides Pc-C and Pc-E inhibited Aspergillus fumigatus (A.f) adhesion to HCEC in a dose-
dependent manner, the similar inhibition ability of peptides Pc-A and Pc-B required presence of their homologue ligand
Alb1p on A.f. When utilized in an eyeball organ culture model and an in vivo A.f keratitis model established in mouse, Pc-C
and Pc-E inhibited fungal adhesion to corneas, hence decreased corneal disruption caused by inflammatory infiltration.
Affinity pull-down of HCEC membrane proteins with peptide Pc-C revealed several molecules as potential receptors for this
peptide. In conclusion, besides proving that phage display-selected peptides could be utilized to interfere with adhesion of
pathogens to host cells, hence could be exploited for managing infectious diseases including infectious keratitis, we also
proposed that the phage display technique and the resultant peptides could be used to explore host-pathogen interactions
at molecular levels.
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Introduction

Infectious keratitis (IKs) is a large group of vision-threatening

diseases caused by infections of corneas with various pathogens

like bacteria, fungi, acanthamoeba, virus, and multi-cell parasites

such as onchocerca volvulus. If not controlled properly, IKs can lead

to the loss of sight in the infected eye, or enucleation is required for

controlling infection [1]. The spectrum of pathogens causing IKs

varies with time and geometry [2], but fungal keratitis (FK)

dominates among hospitalized IK patients in developing countries

like China [3,4]. Compared to the well-formed studies involving

viral or bacterial keratitis, the pathogenesis of FK is less clear and

much of the current knowledge about the mechanisms of FK is

simply adopted from studies on fungal infection in other tissues

[5]. For most tissues with open surfaces accessible to microbes,

adhesion of microbes to the epithelial or endothelial cells is usually

the first step for establishment of a commensal or a pathogenic

relationship [6,7]; this might be mediated by the binding of

pathogen ligands to host receptors. This initial adhesion usually

activates or changes the status of both host cells and pathogens,

leading to cross-talk in the form of either cellular surface ligand-

receptor coupling or secretion of soluble mediators. Often several

ligand-receptor pairs or communication types are involved in the

host-pathogen interactions, and result in removal of pathogens,

sometimes accompanied with destructive outcome in the affected

tissues. Theoretically, interfering with the ligand-receptor coupling

by the simulation of ligands or receptors might block pathogen

invasion, and thus serves as a good strategy for prevention or

treatment of infection especially in the early stage. Some host

extracellular matrix components like types I and IV collagens,

fibronectin, and basement membrane laminin have been proposed

to mediate host-pathogen binding, but the molecules on the

pathogen surface have still to be identified [8–11]. Furthermore, in

the case of FK, the molecules on the corneas that are bound by

pathogens are unclear as well.

On the other hand, phage display (PhD) [12–14] has been

proven to be powerful for studying protein-protein or protein-

tissue interactions [15]. In the area of host-pathogen interaction,
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PhD has been successfully used for discovering new pathogen

ligands that bind host receptors during the adhesion stage [16–18].

For example, the PhD peptide library was widely used for

determining the functional cell-specific binding motifs of mammal

cells [19–21] and pathogens [18,22], and a 23-mer peptide

containing the cell binding domain effectively inhibited the

adherence of Candida albicans to extracellular matrix proteins

[23]. In an attempt to dissect the mechanisms of IK, we used PhD

to screen for peptides that bind human corneal epithelial cells

(HCEC). Theoretically, these peptides could be used in two ways.

First their sequences could be used for identifying potential

pathogen ligands that are homologue to these peptides thus also

bind HCEC. Second, these peptides, together with their

homologue ligands, could be used for identifying host receptors.

The peptides might also be used for translational purposes, such as

blocking the adhesion of corresponding pathogens to the host and,

in situations that binding of peptides or putative pathogen ligands

to host cells induces protective responses, the corresponding

peptides might also work as substitutes to induce this protective

effect. Hence, we studied the effect of the resultant peptides using

pathogen adhesion models at in vitro, ex vivo and in vivo levels

respectively, and proved the feasibility and usefulness of this

strategy.

Results

PhD selected peptide sequences and BLAST analysis
After three rounds of bio-panning starting from the 12-mer PhD

peptide library against cultured HCEC lines, 40 phage infected

bacteria clones were randomly selected for sequencing, and 14

different DNA sequences were identified (Table 1, Table S1). Each

of the selected phages showed increased affinity for HCEC as

confirmed with the ELISA method (Fig. 1A). Homology analysis of

the corresponding 12-mer peptide sequences peptide with

GenBank data was carried out using the online NCBI BLASTP

program without limiting the species resources. Surprisingly, the

dominant majority of the homologue sequences retrieved for each

peptide was for proteins in various pathogens like fungi, bacteria,

and to lesser extent, virus (Table S2). Very few of the returning

homologue proteins were from vertebrate species. Among these

homologues, some were well-defined proteins with formal

nomenclature, while others were classified only as hypothetical

or putative proteins. When the top 100 homologues with the

highest alignment scores in Aspergullus fumigatus (A.f) for each of the

14 peptides were combined and subjected to annotation and

clustering analysis with the Database for the Annotation,

Visualization, and Integrated Discovery (DAVID, v6.7) program,

most of the genes are involved in metabolism or meiosis pathways

(Table S3). Some representatives of the homologue sequences in

A.f proteins relating to these 14 peptides are listed in Table 1. It is

noteworthy that Pc-A and Pc-B were homologue to different parts

of polyketide synthase Alb1p (ACJ13039), an enzyme important in

determining the virulence of A.f [24,25]. Since A.f is among the

leading causes of FK in many parts of the world, we focused our

following experimental studies on this model pathogen. Based on

the judgment on the potential roles of homologue proteins in A.f,

ten peptides (Pc-A to Pc-J) were synthesized for functional studies.

Adhesion of peptides to cells depends on peptide
sequence and cell types

Whole-cell ELISA was first performed to assess the binding

affinity and specificity of the synthetic peptides to HCEC and two

other cell lines, namely human corneal stromal fibroblast cells

(HTK cell line) and human umbilical vascular endothelial cells

(HUVEC). Besides confirming the different affinity for HCEC,

results showed that the peptides also bound HTK and HUVEC to

various extents (Fig. 1B). For example, while Pc-C and Pc-D

produced similar binding to all three cells respectively, Pc-B and

Pc-E showed significantly higher binding to HTK than to HCEC

or HUVEC. These facts implied that the actual binding of the

peptides depended not only on peptide sequences, but also on the

type of the target cells.

Adhesion of peptides to HCEC activates cytokines
production

Homology with pathogen proteins involved in host-pathogen

interaction might award the peptides ability to stimulate HCEC

via their putative receptors on cells. To track whether HCEC

initiated any protective or inflammatory response upon encoun-

tering peptides, the toll-like receptor-signaling pathway adaptor

MyD88 (NM_002468) and the inflammatory cytokines IL-6

(NM_000600), IL-8 (NM_000584), IL-17 (NM_002190) were

measured using real-time PCR for their expression in HCEC.

Fig. 2 shows that the cells responded to peptide treatment

differentially. In detail, one hour after treatment with peptides, Pc-

D stimulated the highest IL-17 production and Pc-E stimulated

the most IL-6 and IL-8 production among all peptides (Fig. 2A).

By four hours of treatment, the production of cytokines stimulated

by Pc-E did not appreciatively change, but IL-17 production

stimulated by Pc-B, Pc-C, and Pc-D was much higher (Fig. 2B).

The study also tested whether the peptide-stimulated HCEC

produced any fungicidal factors into the medium. By measuring

the survival or growth of A.f in vitro, it was shown that the

supernatants obtained from Pc-E stimulation displayed the highest

fungicidal activity on A.f conidia (Fig. 2C, D), followed by Pc-C,

Pc-D, Pc-G, Pc-A and Pc-H respectively. The culture medium

containing only peptides without cells had no effect on fungal

growth (Fig. 2C, D, and data not shown). It is noteworthy that the

relative efficacy of each peptide to activate HCEC depends on the

readouts of interest. For example, both Pc-C and Pc-D induced

more upregulation of IL-17 production versus IL-6, but Pc-G

induced more IL-6 versus IL-17. Together with the complexity of

the induced antifungal effect of different peptides, these data

implied that the peptides may activate HCEC via different

receptors.

Peptides inhibited A. fumigatus adherence to HCEC
Since the pathogen proteins homologue to the peptides might

participate in host-pathogen interactions, we next studied if the

PhD peptides interfere with fungal adherence to HCEC. Fig. 3A

shows that pretreatment of HCEC with peptides inhibited A.f

adherence to HCEC to different extents. The inhibitory effects of

Pc-C and Pc-E were especially prominent, either by CFU assay or

by direct observation under a microscope of the fungi attached to

HCEC (Fig. 3B). Moreover, the inhibition of A.f adherence by Pc-

C and Pc-E showed a dose-effect relationship, with the IC50 of Pc-

C and Pc-E being about 4.79 mM and 3.02 mM respectively

(Fig. 3C). So we chose Pc-C and Pc-E for following studies.

Low cytotoxicity of peptides Pc-C and Pc-E on HCEC
culture

To detect whether the peptides were safe for potential

therapeutic use like in FK management, we measured the effect

of Pc-C and Pc-E on HCEC survival. The activation of HCEC

upon peptide stimulation did not cause obvious change in the

appearance or growing pattern of the cells. MTT assay of the cells

showed that peptide Pc-C up to 100 mM did not show any
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cytotoxicity to HCEC (Fig. 4A). On the contrary, 0.1 mM Pc-C

slightly enhanced HCEC proliferation (P = 0.003). With Pc-E,

however, significant cytotoxicity was detected at a concentration of

100 mM (P,0.001), but not at lower concentrations. For

comparison, Fig. 4B shows that the cytotoxicity of 100 mM Pc-E

to HCEC culture was significantly lower than that of 0.01%

Benzalkonium Bromide (P,0.001), a usual concentration of this

common preservative used in various eye drops. But more

extensive studies will be necessary before a conclusion could be

reached concerning the in vivo safety or toxicity of these peptides.

Table 1. Peptide sequences that bind HCEC and show homologue to A. fumigatus proteins.

Peptide code and sequence
Description of homologue Aspergillus
fumigatus sequence of interest

Pc-A: ATKVKIPFEAKV ACJ13039: polyketide synthase Alb1p

(CACCTTCGCCTCAAAAGGAATCTTCACCTTAGTAGC) EDP49269 :NACHT and Ankyrin domain protein

EDP47502 :HATPase_c domain protein, putative

EDP50664: glutamine synthetase

Pc-B: VATPVPPTLTPF ACJ13039: polyketide synthase Alb1p

(AATCGGAGTCAGAGTCGGCGGAACCGGCGTCGCAAC) XP_749784: hypothetical protein
AFUA_1G00320

EDP47447: sodium transporting ATPase,
putative

Pc-C: ATLRTYPYMDRA XP_749787: cell surface metalloreductase,
putative

(AGCCCGATCCATATAAGGATACGTACGCAGCGTAGC) XP_750165: aspartate aminotransferase,
putative

EDP54828: bifunctional tryptophan synthase
TRPB

Pc-D: QLAPMATHDKHP XP_746369: antigenic cell wall
galactomannoprotein, putative

(CGGATGCTTATCATGAGTAGCCATCGGAGCAAGCTG) XP_751254: MFS multidrug transporter

Pc-E: YALRPGMPQWLE XP_750173: endo-1,3-beta-glucanase Engl1

(AGCACGCGTAGGATTAGGAAACGGCGACTCCGCATG) EDP50333: ZIP Zinc transporter, putative

EDP53374: MFS multidrug transporter, putative

XP_747279: oligopeptidase family protein

Pc-F: TPPTYSWFTHRM XP_751660: Leucine rich repeat domain protein

(CTCAAGCCACTGCGGCATACCAGGCCTCAACGCATA) XP_746913: Putative polyketide synthase

XP_754859: exo-beta-1,3-glucanase, putative

Pc-G: GSATNPTMGQRM EDP54833: hypothetical protein AFUB_028930

(CGCAATAGACGAATTCGAATGCAAAGTAATCTTATT) XP_001481671: GYF domain protein

XP_747950: alpha-1,3-glucanase

Pc-H: AETHVLNKHTPL XP_752425: GPI anchored protein, putative

(ACGCCGCCTACGTATTCTTGGTTTACTCATCGTATG) XP_747678: GAS2 domain protein

Pc-I: HSSSHWSWSTPL XP_753005: MFS hexose transporter, putative

(GGTTCGGCTACTAATCCGACGATGGGTCAGCGGATG) XP_750940: 3-oxoacyl-acyl carrier protein
reductase

Pc-J: NMRLLANPAMAG XP_747167: polyketide synthase

(GCTGAGACGCATGTTCTGAATAAGCATACTCCGCTG) XP_752055: clathrin heavy chain

Pc-K: QIPAQNRLVFLT XP_750702: checkpoint protein kinase (SldA),
putative

(CGTCAAAAACACCAGACGATTCTGCGCAGGAATCTG) XP_749268: Potassium/sodium P-type ATPase

Pc-L: VPGWDSHNARHQ XP_746960: MFS transporter, putative

(CTAATGCCGCGCATTATGACTATCCCAACCAGGCAC)

Pc-M: HAESPFPNPTRA XP_749029: Conserved hypothetical protein

(AGCACGCGTAGGATTAGGAAACGGCGACTCCGCATG) XP_746882: ABC multidrug transporter, putative

Pc-N: NKITLHSNSSIA XP_749340: peptidyl-prolyl cis-trans isomerase
Cpr7

(CGCAATAGACGAATTCGAATGCAAAGTAATCTTATT) XP_755784: conserved hypothetical protein

doi:10.1371/journal.pone.0033578.t001
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Peptides protected corneas from infection of A. fumigatus
in ex vivo and in vivo FK models

Next, the study examined whether Pc-C and Pc-E interfere with

the infection of corneas when exposed to A.f at organ levels using

ex vivo or in vivo FK models. Fig. 5 shows that peptide Pc-C and Pc-

E significantly inhibited A.f conidia adherence to corneas by 2,3

fold in both excised eyeball culture (ex vivo) and live Balb/c mice (in

vivo). In both models, Pc-C showed stronger inhibitory effects than

Pc-E, and the effect of Pc-C at the applied dosage was comparable

to that of 5% Natamycin Eye Drops (with benzalkonium chloride

0.02%), an antifungal chemical used in clinical practice. Confocal

microscope scanning of whole corneas showed that Pc-C and Pc-E

decreased fungal adhesion to corneas but that Natamycin Eye

Drops did not (Fig. 5C), confirming that peptides and Natamycin

inhibit infection via different mechanisms. In the ex vivo FK model,

other two peptides pBSA and Pc-F were also assayed along with

Pc-C, and they displayed no significant inhibitory effect on A.f

adherence to corneas (Figure 5 D).

To study whether the blockade of A.f adherence to corneal cells

could decrease disease development, the peptides were applied to

the scratched and inoculated corneas of Balb/c mice, and it was

found that treatment of corneas with peptide Pc-C or Pc-E around

infection significantly decreased the disease scores at day 3 and day

5 post infection when compared with mock treated eyes (Fig. 6A,

B). However, neither of the two peptides reached the high

therapeutic effects of Natamycin. For example, at 3 days post

infection, dense corneal opacity obscured anterior chamber details

in mock treated eyes, while lighter corneal opacity occurred in

peptide Pc-C- or Pc-E-treated groups, but the transparency of the

corneas was marginally affected in Natamycin treated eyes

(Fig. 6A). The quantities of A.f recovered from Pc-C- or Pc-E-

treated corneas were significantly less than that recovered from the

Figure 1. Selected monoclonal phages or synthesized peptides show increased affinity for cells. (A) Representatives of the selected
monoclonal phages (Pcp-1 to Pcp-10) showed increased affinity for HCEC over starting mixed phage library (PhD-12). For ELISA measurement of
binding affinity of phages, confluent monolayer HCEC were incubated with 1012 PFU amplified phages for 1 hour after blocking with BSA. HRP-
conjugated anti-M13 antibody was added for another 1 hour, and then tetramethyl benzidine was added for coloration. (B) Adhesion of
representative peptides to cells depends on peptide sequence and cell types. The affinity of each of the 100 mM synthesized peptides for binding
cells, including HCEC, HTK and HUVEC, is different by ELISA assay. Culture medium without any peptides was used as control.
doi:10.1371/journal.pone.0033578.g001
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mock-treated control at day 1 and 3 but were higher than that of

Natamycin-treated corneas (Fig. 6C). Histopathologic studies at 3

days post infection showed that the inflammatory cell infiltration

and edema in Pc-C- or Pc-E-treated corneas were much less than

that in mock treated corneas. Corneas treated with Natamycin did

not show obvious histological alteration compared with normal

corneas (Fig. 6D). Collectively, these findings proved that Pc-C

and Pc-E peptides moderately inhibited FK in vivo at the studied

dosage.

Combinational use of peptides decreased Natamycin
dosage required for inhibition of A. fumigatus growth

Since peptides and Natamycin inhibit infection of A.f to corneal

cells at different stages, supplemental use of peptides with

Natamycin might achieve better inhibition or decrease the

required dose of Natamycin. Using the in vitro minimum inhibitory

concentration (MIC) assay in the infection model of HCEC, it was

found that 1 mM of peptides Pc-C or Pc-E could effectively

decrease the MIC of Natamycin (Fig. 7). Increasing the Pc-E

concentration to 100 mM could further decrease Natamycin MIC.

The additional or synergistic effect of peptides and Natamycin was

not tried in this study.

Identification of Alb1p as possible pathogen ligand that
bind HCEC

To further validate the hypothesis that PhD peptides might be

used as the first step for identification of pathogen ligands that

responsible for adhesion to host cells, we studied the effects of Pc-A

and Pc-B (Table 1) on the binding of wild type or Alb1p deficient

strains of A.f to HCEC. Like Pc-C and Pc-E as demonstrated

above, both Pc-A and Pc-B peptides significantly inhibit wild-type

A.f adherence to HCEC (Fig. 8A) and corneas of cultured eyeballs

(Fig. 8B). Just like reported with other adhesion models [24], the

adhesion of Alb1p-deficient mutant to HCEC and Balb/c corneal

epithelium were significantly decreased compared with that of the

wild type strain (Fig. 8). However, neither Pc-A, Pc-B nor their

combination could further decrease the adhesion of mutant A.f to

HCEC or ex vivo murine corneas, suggesting that Alb1p is required

both for wild-type A.f to bind corneal cells and for inhibitory effects

of its homologue peptides on wide type conidia binding.

Figure 2. Adhesions of peptides to HCEC activate production of cytokines and fungicidal factors. (A–B) Cytokines expression is changed
in HCEC stimulated by different peptides for 1 hour (A) and 4 hours (B). After HCEC incubated with 100 mM peptides for 1 hour, Pc-D stimulated the
highest IL-17 production and Pc-E stimulated the most IL-6 and IL-8 production. After 4 hours incubation, IL-17 production stimulated by Pc-B, Pc-C,
and Pc-D was much higher, and production of MyD88, stimulated by Pc-E, was obviously increased in 7 peptides. (C–D) Measurement of the effect of
supernatant obtained from peptides-treated HCEC culture on survival of A.f. 56105 CFU conidia were seeded into 96 well plates and the supernatants
obtained from HCEC, stimulated with 100 mM peptides for 1 hour, were added for 2 hours incubation at 33uC. Dead cells were detected under
confocal microscope after PI staining (C), and the fungicidal rate of each peptide to A.f was calculated (D). Supernatant from Pc-E-stimulated HCEC
displayed the highest fungicidal activity on A.f, but medium contain the pure Pc-E had no effect on conidia survival.
doi:10.1371/journal.pone.0033578.g002
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Identification of HCEC membrane proteins interacting
with peptide Pc-C

Lastly we tried to understand the potential receptors on HCEC

membrane that bind the peptides of interest. Pulling-down of

HCEC membrane proteins using peptide Pc-C as anchor followed

by LC-MS/MS analysis of the resulting protein preparations

revealed seven molecules as promising candidates in this model

(Table 2).

Discussion

This study used the PhD library screening technique to identify

peptides that bind to HCEC surfaces, and confirmed their ability

to inhibit A.f conidia adherence to corneal epithelial cells in

different models. To the best of the authors’ knowledge, this is only

the second report to use PhD strategies in ocular infection studies.

Tiwari et al performed PhD screening against heparan sulfate, a

molecule that mediates herpes virus infection [26], and used the

resulting peptides to effectively manage experimental herpes virus

infection of the corneas [27]. The current study used whole

corneal epithelial cells as starting targets, providing a more flexible

and informative platform for building a panorama of the host-

pathogen interactions than those studies using simple target

molecules such as extracelluar matrix components [28], host cell

surface receptors [29], or protein complex [30].

The significance of the current study is related to the following

aspects. First, it directly showed that the PhD-selected peptides

could be used as a supportive therapy for managing corneal

infections by blocking the binding sites on corneal epithelial cells

that otherwise would be bound by pathogens. Due to the

complexity of ligand-receptor pairs involved in host-pathogen

interactions, the affinities of peptides for HCEC are not necessarily

always in good proportion to their efficacies to inhibit pathogen

binding to HCEC. This might help to explain the observation that

Pc-C and Pc-E had similar inhibitory effects on A.f binding to

HCEC (Fig. 3) but displayed different inhibitory efficacies on A.f

adhesion to cornea in both ex vivo and in vivo models (Fig. 5). If

more than one ligand-receptor pair should be involved in the host-

pathogen crosstalk, the relative contribution of each ligand-

receptor pair to the total host-pathogen adhesion force should be

different from each other. Other factors, such as the species

difference of HCEC (human) and animal corneas (murine), or

certain constituents like extracellular matrix proteins that are

present in whole corneas but absent in HCEC cultures, may also

contribute to the differential effects of peptides on HCEC and in

vivo models.

Besides blocking host-pathogen adhesion, the ability of the PhD

peptides to stimulate host cell cytokines and fungicidal factors

production might also be beneficial for anti-fungal response

although this study did not pursue along this direction. IL-6 or IL-

8 might be involved in the directed killing of A.f, but other factors

should play dominant roles in such activity since the fungicidal

activity detected in culture medium did not correlate with IL-6 or

IL-8 production (Fig. 2). Recent years have seen much progress on

Figure 3. Peptides display inhibitory effect on Aspergillus adherence to HCEC. (A) Pretreatment of HCEC with 10 peptides inhibit A.f
adherence to HCEC to different extents. HCEC were incubated with 500 mL of 100 mM screened peptides for 1 hour, followed by inoculation with 107

CFU A.f conidia for another 1 hour at 37uC. The cells were lysed and spread on plates for 48 hours of culture; then the number of colonies was
counted. (B) Pc-C and Pc-E inhibited conidia of A.f adherence to HCEC. The adhered fungal conidia were directly detected under a confocal
microscope after staining with Calcofluor White for 5 min. (C) Pc-C and Pc-E inhibited A.f adherence to HCEC. Different concentrations (0, 0.01, 0.1, 1,
10, and 100 mM) of peptide Pc-C and Pc-E were used for inhibitory assay of A.f adherence to HCEC. Medium containing not any peptides was used
control.
doi:10.1371/journal.pone.0033578.g003
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dissecting host-pathogen interactions through studies on receptors

that recognize various pathogens associated molecular patterns

(PAMP), such as Toll-like receptors (TLR). Since MyD88 is critical

for the generation of infectious keratitis via mediating TLR

signaling [31–34], increased expression of MyD88 in peptides-

treated HCEC suggests that TLRs pathways might also be

involved in the response to these PhD peptides. Quick and

abundant upregulation of IL-17 expression in HCEC upon

peptide treatment was in line with the previous report that various

stress stimuli induced IL-17 induction by HCEC [35]. In the light

of IL-17’s pathogenic roles in keratitis [36,37], the contribution of

peptide-induced cellular responses to the overall pathogenesis of

FK deserves further investigation.

When interpreting the results of peptides binding to cells and

designing potential applications for the peptides, the relative

binding specificity of the peptides for various cell types should be

considered. Though the peptides were obtained by selecting

against HCEC, some of them also bind HTK and HUVEC cells

to various extents (Fig. 1B), suggesting that the affinity of each

peptide depends on the target cell type. Thus, the potential

usefulness of these peptides in treating infections in other tissues

(like intestine or bronchial epithelium) should be investigated. The

high affinity of Pc-B and Pc-E for HTK suggests that they might

be used for preventing pathogen binding to corneal stromal cells as

well. Similarly, although the current infection models used only

A.f, the possible efficacy of these peptides for preventing infections

of other pathogens could not be excluded. For example, besides

being homologue to Alb1p, Pc-B (VATPVPPTLTPF) is highly

homologue to Flagellin E (YP_001349650, homologue site at

aa168–174 PPTVTPF, score 22.3) of Pseudomonas (P.) aeruginosa.

Pc-F was also homologue to Flagellin E at aa303–309

(TPPTYAW, homologue score 25.7). Similarly, Pc-D and Pc-I

were homologue to different parts of a putative branched-chain

amino acid transport protein AzlC of P. aeruginosa (YP_002440872)

at aa15–21 (APMTAHD, score 20.2) and aa218–226

(SHWQWSSAL, score 23.1) respectively. These results implied

that the obtained peptide sequences might also have biological

significance in P. aeruginosa or other herein unmentioned

pathogens. Studies in this direction will not only reveal whether

such peptides could be utilized for interfering with P. aeruginosa

adhesion to HCEC, but also provide clues for studying the

functions of putative proteins such as PA15_29901 and AzlC.

Surely, caution has to be taken when applying the current

observations to any pathogens or any host cells, since it has been

clearly shown that the response of hosts depends on the type of

pathogens, encountering cells, or even the routes for them to

encounter each other [38].

Lastly, the primary result of the pulling-down assay with Pc-C

demonstrated the potential power of PhD selected peptides for

identifying host receptors. Though none of the revealed binding

proteins (Table 2) belongs to the traditional pathogen-binding

cellular receptors like TLRs, sequence analysis showed that some if

not all of them are potential partners for binding exogenous

ligands (peptides in this case). For example, among the total 805

amino acid (aa) length of 2NVY_B, the amino section (aa.3,376)

is 99% (367aa/374aa) identical to ‘‘Chain A, Crystal Structure Of

Human Crfr2 Alpha Extracellular Domain In Complex With

Urocortin 3’’, a well-recognized receptor mediating stress response

[39]. Similarly, recent studies demonstrated that Rab7 in shrimp

functions as the receptor for certain virus [40], and alpha-tubulin

binds peptidoglycan during bacterial infection [41]. On the

pathogen side, the fact that both Pc-A and Pc-B are homologue

of two different parts of a same protein (e.g. Alb1p) is very

suggestive, and the results that Pc-A and Pc-B blocked binding of

wild-type but not Alb1p-deficient A. fumigaturs to HCEC or corneas

are confirmative. Though localization of Alb1p in cells is not

documented elsewhere, the current study and its involvement in

cell wall formation [24,25] imply that it might be localized in the

cellular membrane or cell wall and is directly involved in host-

pathogen interactions, but this need verification with other more

intensive methodology.

In summary, this study provided evidence to support that PhD

could be utilized for studying host-pathogen interactions, espe-

cially at the adhesion stage, and for developing prophylactic agents

for infectious diseases. While the main body of knowledge about

host responses to pathogens has been obtained by looking at well-

identified individual receptors, PhD-selection against intact cells

greatly increases the chance to identify novel receptors on hosts,

novel ligands on pathogens, and novel pathways among them. As

such, progress toward further understanding host-pathogen

interactions and toward developing therapeutics for infectious

diseases will be accelerated.

Materials and Methods

Ethic statement
All animal experiments were carried out in accordance with

The Chinese Ministry of Science and Technology Guidelines on

the Humane Treatment of Laboratory Animals (vGKFCZ-2006-

398) and the Association for Research in Vision and Ophthal-

mology (ARVO) Statement for the Use of Animals in Ophthalmic

Figure 4. Cytotoxicity of Pc-C and Pc-E to HCEC by MTT assay.
(A) No cytotoxicity of Pc-C to HCEC was detected at any concentration;
0.1 mM Pc-C slightly but significantly enhanced HCEC proliferation
(P,0.05), while significant cytotoxicity of Pc-E was detected at a
concentration of 100 mM (P,0.05). HCEC were incubated in medium
with peptide (0, 0.01, 0.1, 1, 10, 100 mM) for 72 hours, followed by
4 hours incubation with MTT. (B) The cytotoxicity of 100 mM Pc-E to
HCEC was significantly lower than that of 0.01% Benzalkonium Bromide
(BB) (P,0.05).
doi:10.1371/journal.pone.0033578.g004
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and Vision Research. This study and all protocols concerning

animals were approved by the Shandong Eye Institute Review

Board with a permit number SEIRB-2009-2009CB526506.

Cells, fungal strains, and culture conditions
SV40-immortalized human corneal epithelial cell (HCEC) line

(ATCC CRL-11135) was cultured in Dulbecco’s modified Eagle’s

medium (DMEM)/F12 medium with 10% heat-inactivated fetal

bovine serum (FBS) (Invitrogen, Carlsbad, CA, USA) at 37uC, in a

humidified atmosphere of 5% CO2/95% air. The telomerase-

immortalized human corneal stromal fibroblasts (HTK cell line), a

kind gift of Dr. Jester [42], and human umbilical vascular

endothelial cells (HUVEC) were maintained in DMEM supple-

mented with 10% FBS. A standardized wild type A.f strain

CGMCC 3.772, purchased from China General Microbiologic

Culture Collection Center (Beijing, China), was used in all

experiment if not specified else wise. A.f strains B-5233 (a clinical

isolate) and B-5233/RGD12-8 (an alb1 disruptant with deficient of

nucleotide 2503 to 4070 in polyketide synthase alb1 gene) were gift

of Dr. Kwon-Chung [25]. For preparing conidia, all A.f strains were

cultured on Sabouraud’s agar (Haibo, Qingdao, China) at 28uC for

5 days, and the fungal conidia were harvested into sterile saline

solutions, which were then adjusted to the proper concentrations.

Panning of the phage-displayed peptide library against
HCEC

Ph.D.-12TM phage display library (New England Biolabs,

Beverly, MA, USA) containing 12-mer random peptides fused to

the amino terminus of the minor envelope protein pIII was

panned against cultured HCEC layers according to previously

published protocols [43,44]. Briefly, HCEC were grown to 80–

90% confluence in 60 mm cell culture dishes. After starving in

serum-free DMEM/F12 for 2 hours at 37uC, the cells were

incubated for 1 hour with 2 mL of phage mixture containing

Figure 5. Peptides inhibit A. fumigatus adherence to corneas in ex vivo and in vivo. (A–B) Peptide Pc-C and Pc-E significantly inhibited A.f
conidia adherence to corneas in both eyeball culture (A) and live Balb/c mice (B). In the ex vivo model, corneal epithelia were scarified, and in the in
vivo model, the corneal epithelia were blotted with paper as detailed in the Method section. In both conditions, 100 mM peptide Pc-C or Pc-E was
added to the corneal surface for 1 hour, followed by inoculation with 107 CFU A.f conidia for another 1 hour. Then the eyes were washed and the
corneas were excised and homogenated by ultrasonication. The samples were spread on plates and cultured for 48 hours. The fungal colonies were
counted. Pc-C showed stronger inhibitory effects than Pc-E, and the effect of Pc-C was comparable to that of Natamycin Eye Drops. (C) Fungal conidia
on the corneal surface in an in vivo model were detected by confocal microscope after staining with Calcofluor White. Pc-C and Pc-E decreased fungal
adhesion to corneas but Natamycin Eye Drops did not. (D) Other two peptides pBSA and Pc-F were also assayed along with Pc-C in ex vivo model, but
neither of them displayed any significant inhibitory effect on A.f adherence to corneas.
doi:10.1371/journal.pone.0033578.g005
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461010 PFU phages in 0.5% BSA-PBS. After removal of the

phage solution, the cells were rinsed six times with 2 mL 0.5%

BSA-PBS supplemented with 0.1% Tween-20 (PBST), followed by

a 10 min elution with 1 mL of 0.1 M glycine–HCl (pH 2.2). The

cells lysate, now containing bound phages and referred to as sub-

library, were harvested into Eppendorf tubes and neutralized with

150 mL 1 M Tris–Cl (pH 9.1). The sub-library was incubated with

the Escherichia coli strain ER2738 from the Ph.D. -12TM PhD

library kit for amplification and titration according to the kit

protocol. The amplified sub-library was subjected to 2 more

rounds of panning. After the third round of panning, any

nonspecific binding phages, namely those that bind either plastic

surfaces or the blocking solution components, were removed by

culturing the recovered phage mixture for 1 hour at 37uC in a

plate that was pre-blocked with 0.5% BSA but contained no cells.

The isolation of the specific phages in the supernatant was carried

out during the following titration.

Phage DNA sequencing, bioinformatics analysis, and
synthesize of peptides

The selected phages were precipitated with PEG/NaCl after

amplification, and single-stranded phage DNA was prepared for

sequencing. Briefly, the phage precipitation was lysed with iodide

buffer (4 M NaI, l0 mM Tris-HCl, 1 mM EDTA, pH 8.0) and the

DNA was precipitated with ethanol, washed with ice cold 70%

ethanol, and then re-suspended in TE (l0 mM Tris-HCl. 1 mM

EDTA, pH 8.0). DNA sequencing for the displayed peptide was

performed by GenScript Nanjing Co., Ltd. (Nanjing, Jiangsu,

China) using the NEB Ph.D.-12TM -96 primer (59-CCCTCAT-

TAGCGTAACG-39). The resulting DNA sequence was translated

into an amino-acid sequence and the corresponding 12-mer

peptide sequence was analyzed by the online NCBI BLASTp tool.

The retrieved homologue sequences in Aspergillus fumigatus were

then annotated using the DAVID program [45]. The gene

categories or pathways with an expression analysis systematic

Figure 6. Peptides protect corneas from infection of A. fumigatus in vivo. (A–B) Treatment of corneas with peptide Pc-C or Pc-E around
infection significantly decreased the disease scores at day 3 and 5 of post infection when compared with mock treated eyes (P,0.05), but to less
extent than Natamycin. The corneas of Balb/c mice were scarified and they received a 5-mL drop of 100 mM peptide 4 times in 1 hour preinfection.
Then the eyes were topically inoculated with 107 CFU A.f conidia. After 1 hour of infection, the application of peptide continued hourly for 5 hours.
On days 1, 3, 7, 10 and 14, post infection, the development of FK, if any, was monitored with a slit lamp microscope. (C) The quantities of A.f
recovered at day 1 and 3 post infection from the corneas treated with peptide Pc-C or Pc-E were significantly less than those recovered from the
mock treated control but higher than those of Natamycin treated corneas. (D) The inflammatory cell infiltration and edema in Pc-C or Pc-E peptide-
treated corneas were much less than in mock-treated corneas, as determined by histopathologic studies at 3 days post infection. Corneas treated
with Natamycin did not show obvious histological alteration.
doi:10.1371/journal.pone.0033578.g006
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explorer (EASE) [46,47] score of 0.05 or less were considered

enriched in the genes corresponding to the homologue sequences.

Peptide sequences that showed high homology with biologically

relevant pathogen proteins (either characterized or putative) were

chemically synthesized (Bootech Bioscience and Technology Co.,

Ltd, Shanghai, China). The N-terminus of each peptide was

modified with biotin and C-terminus with NH2 residue. All

peptide preparations were over 98% in purity as confirmed by

analytical HPLC and electrospray mass spectrometry (data not

shown), and were readily soluble in an aqueous medium. In some

experiments, a control peptide designed according to the bovine

serum albumin sequences, namely pBSA (DMADCCEKQEPE)

was used for comparison.

ELISA assay of phages or peptides binding to cells
After reaching 80–90% confluence in a 96-well plate, cells were

starved in serum free DMEM/F12 for 2 hours, and then

incubated with 0.5% BSA in PBST for 1 hour, followed by 6

washes with PBST. Pure 1012 PFU amplified phages or 100 mM

synthesized peptides were added to 3 wells of each cell, and

incubated at 37uC for an additional 1 hour. Unbound phages or

peptides were removed by 6 washes with PBST. Then horse radish

peroxidase (HRP)-conjugated anti-M13 antibodies were added to

the phage incubation groups, or HRP-conjugated streptavidin (BD

Biosciences, San Jose, CA, USA) was added to peptide incubation

groups, for another 1 hour, followed by 6 washes. Tetramethyl

benzidine (BD Biosciences, San Jose, CA, USA) was added at

room temperature in the dark for 30 minutes, and 1N H3PO4 was

added to stop the reaction. The absorbance was read at 405 nm

using spectramax M2 microplate reader (Molecular Devices,

Sunnyvale, CA, USA). Each treatment was tested in triplicate.

Effect of synthetic peptides on HCEC survival and
cytokine production

To monitor the potential toxicity of peptides to HCEC, the cells

were incubated in the presence of peptides for 72 hours, followed

by a 4 hour incubation with 3-(4, 5)-dimethylthiahiazo (-z-y1)-3,5-

di-phenytetrazoliumromide (MTT). Benzalkonium Bromide

0.01% was used as a positive toxic control. The MTT-transformed

crystals were dissolved in dimethyl sulfoxide, and the absorbance

at 490 nm was measured using a microplate reader. Each

treatment was repeated for three times.

To measure the effect of peptides on the expression of genes of

interest, HCEC were stimulated with peptides for 1 hour or

4 hours in triplicates. Total RNA was extracted from cells using

NucleoSpinH RNA II Kit (MACHEREY-NAGEL, Düren,

Germany) and reverse transcribed into first strand cDNA using

a PrimeScriptTM 1st strand cDNA Synthesis Kit (Takara, Otsu,

Japan). Quantitative real-time PCR was performed using Taqman

reagents and the Applied Biosystems 7500 Real-Time PCR

System (Applied Biosystems, Foster City, USA) according to the

instructions of the manufacturer. The specific primers and probes

of cytokines used in this study are listed in Table 3. Cycling

conditions were 10 s at 95uC, followed by 40 two-step cycles (15 s

at 95uC and 1 min at 60uC). Data were analyzed with the SDS

System Software (Applied Biosystems) using hB2-M as reference

gene.

Effect of HCEC culture supernatant on survival of
pathogen in vitro

The supernatants of HCEC, stimulated with each peptide for

1 hour, were collected from each well and tested for their effect on

the survival of A.f. In brief, A.f conidia were adjusted to 56107

CFU/mL and seeded into 96-well plates at 10 mL/well, and the

supernatants from different peptide stimulated HCEC were added

at 100 mL/well. Culture medium containing the starting concen-

tration of peptides was also used as control to check whether

peptides per se have any effect on fungal growth or survival.

Triplicate wells were set for each supernatant or medium sample.

After culture at 33uC with shaking (150 rpm) for 2 hours, 10 mL of

propidium iodide (PI, 50 mg/mL) was added to each well for

10 minutes to stain the dead cells. The plates were spun at

1000 rpm for 5 minutes and the cells were viewed by using a

Nikon confocal laser scanning microscope. The numbers of killed

Figure 7. Peptides decrease the minimum inhibitory concentrations of Natamycin required for inhibiting A. fumigatus adhered to
HCEC. HCEC grown in 96-well plates were pretreated with peptides Pc-C or Pc-E of different concentrations for 1 hour before 106 CFU A.f conidia
were added to each well for another 1 hour. After removal of unbound conidia, Natamycin was added to the culture to 2-fold serial concentrations
for each peptide concentration, with 2 replicates for each setting. The plates were cultured at 37uC for 48 hours to determine the MIC of Natamycin
against the adhered A.f conidia.
doi:10.1371/journal.pone.0033578.g007
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conidia and total conidia in five randomly selected fields were

counted and the fungicidal rates of the culture supernatant were

calculated.

Effects of peptides on Aspergillus adherence to HCEC
When HCEC grown in 24-well plates formed a confluent

monolayer at 37uC, the medium was changed to serum free

DMEM/F12 for 2 hours, and then 500 mL of 100 mM peptides

were added for 1 hour of incubation, with normal saline as

negative control. Then 107 CFU A.f conidia were added to each

well for 1 hour at 37uC, and the cells were washed 3 times with

normal saline to removed unbound conidia. One milliliter lysis

buffer (0.25% trypsin, 0.02% EDTA, 0.01% Triton X-100) was

added to each well for 10 minutes, and the samples were diluted

by 10-folds, spread on Sabouraud’s agar plates, and cultured at

37uC for 48 hours. The resulting colonies were counted. Three

duplications were set in each group. For some peptides, inhibition

assays using other concentrations (0, 0.01, 0.1, 1, 10 and 100 mM)

were also performed and a dose-response plot was obtained, from

which the 50% inhibitory concentration (IC50) was calculated.

Effect of peptides on Aspergillus adherence to cornea ex
vivo

Inhibition assays at the eye organ model level were performed

as described previously [48]. In brief, Balb/C mice were killed

after anesthesia, their corneal epithelia were scarified with a 26-G

syringe needle for ‘‘+’’ to mimic the situation of wounds occurred

to the corneas. The eyes were enucleated, washed with a serum-

Figure 8. Pc-A and Pc-B inhibit adhesion of A. fumigatus but not Alb1p mutant to corneal cells. (A–B) Peptides Pc-A and Pc-B significantly
inhibited wild-type A.f B-5233 adherence to HCEC (A) and corneas of cultured eyeballs (B) (P,0.05), but no additive or synergistic effects were
observed for combinational use of the two peptides. The adhesion of Alb1p-deficient mutant to HCEC and corneal surface were significantly
decreased compared with the wild type strain (P,0.05). However, neither Pc-A, Pc-B nor their combination could further decrease the adhesion of
mutant A.f to HCEC or ex vivo murine corneas.
doi:10.1371/journal.pone.0033578.g008
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free saline buffer, and placed on 5% agar in 96-well plates with the

corneas facing up. Peptides selected from above assays were added

to each well to 100 mL at 100 mM, with normal saline and

Natamycin Eye Drops (NATACYNH, 5% Natamycin in 0.02%

benzalkonium chloride, pH 7.0) as negative and positive controls

respectively. Three eyes were included in each group. After 1 hour

incubation, 107 CFU A.f conidia were added to each well the

incubation continued for another 1 hour, all at 37uC. The eyeballs

were then washed three times with normal saline, and the corneas

were excised along the limbal line. The corneas were placed in

0.5 mL saline and homogenated by ultrasonication. The pathogen

loads in the samples were determined as described above.

Effect of peptides on Aspergillus adherence to cornea in
vivo

Balb/C mice, 6,8 weeks old, were anesthetized and their

corneas were blotted with filter paper as described [49] to achieve

maximal adhesion bed for the pathogens. In brief, a piece of filter

paper was used to gently wipe over the corneal surface. With

practice, this method ensured removal of the squamous layer of

the epithelium as confirmed by histology (data not shown). A

plastic tube of 3 mm in inner diameter and 1 cm in length was

sleeved around the eyeball and fixed by sutures in the eyelid. Ten

microliters of infection mixture containing 107 CFU of A.f and

100 mM peptide were added into the tube for 1 hour to allow

infection. The mice were euthanized, and the eyes were

enucleated and washed three times with normal saline. The fungi

adhered to the corneas were quantified using CFU assay as

described above. Again, saline buffer and Natamycin Eye Drops

were used as controls. Four mice were included in each group, and

the assay was performed 3 times.

Effect of peptides on keratitis caused by Aspergillus
The potential effect of peptides on FK development were

determined using a similar model described previously [50] with

modifications. In brief, the corneas of Balb/c mice were scarified

as above and the wounded corneas received a 5 mL drop of

100 mM peptide 4 times during 1 hour before infection. Corneas

received normal saline and Natamycin Eye Drops as controls. The

eyes were topically inoculated with 10 mL (107 CFU) A.f conidia

using the same method described in the in vivo adherence model.

After 1 hour of infection, the application of peptides or controls

continued hourly for 5 hours. Fifty mice were included per

treatment group. On days 1, 3, 7, 10, and 14, post infection, the

diseases of the corneas were examined with a slit lamp microscope.

The scoring system used was essentially that described by Wu [51].

The load of A.f in the corneas on days 1, 3, 5, 7, and 10 was tested

as described in the ex vivo model section. For histopathology assay,

the enucleated eyeballs were fixed in neutral phosphate-buffered

formalin (10%) for at least 24 hours, followed by routine histology

Table 2. Membrane proteins that potentially bind peptide Pc-C.

Accession name and
identification Mascot Score GenBank Definition

2NVU_B 129 Chain B, Structure Of Appbp1-Uba3,nedd8-Nedd8-Mgatp-Ubc12(C111a), A Trapped Ubiquitin-Like Protein
Activation Complex

gi|126031226

AAA86640 78 small GTP binding protein Rab7

gi|1174149

CAA25855 72 alpha-tubulin

gi|37492

AAH08938 64 Histocompatibility (minor) 13

gi|14286280

NP_004037 57 ATP synthase subunit alpha, mitochondrial precursor

gi|4757810

XP_933678 43 PREDICTED: POTE ankyrin domain family member I isoform 2

gi|88953571

CAA45026 43 mutant beta-actin (beta’-actin)

gi|28336

doi:10.1371/journal.pone.0033578.t002

Table 3. Sequences of primers and probes for real time-PCR.

Genes (accession
number) Primer and probe sequence

hB2-M F, 59-TAGCTGTGCTCGCGCTACTCT-39

(NM_004048) R, 59-TTCTCTGCTGGATGACGTGAGTAA-39

Probe, 59-CTGGAGGCTATCCAGCGTACTCCA-39

hMyD88 F, 59-GCTATTGCCCCAGCGACAT-39

(NM_002468) R, 59-CGGTCAGACACACACAACTTCA-39

Probe, 59-CAGTTTGTGCAGGAGATGATCCG-39

hIL-8 F, 59-GGCAGCCTTCCTGATTTCTG-39

(NM_000584) R, 59-TGCACTGACATCTAAGTTCTTTAGCA-39

Probe, 59-TGTGTGAAGGTGCAGTTTTGCCAAGG-39

hIL-6 F, 59-CCCCCAGGAGAAGATTCCAA-39

(NM_000600) R, 59-TCAATTCGTTCTGAAGAGGTGAGT-39

Probe, 59-ATGTAGCCGCCCCACACAGACAG-39

hIL-17 F, 59-GCCATAGTGAAGGCAGGAAT-39

(NM_002190) R, 59-CAGGTTGACCATCACAGTCC-39

Probe, 59-TCCCACGAAATCCAGGATGCC-39

Note: Probes were labeled with FAM and TAMRA at 59 and 39 end respectively.
doi:10.1371/journal.pone.0033578.t003
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procedure for Hematoxylin-Eosin (HE) staining and light

microscopic evaluation.

In vitro antifungal activity of Natamycin in the presence
of peptides

The potential use of peptides in combination with Natamycin

was determined by measuring the minimum inhibitory concen-

tration (MIC) of Natamycin in the in vitro coculture model

following the merit of Clinical and Laboratory Standards Institute

(CLSI) M38-A document with modification. After incubation of

the monolayer HCEC in serum free DMEM/F12 for 2 hours in

96-well plates, 100 mL of peptides with concentration of 0, 0.01,

0.1, 1, 10, 100 mM were respectively added to each row of the

plate for 1 hour incubation. Then 106 CFU A.f conidia were

added to each well for another 1 hour at 37uC, followed by 3

washes with normal saline to remove the unbound conidia.

Natamycin with different concentrations (64, 32, 16, 8, 4, 2, 1, 0.5,

0.25, 0.125, 0.0625, 0 mg/mL) was added to each column of the

plate. The plates were cultured at 37uC for 48 hours and

examined with nude eyes for the presence or absence of fungal

growth. The lowest concentration of Natamycin that gave no

fungal growth was recorded as the MIC.

Pull-down assay of HCEC membrane proteins with
peptide Pc-C

About 108 HCEC cells were collected for preparation of

membrane proteins using a Membrane Protein Extraction Kit

(Bestbio, Shanghai, China) following the protocol from the

manufacture. As measured by a BCA protein assay kit (Beyotime,

Shanghai, China), the total quantity was about 1.5 mg. To

prepare the affinity matrix, 500 mL of 100 mM peptide Pc-C with

N-terminal biotin modification were incubated with 100 mL of

streptavidin-mobilized agarose CL-4B (sigma, St. Louis, MO,

USA) at 4uC for 6 hours on a rotator. Unbound Pc-C peptides

were removed by four washes with PBS. Subsequently, the

extracted membrane proteins in 300 mL of PBS were incubated

with the agarose at 4uC for 8 hours with rotation. Following five

washes with PBS, the proteins bound to the agarose were eluted by

100 mL of 0.2 M Glycin-HCl. After immediate neutralization with

15 mL of 1 M Tris-Cl, pH 9.1, the elution was condensed to 20 mL

using ultrafiltration tube (Millpore, Bedford, MA, USA) and

resolved on a 12% SDS-PAGE separation gel for 30 minutes. The

gel was stained with G-250 dye, destained with 0.1% acetic acid,

and cut into 4 pieces according to their molecular weight (Figure

S1). After in-gel digestion with trypsin, the samples were subjected

to routine liquid chromatography-tandem mass spectrometry (LC-

MS/MS) on SynaptTM. G2 HDMS (Waters corporation, Milford,

MA, USA). The processed spectra were run against protein

NCBInr homo sapiens databases using Mascot search engine

(Matrix Science Inc., Boston, MA, USA). A score over 39

suggested a match between the input mass spectrum with a

database sequence [39].

Statistical analysis
The data are presented as means6SD. SPSS (SPSS software,

11.5 version) was used for data processing. The statistical

significance of cytotoxity, the inhibitory effect on A.f adherence

to HCEC, and corneal epithelia, fungal load, and clinical scores in

the mice FK model was determined with a Multiple Comparison,

one-way analysis of variance (ANOVA). P,0.05 was considered

statistically significant.
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Figure S1 SDS-PAGE of membrane proteins pulled-
down by peptide Pc-C. Extracted membrane proteins were

incubated with Pc-C binding agarose and the proteins bound by

Pc-C were eluted, neutralized, condensed and subjected to 12%

SDS-PAGE gels. After separation, the proteins in the gel were

identified by LC-MS/MS.
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Table S1 Peptide and DNA sequences corresponding to
the phages that bind HCEC and their homology with A.
fumigatus proteins.
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Table S2 Summary of defined/hypothetical proteins
that are homologue to Pc-A peptide (ATKVKIPFEAKV)
with high scores. Detailed homology analysis results obtained

with other peptides (namely Pc-B,N) are not shown here either,

since it will be more convenient for the readers to do blastp

analysis for themselves.
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Table S3 Enriched gene functions and pathways all
proteins of Aspergillus fumigatus that show high
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