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Abstract
Chemotherapy is the bedrock for the clinical management of cancer, and the tumor suppressor p53
has a central role in this therapeutic modality. This protein facilitates favorable antitumor drug
response through a variety of key cellular functions, including cell cycle arrest, senescence, and
apoptosis. These functions essentially cease once p53 becomes mutated, as occurs in ~50% of
cancers, and some p53 mutants even exhibit gain-of-function effects, which lead to greater drug
resistance. However, it is becoming increasingly evident that resistance is also seen in cancers
harboring wild-type p53. In this review, we discuss how wild-type p53 is inactivated to render
cells resistant to antitumor drugs. This may occur through various mechanisms, including an
increase in proteasomal degradation, defects in post-translational modification, and downstream
defects in p53 target genes. We also consider evidence that the resistance seen in wild-type p53
cancers can be substantially greater than that seen in mutant p53 cancers, and this poses a far
greater challenge for efforts to design strategies that increase drug response in resistant cancers
already primed with wild-type p53. Because the mechanisms contributing to this wild-type p53
“gain-of-resistance” phenotype are largely unknown, a concerted research effort is needed to
identify the underlying basis for the occurrence of this phenotype and, in parallel, to explore the
possibility that the phenotype may be a product of wild-type p53 gain-of-function effects. Such
studies are essential to lay the foundation for a rational therapeutic approach in the treatment of
resistant wild-type p53 cancers.
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1. Introduction
Chemotherapy is a critical modality in the fight against cancer. Indeed, antitumor drugs are
commonly used for cancer therapy, and their effectiveness is a clear indication that such
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agents have positive therapeutic indices; that is, successful drugs must have greater activity
against tumor cells than against normal cells. Conversely, when activity against tumor cells
falls below that against normal cells because of drug resistance, the clinical utility of the
antitumor drug is essentially lost. Resistance of tumor cells can be intrinsic, when tumor
cells are predisposed at the outset to minimal or negligible response to therapy, or acquired,
when tumor cells may initially have a drug-sensitive phenotype that is lost during the course
of therapy.

Genetic alterations are generally the reason for greater drug sensitivity of tumor cells
relative to normal cells, but which specific genes or sets of genes are involved to induce this
differential response will continue to be a subject of concerted laboratory investigations.
However, such investigations are more difficult than previously thought since tumor cells
demonstrate abnormal expression of over several hundred genes [1,2] and because no two
cancers, even from the same tissue type, exhibit identical patterns of the abnormally
expressed genes [3,4]. Therefore, the greater drug sensitivity of tumor cells may depend on a
unique gene signature profile, which lowers the threshold for sensing cellular damage by
antitumor agents and allows efficient transduction of signals for anti-proliferative and/or
pro-apoptotic effects.

The lack of an explicit understanding of which dysfunctional genes promote greater drug
sensitivity of tumor cells relative to normal cells has not hindered the progress toward
identifying critical normal genes that work in concert with the tumor’s signaling network to
enhance tumor sensitivity. One of these is the tumor suppressor p53, widely recognized as
the “guardian of the genome,” which in its wild-type state has an essential role in facilitating
antitumor drug response. Indeed, tumor cells harboring wild-type p53 are generally
recognized as being sensitive to antitumor agents [5]. This premise is consistent with the
understanding that activation of p53 is sufficient to induce cell death, even in the presence of
strong survival signals from other deregulated genes that may be present [6]. Unfortunately,
such tumor cells do eventually become resistant to therapy, and it is not surprising that
inactivation of p53 function is an important resistance mechanism, both clinically and in
tumor cell lines [7–11]. In this review, we discuss how wild-type p53 is inactivated to render
cells resistant to antitumor drugs. We also consider evidence to support the notion of a gain-
of-resistance phenotype, in which drug resistance in the presence of wild-type p53 can be
greater than that anticipated from a simple loss of p53 function. Although this review uses
reported examples of mechanisms in the context of resistance to specific agents, such as
cisplatin, it should be noted that these mechanisms are also applicable to other antitumor
drugs. This claim is supported by the observation that tumors resistant to cisplatin are
generally cross-resistant to diverse, structurally unrelated cytotoxic agents [12].

2. Role of p53 in cancer and therapeutics
The p53 protein, identified as a tumor suppressor in 1989 [13], is encoded by the TP53 gene
located on chromosome 17p13.1 and is composed of several domains: (i) a DNA-binding
domain, (ii) a transactivation domain, (iii) an oligomerization domain, (iv) a proline-rich
domain and v) a C-terminal regulatory domain [14]. The p53 protein functions mainly as a
transcriptional activator by binding to specific DNA sequences of target genes involved in a
broad range of biological functions, including cell cycle arrest, DNA repair, senescence,
apoptosis, and inhibition of angiogenesis [15].

Cellular levels of p53 are usually kept low because of its short half-life of ~20 minutes.
Degradation of p53 occurs mainly by binding to Mdm2, an E3 ligase that catalyzes mono-
ubiquitination of p53 in the C-terminal domain and thereby targets it for proteasomal
degradation [13,16,17]. A close homolog, Mdm4, can also regulate p53 function by binding
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to its transactivation domain, but unlike Mdm2 it cannot directly ubiquitinate p53 [18]. The
E3 and E4 ubiquitin ligase p300 poly-ubiquitinates p53 in an Mdm2-dependent manner that
also results in p53 degradation [16,19]. Several other molecules are involved in p53
regulation, including Pirh2, Parc, and p14ARF, which can also affect p53-dependent
therapeutic response. Pirh2 binds to the DNA-binding domain of p53 and promotes its
degradation, whereas Parc fixes p53 in the cytoplasm, preventing it from entering the
nucleus and thus suppressing its transcriptional activity [16]. From the perspective of
therapy, the tumor suppressor p14ARF is of significant interest given that it positively
regulates p53 by directly inhibiting Mdm2 [17,20].

For tumor suppressive function or to facilitate a therapeutic response to an antitumor agent,
p53 needs to be not only stabilized but also activated. This is accomplished by post-
translational modifications, including phosphorylation and dephosphorylation at ~23 distinct
sites by a network of kinases and phosphatases [21,22]. Thus, under conditions of stress, as
may ensue after DNA damage, specific kinases, such as ATM, ATR, Chk1, and Chk2,
become activated and phosphorylate p53 target sites, such as Ser15, Thr18, and Ser20, and
this phosphorylation forces dissociation of p53 from the Mdm2–p53 complex. The resulting
stabilization of p53 and its translocation to the nucleus enable p53 to bind as a tetramer to
specific DNA sequences and transactivate target genes [22,23]. This transactivation by p53,
driven by upstream activating pathways, is critical for its cellular functions, which include
arresting the cell cycle to permit DNA repair and, if the damage is too severe to be repaired,
activating cell death pathways [24]. Although the p53 tumor suppressive signaling cascade
paradoxically fails to prevent cancer from developing in the first place, it can still be
activated in many cancer cells with DNA damaging drugs to induce antitumor response
[25,26]. However, the eventual failure of p53 to become activated in tumor cells during the
course of chemotherapy is the most significant mechanism of drug resistance. This failure
results from the loss of three of the most significant cellular pathways involved in antitumor
response during chemotherapy: (i) induction of programmed cell death (apoptosis), (ii)
induction of checkpoint response and cell cycle arrest, and (iii) induction of permanent cell
cycle arrest (senescence); these pathways normally contribute independently or collectively
to final therapeutic outcomes in patients. A brief discussion of these processes is warranted
to better appreciate p53-dependent resistance mechanisms.

2.1. Induction of apoptosis
Although p53 can mediate apoptosis in a transcription-dependent manner, it is also involved
in transcription-independent apoptosis. In the transcription-dependent process, two distinct
signaling pathways are involved: extrinsic and intrinsic pathways. In the extrinsic pathway,
p53 induces the transcription of death receptors of the tumor necrosis factor receptor (TNF-
R) family: Fas, APO-1, CD95, DR5, and PERP [27]. After a ligand binds to its specific
receptor, the formation of the death-inducing signaling complex (DISC) is accomplished by
recruitment of the Fas-associated death domain (FADD) and caspase-8 and -10, leading to
the activation of the effector caspases (e.g., caspase-3 and -7) and resultant DNA
fragmentation as a hallmark of apoptosis. In contrast, the intrinsic pathway is activated
through a DNA damage mechanism that involves mitochondrial apoptotic events, which are
regulated largely by the Bcl-2 family of proteins [27]. Thus, upon stabilization and
activation, p53 translocates to the nucleus, where it transactivates the pro-apoptotic genes
Bax, Noxa, PUMA, and Bid [28]. Of these, Bax is the most important pro-apoptotic gene to
be induced by p53, but its translocation and functional multimerization depend on other pro-
apoptotic family members [29]. Bax can homo-multimerize or it can hetero-multimerize
with Bak in the outer mitochondrial membrane and thereby induce the release of cytochrome
c, Smac/DIABLO, and apoptosis-inducing factor (AIF) from the mitochondrial
intermembrane space to the cytosol. The apoptosome complex, formed by cytochrome c,
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apoptotic protease-activating factor 1 (APAF-1), and pre-cleaved caspase-9, activates
effector caspase-3, -6, and -7 to induce DNA fragmentation as the final stage of apoptosis
[30]. Interestingly, the intrinsic and extrinsic pathways are connected via Bid, which upon
cleavage to t-Bid by caspase-8 translocates to the mitochondria and activates the pro-
apoptotic proteins Bax and Bak [28].

In the transcription-independent mechanism of apoptosis, some of the induced wild-type p53
translocates to the mitochondria and physically interacts with the anti-apoptotic proteins
Bcl-xL and Bcl-2 to promote the pro-apoptotic homo- or hetero-multimerization between
Bak and Bax [31,32]. This occurs rapidly and before p53 exhibits its transcriptional activity.
In addition, p53 disrupts the inhibitory Bak–Mcl1 complex by binding to Bak directly [33].
Taken together, these actions of p53 permeabilize the outer mitochondrial membrane,
allowing the release of pro-apoptotic factors into the cytoplasm. DNA damaging drugs may
activate both membrane death receptors and the endogenous mitochondrial damage
pathway, and because these apoptotic mechanisms are deregulated in cancers, proteins
involved in these pathways are molecular targets of great interest in cancer therapy [34].
Indeed, most of the anticancer agents that act through DNA damage or stress-inducing
mechanisms require wild-type p53 to exhibit the apoptotic phenotype [35].

2.2. Induction of checkpoint response and cell cycle arrest
The cell is endowed with elaborate checkpoint systems that, when activated by stressful
stimuli such as DNA damage by antitumor agents, activate appropriate signal transduction
pathways, which propagate information from the stress stimuli to the cell cycle machinery
via sensor, transducer, and effector signaling proteins [36]. This integrated network of DNA
damage signaling results in the inhibition of cyclin-dependent kinase (Cdk) activities,
thereby impacting cell cycle kinetics. More specifically, inhibition of distinct Cdk/cyclin
complexes that are present throughout the cell cycle prevents or slows G1/S transition, S-
phase progression, G2/M transition, or all three [36,37]. Although many of the Cdks can be
inhibited by members of the Cip/Kip family members of Cdk inhibitors (p21, p27, and p57),
p21 as a critical target of p53 is the most significant for inhibiting G1-phase Cdk4/cyclin D
and Cdk2/cyclin E. This significance is reflected in the fact that p21 deletion alone can
prevent G1-phase arrest [37–39], whereas other mechanisms exist to inhibit S- and G2-phase
Cdk activities [38]. Indeed, DNA damaging agents can induce S- and G2-phase arrest even if
p53 function is not present [40].

Cell cycle arrest is considered a critical step to allow DNA repair and for cell survival, but if
repair fails then apoptosis is induced. Whether persistent p21-dependent G1 arrest is actually
a trigger for cell death is unclear. However, tumors retaining G1 checkpoint response appear
to be more sensitive to therapeutic agents [5,41,42]. Indeed, a strong positive correlation has
been demonstrated between the ability of tumor cells to arrest in G1 and their sensitivity to
platinum-based drugs in the National Cancer Institute (NCI) panel of 60 tumor cell lines
[43]. This correlation is also consistent with the finding that mutant p53 tumor cells
transfected with a p21 expression vector are sensitized to antitumor drugs [44,45]. In
addition, small-molecule inhibitors of G1-phase Cdks not only arrest cells but also induce
apoptosis [46,47]. Moreover, cells from p21 knockout mice lack G1 checkpoint response
[48], and because such mice develop tumors [49], the tumor suppressive function of p53
may be mediated in part through the downstream effects of p21 in checkpoint response.

2.3. Induction of senescence
Cellular senescence is defined as a permanent cell cycle arrest that prevents cell
immortalization and transformation to a genetically unstable phenotype [50]. Therefore,
senescence is identified as an additional tumor suppressive mechanism in benign or
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premalignant cancer lesions [51]. Senescent cells remain metabolically active but acquire
distinct changes in morphology and physiology characterized by enlarged cell size,
chromatin condensation, changes in gene expression, and high levels of senescence-
associated β-galactosidase. The senescence phenotype occurs as a result of various forms of
stress stimuli, such as telomerase shortening, oncogenic stimuli, ionizing radiation, and
DNA damaging agents [52]. Not surprisingly, p53 is the pivotal player in regulating
replicative as well as premature (stress-induced) senescence. In line with this evidence,
tumor cells containing wild-type p53 are more likely to undergo senescence in response to
chemotherapy [53].

Stress-induced senescence is driven via the ATM/ATR-Chk2/Chk1-p53 pathway, with the
involvement of several p53-dependent downstream molecular markers, such as p21, PML,
PAI-1, and DEC1 [53]. Of these, p21 is the seminal controller of the senescence program. In
this respect, p21-dependent G1 arrest in senescence is similar to that after checkpoint
response, but the significant difference is that activation of the senescence program requires
prolonged p53-dependent expression of p21, whereas the checkpoint response pathway
requires a relatively transient transactivation of p21 by p53 [15]. Despite this difference,
premature senescence, like apoptosis and G1 checkpoint response, can significantly
contribute to the antitumor effects mediated by p53 with a variety of anticancer agents [54–
58]. Although apoptosis may have greater relevance in cancer chemotherapy, p53-dependent
senescence may provide an important anti-proliferative option in cancer cells that have lost
their ability to undergo p53-dependent apoptosis [54].

3. Mechanisms of resistance involving p53
Induction of cell death by antitumor drugs requires (i) the recognition of DNA damage, (ii)
activation of specific kinases, (iii) stabilization and activation of p53, (iv) activation of
downstream p53-dependent pathways, and finally (v) execution of cytotoxic programs (Fig.
1). The p53 protein is central to this process, and its critical roles in activating anti-
proliferative/pro-apoptotic pathways and facilitating the effects of antitumor agents also
make it a vulnerable target; tumor cells will readily select for attenuated p53 pathways that
lead to drug resistance and cell survival. Interestingly, resistance in tumor cells harboring
wild-type p53 is observed with a large variety of agents, ranging from ionizing radiation to
several classes of cytotoxic drugs, such as doxorubicin, paclitaxel, cisplatin, etoposide, and
vinblastine [59]. This resistance can occur directly, via factors that reduce or negate the
functional activity of p53, or indirectly, by deregulation of pathways downstream of p53
(Fig. 1). Although the purpose of this review is to focus on mechanisms that directly affect
p53 function to induce drug resistance, either through mutation in the p53 protein or through
the failure of upstream pathways that stabilize and post-translationally activate wild-type
p53, it is appropriate to first briefly discuss resistance arising from deregulated pathways
that affect p53-mediated signaling.

3.1. Deregulation of pathways downstream of p53
The indirect pathways that affect p53 signaling can involve downstream failure either in the
activity of target gene products, such as p21, Bax, miRNAs, and caspases, or in the
expression or mutation of proteins interacting with p53. A case in point is where p53 is
functional and transactivates p21, but this Cdk inhibitor becomes inactivated through
cytoplasmic sequestration after Akt-mediated phosphorylation, leading to resistance of
testicular and ovarian cancers to antitumor agents such as cisplatin [60,61]. In this case, a
possible mechanism for the resistance is the binding of phosphorylated form of p21 in the
cytoplasm to procaspase-3, preventing its conversion to caspase-3 and thereby blocking
apoptosis [62]. Although the p21 gene is rarely mutated, it can also influence therapeutic
outcomes through other mechanisms. For instance, a recent report has demonstrated that a
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single nucleotide polymorphism at codon 31 of p21 in ~10% of chronic lymphocytic
leukemia (CLL) patients is sufficient to cause greater aggressiveness and therapeutic
resistance of the cancer [63]. Similarly, reduced p21 expression through p21 promoter
hypermethylation in the corresponding acute lymphocytic leukemia (ALL) leads to a low
survival rate of 6–8% in patients compared with a higher rate of ~60% when the promoter is
hypomethylated and fully functional [64]. Bax expression is also known to be
downregulated, but by mutation in the coding region, in ~50% of colorectal and gastric
cancers, which then lose apoptotic activity and become drug-resistant, leading to poor
patient survival [65–67]. Where Bax expression is normal, failure in its activation has also
been reported as an alternative mechanism for Bax-related resistance in Hodgkin disease
[68].

Recently, wild-type p53 has been reported to regulate the expression of microRNAs [69].
The most significant effect involves the induction by p53 of microRNAs miR-34a, miR-34b,
and miR-34bc, which are involved in apoptosis, cell cycle arrest, and senescence, and
defective expression of these targets has been associated with resistance to p53-dependent
therapeutic agents [70]. The mechanism for this reduced expression has been attributed to
gene silencing by CpG hypermethylation of miR-34a, miR-34b, and/or miR-34c promoters
in 60–100% of renal cell carcinoma (RCC), pancreatic, breast, colorectal, ovarian, and
urothelial cancers [71]. Conversely, ectopic expression of miR-34a has been demonstrated to
sensitize medulloblastoma and prostate cells to chemotherapeutic agents [72,73].

In apoptosis, the ultimate goal of antitumor agents is to activate caspases, which degrade
DNA and complete the process of cell death. Therefore, inhibition of caspase activity will
also result in tumor resistance. Indeed, inactivation or downregulation of caspase-3, -8, and
-9 has been reported and directly correlated with drug resistance in neuroblastoma and
cervical, head and neck, ovarian, and breast cancers [74–79]. Moreover, >100 proteins can
bind with p53 to potentially regulate cytotoxic outcome, and a defect in this interaction
through alterations in expression or mutation in the binding partner can have serious
therapeutic consequences. For instance, the p53-dependent nuclear export of BRCA1 is
important in enhancing DNA damage response, but overexpression of BRCA1 in wild-type
p53 MCF-7 tumor cells induced resistance to cisplatin as a result of increased BRCA1-
dependent DNA repair, most likely due to a resultant increase in levels of BRCA1 retained
in the nucleus [80,81]. Although Mdm2 and Mdm4 are the most prominent of the proteins
known to interact with p53, their impact is more direct and will be discussed later.

3.2. Mutations in p53
The high risk of patients with Li–Fraumeni syndrome to develop fibrosarcomas and breast
cancer is linked directly to the loss of tumor suppressive function as a result of heterozygous
germline mutations in p53 [13,23,26,82]. Because p53 is mutated in ~50% of human
cancers, this loss of function has a widespread impact on tumor incidence in many tissue
types. Loss of p53 function from mutation also results in poor response of tumors to a wide
range of clinical treatment regimens, in stark contrast to excellent prognosis and treatment
outcome in tumors harboring wild-type p53 [18,83]. This contrast is clearly and perhaps
uniquely exemplified in pediatric patients with choroid plexus carcinomas treated with
chemoradiation; essentially, the treatment induced universal response and long-term survival
(>5 years) in all patients with tumors expressing wild-type p53, whereas most patients
(~80%) with tumors expressing mutant p53 died within 6 months [84]. Although not as
dramatic, the response of patients treated for advanced breast cancer with paclitaxel or the 5-
fluorouracil (5-FU)/epirubicin/cyclophosphamide combination was 45–64% when wild-type
was expressed, but responses were totally absent when mutant p53 was expressed [85,86].
As another example, the 5-year survival rate in CLL patients with tumors expressing wild-
type p53 was three-fold greater than in patients with tumors expressing mutant p53 (59% vs.
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20%) [87]. Similarly, the exquisite curative sensitivity of testicular cancers to platinum-
based therapy is widely attributed to the rarity of p53 mutations in this disease [88].
Consequently, the negative therapeutic association with mutant p53 has made the mutant
form a popular molecular target, and thus drugs that may restore wild-type p53
conformation and function have been aggressively pursued [83,89].

Cytotoxic responses based on p53 genotype have also been studied in tumor cell lines. The
most extensive study conducted to date was from NCI using a broad tumor panel comprising
39 mutant p53 and 18 wild-type p53 cell lines across 9 tissue types and exposed to 123
agents from a variety of antitumor drug classes [5]. That study demonstrated that the median
resistance of cell lines in the mutant p53 group to cisplatin, 5-FU, and bleomycin was 3–10
times that in the group of wild-type p53 cell lines. This drug-dependent variation in
resistance is not unexpected, and it is important to note that due to cell context p53 mutation
may not necessarily render tumor cells resistant to every antitumor agent. Thus, the p53-
R273H mutant expressed in H1299 lung adenocarcinoma cells induced a low level of
resistance to etoposide but a substantially greater resistance to cisplatin (see Table 1),
whereas ectopic expression of p53-V143A did not induce resistance to several antitumor
agents, including cisplatin, paclitaxel, vincristine, and teniposide [90,91].

Somatic p53 mutations are mostly missense in nature and are located predominantly within
the DNA-binding domain, where a single mutation is sufficient to cause loss of normal p53
function [82,92]. Four positions in p53 are frequently mutated; these “hot spots” are located
at amino acid positions 175, 248, 249, and 273 and collectively account for >25% of all
missense mutations in human cancers. Specific mutations in p53 are grouped into “contact”
and “structural” classes, but both types impede the pro-apoptotic p53 transactivation
functions by preventing binding of p53 with target promoter sites on DNA. Thus, mutations
at amino acid positions in p53 that normally make direct contact with DNA (e.g., R248W
and R273H) will disrupt promoter binding without necessarily altering p53 conformation. In
contrast, mutations in noncontact positions (e.g., R175H and R249S) induce local and/or
global structural distortions and thereby prevent p53 from binding to the specific DNA sites
[93,94].

3.2.1. Mutations in p53 and the gain-of-function phenotype—It is noteworthy that
specific mutations in p53 not only may result in loss of normal p53 functions but also can
induce novel functions, leading to the so-called p53 gain-of-function phenotype, which still
confers drug resistance [95]. More specifically, the novel biological effects of p53
mutations, such as R175H, R175P, R248W, R249S, R273C, and R273L, involve
transcriptional activation or repression of genes whose expression is not normally regulated
by wild-type p53, for example BFGF, EGFR, HSP70, and C-Myc [94,96]. These genes
when deregulated have been implicated in the promotion of tumor cell growth and survival
and the development of resistance to several chemotherapeutic agents by inhibiting
apoptosis in several cell lines and in patients [97–100].

Evidence suggests that p53 gain-of-function mutants may also mediate their effects through
inhibitory interactions with other transcriptional factors that normally bind to gene
promoters [96,101]. An important example is the interaction of such p53 mutants with the
family members p63 and p73, which are then prevented from transactivating their gene
targets [94]. Moreover, protein–protein interactions with these p53 mutants can also have
profound cellular consequences in a promoter-independent manner. For instance, the hot
spot mutant R248W or R273H interacts with the nuclease Mre11, thus interfering with the
formation and recruitment of the Mre11/Rad50/NBS1 (MRN) complex at the site of DNA
double-strand breaks (DSBs) and thereby abolishing the co-recruitment and activation of
ATM for DNA damage response [94,96,101–103].
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From the perspective of therapeutic response, it is clear that mutations in p53 will inhibit
both anti-proliferative and pro-apoptotic pathways, and induce resistance as a result. For
example, p53 gene mutations may exist in only one allele, but if the mutant p53 molecule
has a dominant-negative characteristic, its lone presence in the active tetrameric complex is
sufficient to not only inhibit p53 function but also promote gain-of-function effects
[104,105]. With p53 gain-of-function mutants, the resistance to DNA damaging agents
arises both through downregulation of anti-proliferative and pro-apoptotic genes, such as
FAS and MST-1, and through upregulation of pro-proliferative and anti-apoptotic genes,
such as BAG-1 and NFKB2 [94,101]. This finding raises an important question of whether
drug resistance from a combination of loss-of-function and gain-of-function effects will be
greater than that from loss of p53 function alone. Investigations to address this question have
used either transfection of p53-null cells (e.g., human lung adenocarcinoma H1299 and
human osteosarcoma Saos-2 models) with p53 mutants or siRNA-dependent downregulation
of p53 mutants. Interestingly, both approaches have demonstrated that tumor cells
expressing p53 gain-of-function mutants, such as R175H, R179H, and R273H, exhibit
significantly greater resistance to a number of antitumor drugs, including doxorubicin,
cisplatin, etoposide, and 5-FU [90,94,95,103,106]. Examples of this effect are shown in
Table 1. Note that increased resistance is not always observed but can be drug-dependent, as
evidenced by the unexpectedly increased sensitivity to etoposide of H1299 tumor cells
transfected with the p53-R273H mutant. With this mutant, the additional resistance to
methotrexate or doxorubicin has been reported to arise through downregulation of
procaspase-3 [107].

The potential of knocking down p53 gain-of-function mutants as a therapeutic option to
sensitize tumor cells to antitumor agents is apparent from the above discussion and has been
proposed independently by others [108]. However, it should be noted that this sensitization
will be partial because p53-knockdown tumor cells will still retain resistance due to
persistent loss of p53 functions. Therefore, approaches that convert the p53 gain-of-function
mutant configuration to wild-type p53 are likely to be more successful. Indeed, substantial
effort has been devoted by the research community toward the ultimate goal of identifying a
viable therapeutic option for cancers expressing mutant p53. This concerted effort has led to
the identification of several agents with clinical potential, such as the small molecules
CP-31398, MIRA-1, STIMA-1, and PRIMA-1, and the PRIMA-1 analog APR-246
[109,110], which has recently entered phase I/II clinical trials [111].

3.3. Resistance in tumor cells harboring wild-type p53
The ~50% mutation rate of p53 in cancer and the associated failure in antitumor drug
response has been pivotal in maintaining much interest in mutant p53 with the goal of
developing more effective therapeutic solutions [112]. However, antitumor drug resistance
is not limited to tumors expressing mutant or null p53. Indeed, in direct contradiction of the
normal role of p53 in promoting apoptotic response with antitumor agents, as discussed
here, it has become increasingly clear from the clinical literature that resistance is also
observed in cancers harboring wild-type p53. The major evidence supporting this conclusion
can be gleaned from the clinical reports summarized in Table 2. In the examples shown, the
incidence of wild-type p53 is in the range from 40% to almost 100%. As mentioned earlier,
cancers of the choroid plexus and germ cell tumors expressing wild-type p53 are exquisitely
sensitive to therapeutic regimens, which are highly curative, as indicated by the 5-year
survival rate of 90–100% [84,88,113]. In contrast, the presence of wild-type p53 in other
advanced cancers, such as bladder, breast, CLL, mesothelioma, non-small cell lung cancer
(NSCLC), ovarian, and RCC, results in significantly lower response and/or curative rates,
ranging from 0% to ~60% [85,87,114–126]. A low p53 mutation rate is not predictive of
greater therapeutic responses or long-term survival rates. This is best illustrated by
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comparing CLL, germ cell tumors, mesothelioma, and RCC. All of these cancers have a
wild-type p53 incidence of ≥90%, but the response rate was best in germ cell tumors
(~90%), intermediate in CLL (59–83%), and worst in mesothelioma and RCC (0–33%)
[87,88,113,119–122,126,127].

The clinical data presented here clearly support the notion that the presence of wild-type p53
is a poor predictor of response and/or cure; many cancers harboring wild-type p53, as with
mutant p53, are resistant to a variety of antitumor agents, including cisplatin, paclitaxel, and
5-FU. To explain this paradox requires a discussion of possible mechanisms that may
downregulate wild-type p53 function. The mechanisms can involve deregulation of any
component of the DNA damage pathway (see Fig. 1), but here we focus on mechanisms that
directly impinge on p53: upregulation of pathways that promote p53 degradation and
downregulation of pathways involved in post-translational modification.

3.3.1. Mechanisms promoting degradation of wild-type p53—Mechanisms that
enhance degradation of wild-type p53 are the simplest way for tumor cells to select for
attenuated p53 functions and demonstrate resistance to therapeutic agents. Indeed,
accelerated proteasomal degradation of p53 and induction of resistance to anticancer therapy
have been demonstrated through upregulation of specific p53-binding proteins, such as
human papillomavirus type 16 (HPV-16) E6, Mdm2, and Mdm4 [22]. HPV-16 is found in
several cancers, the most common of which is cervical cancer. HPV-16 expresses the E6
viral oncoprotein, which promotes ubiquitin-dependent proteasomal degradation of p53 and
leads to low levels of this tumor suppressor in infected tumor cells [128]. As a result, HPV-
positive cervical cancer cells are resistant to chemotherapeutic agents such as camptothecin
and cisplatin [129].

As discussed here, p53 activation and stability are negatively regulated in a controlled
manner via proteasomal degradation by Mdm2. However, Mdm2 gene expression can
become deregulated, leading to overproduction of this oncoprotein in human and mouse
tumors, as well as tumor cell lines, by one of three different mechanisms: gene
amplification, increased transcription, or enhanced translation [130,131]. The overall
frequency of Mdm2 amplification in human tumors is ~7–10%, but tissues such as
osteosarcomas (16%), soft tissue tumors (31%), hepatocellular carcinoma (44%), and
Hodgkin disease (67%) have some of the highest frequencies [22]. The overexpression of
Mdm2 in cells substantially alters the stoichiometry with wild-type p53 and likely promotes
cancer development [132]. Indeed, a 2-fold increase in Mdm2 has been reported as sufficient
to attenuate p53 activation and thereby increase the risk of breast cancer [133]. In parallel,
overexpression of Mdm2 leads to a reduction in therapeutic response. This is again well
demonstrated with breast cancer, where in an extensive analysis of >2000 patients, those
with tumors overexpressing Mdm2 had a significantly lower 10-year survival rate (58–61%
vs. 73%) [134]. Such negative roles of Mdm2 in antitumor response have stimulated the
search for small-molecule antagonists of p53–Mdm2 interactions to enhance the apoptotic
activity of wild-type p53 [135]. Several molecules of interest have been identified, but
probably the best known is Nutlin-3a, which displays p53-dependent activity against tumors
overexpressing Mdm2, including those with upregulated Mdm2 as a result of ATM mutation
[22,136–138]. Nutlin-3a can effectively stabilize wild-type p53 and induce antitumor
activity not only as a single agent but also as a potent binary combination with other
antitumor agents such as etoposide and cisplatin [139].

Alternative mechanisms involving protein–hprotein interactions can also modulate Mdm2
levels and contribute to the failure of antitumor agents to activate wild-type p53 and induce
apoptosis. Mdm4 is one such protein that stabilizes Mdm2 by preventing its proteasomal
degradation. Interestingly, 10–20% of cancers overexpress or amplify the Mdm4 gene,
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which results in a failure to disrupt the p53–Mdm2 complex and culminates in drug
resistance [22,140]. This is clearly demonstrated by the ability of Mdm4 to attenuate p53-
dependent transactivation of Bax and induction of apoptosis [141]. In contrast to Mdm4,
14-3-3σ normally negatively regulates Mdm2, but downregulation of 14-3-3σ in several
cancers, such as ovarian, lung, breast, and prostate cancer, results in significant increases in
Mdm2 levels and inhibition of antitumor drug response [142]. Similarly, deregulation of the
tumor suppressor p14ARF by deletion, mutation, or epigenetic silencing in human tumors
prevents its sequestration of Mdm2 in the nucleolus and thereby increases Mdm2
interactions with wild-type p53 to inhibit p53 functions and induce drug resistance [143–
146]. In agreement with this finding, ectopic expression of p14ARF in tumor cells
substantially increases p53-dependent G1-phase arrest, apoptosis, and sensitivity to
antitumor drugs such as cisplatin [147].

3.3.2. Mechanisms downregulating post-translational activation of wild-type
p53—To facilitate antitumor response to cytotoxic drugs, wild-type p53 must be
transcriptionally active [148]. However, in drug resistance, this function is lost, and the two
genes critically impeded are the checkpoint response gene p21 and the pro-apoptotic gene
Bax. Defects in Bax expression have indeed been correlated with adverse drug responses in
many human cancers, including pancreatic, colorectal, and breast tumors, irrespective of p53
status [65–67,149]. Similarly, loss of p21 transactivation after exposure of resistant wild-
type p53 tumor cells to antitumor agents, such as those based on platinum, has also been
reported [150–152]. This finding is consistent with the role of p21 as a tumor suppressor
[49,153,154] and with correlations of p21 expression with superior therapeutic drug effects
in patients with ovarian cancer and NSCLC [155,156] and in experimental tumor models
[44,45,157–159].

Although loss of transactivation function of wild-type p53 can be explained by deregulated
expression of Mdm2, Mdm4, 14-3-3σ, or p14ARF, this is not always the case. Thus, in breast
cancer, the 45% incidence rate of resistant tumors harboring wild-type p53 (see Table 2) is
not consistent with the lower (7–14%) rate of occurrence of Mdm2 overexpression or
downregulation of p14ARF [160]. Similarly, the differential half-life of wild-type p53 in
sensitive and resistant ovarian tumor cells after DNA damage with cisplatin does not
correlate with Mdm2 levels [161]. Moreover, in RCC, in which p53 mutations are rare,
wild-type p53 transactivation functions were still reported as defective when tumor cells
were exposed to 5-FU, camptothecin, or doxorubicin, but interestingly no changes in Mdm2,
Mdm4, or p14ARF were detected to explain these observations [162]. Therefore, it is clear
that other mechanisms attenuating wild-type p53 function are also involved, and defects in
post-translational modification are a primary mechanism to consider.

3.3.2.1. Significance of phosphorylation in post-translational modifications of p53:
Stabilization and activation of p53 is governed by covalent post-translational modifications,
such as phosphorylation, ubiquitination, acetylation, methylation, SUMOylation,
neddylation, glycosylation, and ribosylation [163,164]. A total of ~50 sites on p53 are now
known to be subject to modifications after a stress stimulus [165]. The N-terminus is
modified primarily by phosphorylation, whereas the C-terminus can be the target of a
variety of modifications, including phosphorylation [163]. Although an optimal combination
of post-translational modifications is required for maximal p53 function, the antitumor
effects of DNA damaging agents are dominantly governed by phosphorylation events
[166,167]. There are ~23 possible sites on p53 that can be phosphorylated, and each site can
be targeted by multiple kinases, suggesting possible redundancy [22]. However, it is likely
that a specific antitumor agent only activates an individual kinase for each of the several
sites targeted for phosphorylation. As a result, a DNA damaging agent produces a unique
signature of p53-phosphorylated sites that induces p53 to adopt a specific structural
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conformation and thereby transactivate a select set of downstream target genes specific for
that agent. It is highly likely that deregulation of any critical kinase will alter the unique p53
phosphorylation signature, impede gene transactivation, and attenuate antitumor response.

Of the multiple p53 phosphorylation sites that have been associated with its anti-
proliferative and apoptotic functions, Ser15, Thr18, and Ser20 in the DNA-binding domain
at the N-terminus are recognized as perhaps the most critical and are therefore the most
extensively studied [22,168]. Indeed, these three sites are highly conserved between
urochordates, where evolution of the p53–Mdm2 axis appeared, and humans [168]. Studies
demonstrate that phosphorylations at these sites promote not only dissociation of p53 from
Mdm2, as a prerequisite for p53 stabilization, but also its transactivation function, by
inducing concomitant binding of the freed p53 with transcription co-activators, such as p300
and cAMP-response element-binding protein-binding protein (CBP) [165,169–171].
Moreover, several studies suggest that the effects of phosphorylation at these sites may be
cooperative, particularly because Thr18 and Ser20 phosphorylations are strongly dependent
on the priming phosphorylation at Ser15 [172–174]. Indeed, dual phosphorylation at Ser20
with either Ser15 or Thr18 is sufficient to induce apoptosis in glioma cells harboring wild-
type p53 [175,176]. Further support is provided by studies in transgenic mice where
mutations induced by replacing both Ser15 and Ser20 with alanine produced a more severe
phenotype than a single mutation at either site, as evidenced by loss in apoptotic capacity,
defects in replicative senescence, and latency in tumor appearance [163].

3.3.2.2. Downregulation of kinases involved in post-translational modifications of p53:
Because of the seminal role of phosphorylation in regulating p53 stabilization and function,
loss of this post-translational event at any one of the critical sites is likely to modulate
cytotoxic response to antitumor agents. A case in point is with ATM, a transducer of DNA
damage signals that upon exposure of tumor cells to antitumor agents phosphorylates p53
primarily at Ser15; this, in turn, stimulates phosphorylation at Thr18 and Ser20 by other
kinases, such as Chk2. ATM also phosphorylates and activates homeodomain-interacting
protein kinase 2 (HIPK2), a kinase that, in turn, modifies p53 at Ser46 [165]. Therefore, it is
not surprising that mutation of ATM in ataxia telangiectasia leads to defects in p53
regulation and checkpoint response after DNA damage with ionizing radiation [177].
Interestingly, defective ATM function has been observed in ~20% of patients with B-cell
CLL, which predominantly harbors wild-type p53, and ATM dysfunction correlates with
resistance to fludarabine and with poor prognosis in patients [137,178]. In addition,
deregulation of Ser376 phosphorylation of p53 has been observed in radioresistant
melanoma, with loss of wild-type p53 function attributed to a loss in ATM-dependent
signaling [179]. Because ATM can also affect the function of HIPK2 and, thereby, p53-
dependent apoptosis, it would be expected that direct loss of HIPK2 would similarly induce
drug resistance. Indeed, knockdown of HIPK2 by siRNA in wild-type p53 colorectal tumor
cells resulted in resistance to doxorubicin and, more importantly, patients with colorectal
cancers expressing low levels of HIPK2 had a significantly lower survival rate [180].

The DNA damage checkpoint kinase Chk2 is also a downstream target of ATM and has
been identified as a tumor suppressor, the loss of which leads to multi-organ susceptibility to
cancer [181]. Not surprisingly, suppression of either ATM or Chk2 in the presence of wild-
type p53 decreased sensitivity of mouse embryonic fibroblasts (MEFs) or tumor cells to
doxorubicin [182]. As a member of the calcium calmodulin kinase superfamily, Chk2 has
the intrinsic ability to phosphorylate both the Thr18 and Ser20 sites, as well as several other
sites in the C-terminus of p53 [183–185]. Interestingly, Chk2 can also be activated
independently of ATM, and in the case of cisplatin, the homolog ATR appears to be
involved in not only upregulating Chk2 to mediate the DNA damage signal to p53 but also
phosphorylating p53 directly at Ser15 [186].
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The importance of Chk2 in DNA damage response can be readily appreciated from reports
that Chk2-null cells from genetically engineered mice are remarkably resistant to some
DNA damaging agents [181,187,188]. The significance of these observations becomes clear
when it is noted that Chk2 downregulation has been correlated with resistance to cisplatin in
lung cancer cell lines [189]. Moreover, defects in Chk2 through epigenetic mechanisms have
been observed clinically in 83% of tumor specimens from patients with NSCLC [189], a
highly refractory cancer where cisplatin-based therapy is heavily used, but with a poor
survival rate (see Table 2). In addition, 23% of clinical ovarian cancers are reported to be
negative for Chk2 [190], a rate that is similar to that of cisplatin-resistant ovarian cancers
harboring wild-type p53 (20–22%) [116,191]. It should also be noted as a caution that the
results of independent studies with DNA damaging agents in knockout cell lines or in vivo
murine models have been at odds with the roles of Chk2 and site-specific phosphorylation of
the transactivation domain in p53 stabilization and stimulation and in cell death [22,192]. It
has also been reported that defects in Chk2 are rare and, therefore, not relevant [193].
Nevertheless, other clinical assessments strongly indicate that a Chk2 defect is a significant
occurrence [189]. In strong support of this is the recent finding that defects in p53 and Chk2
are mutually exclusive, as determined from an extensive analysis of epithelial malignancies,
which revealed that 37% of tumors (124 of 335 cases) had either a p53 or a Chk2 defect but
that a defect in both within the same tumor was rare (2/335) [182]. A similar mutual
exclusivity between defects in either p53 or ATM was also demonstrated in that study. Thus,
defects in ATM and Chk2 could account for drug resistance in tumor cells harboring wild-
type p53.

A second critical member of the calcium calmodulin kinase superfamily involved in
checkpoint response is Chk1, which is also activated by cisplatin in an ATR-dependent
manner and targets p53 sites similar to those targeted by Chk2 [22,184]. However, the
importance of the ATR/Chk1 pathway in p53 regulation and apoptosis has been difficult to
demonstrate because ATR or Chk1 deficiency is embryonically lethal [194,195]. Other
approaches using dominant-negative ATR mutants or the Chk1 kinase inhibitor UCN-01
have been possible, but the data have surprisingly demonstrated increased tumor cell
sensitivity to DNA damaging agents [195–198]. It is notable that ATR and Chk1 mutations
have been observed in 10–20% of gastric cancers [199], but studies to ascertain resultant
effects on therapeutic outcomes and p53 functions are needed to determine whether defects
in ATR and Chk1 can affect drug response in this disease.

4. Wild-type p53 gain-of-resistance phenotype
Given the seminal antitumor and apoptotic properties of p53, tumor cells resistant to
antitumor agents in the presence of wild-type p53 represent somewhat of a contradiction;
more importantly, this contradiction poses a major challenge in using p53 status as a
prognostic factor in personalized medicine. However, the challenge may be far greater than
envisaged so far, as it becomes apparent from sporadic reports in the literature that drug
resistance in the context of a retained wild-type p53 genotype is greater than expected.
Clinical evidence supports this notion, which is endorsed by data garnered from preclinical
studies. For the purpose of this review, we term this observation a “gain-of-resistance”
phenotype and consider whether it may be a direct result of a gain-of-function effect
associated with wild-type p53.

4.1. Clinical data
Several clinical studies have examined the role of p53 gene status in tumor response, and
have concluded that the prognostic value of this tumor suppressor is low. This conclusion
stems from clinical observation of therapeutic resistance in both mutant and wild-type p53
cancers, as discussed here. Similarly, tumor responses can also be observed independent of
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p53 status. For instance, in a clinical study of advanced ovarian cancer, cisplatin treatment
induced a response in 46% of the patients in the wild-type p53 group and in a similar
percentage (37%) of patients in the mutant p53 group [191]. In direct contrast, other studies
have demonstrated that responses in the mutant p53 group are in fact significantly greater, as
has been seen in advanced ovarian cancer with the platinum/paclitaxel combination (mutant,
86%; wild-type, 47%) [116], in NSCLC with paclitaxel (mutant, 75%; wild-type, 47%)
[114], in metastatic bladder cancer with platinum-based combinations (mutant, 50%; wild-
type, 27%) [200], and in advanced breast cancer with paclitaxel (mutant, 83%; wild-type,
38%) [86]. In non-inflammatory breast cancer, the contrast is even more striking. In this
disease, >50% of the patients harboring mutant p53 responded to a dose-intense epirubicin–
cyclophosphamide regimen, whereas none of the >100 patients with tumors harboring wild-
type p53 responded to this regimen [14]. Interestingly, in a rare study involving serial
sampling of ovarian cancer ascites and assessment in vitro of drug response, the intrinsic
resistance of tumor cells to cisplatin increased 1.4-fold during therapy while cells retained
wild-type p53 status; however, this resistance decreased below the intrinsic level after p53
became mutated as therapy progressed [201]. Moreover, because clinical responses are
limited by the maximum tolerated dose, one may predict that responses would increase if
higher doses were permissible. This appears to be the case with high-dose cisplatin or
carboplatin therapy, where a 30% response rate has been observed in ovarian tumors already
resistant to platinum therapy [202]. However, this response rate was concluded not to
increase further with increasing dose on the basis of a critical analysis of carboplatin dose–
response data from clinical investigations [203]. Thus, there appears to be a fraction of
refractory ovarian tumors that are supra-resistant, and, on the basis of the discussion so far
and from the preclinical data presented in Figure 2 (see below), these tumors are predicted to
harbor wild-type p53.

Collectively, the clinical studies discussed here have been instrumental in justifying the use
of appropriate therapeutic strategies involving selective antitumor agents (e.g., paclitaxel)
against mutant p53 tumors in specific disease types. However, the underlying basis for the
relatively poorer responses when wild-type p53 is present has been overlooked, even when it
is clear that the activity of the agent (e.g., paclitaxel) is also dependent on the presence of
wild-type p53 [204]. Nevertheless, these reports provide evidence for the existence of wild-
type p53 cancers that are more resistant to therapy than mutant p53 cancers are; that is, the
wild-type p53 cancers are displaying the gain-of-resistance phenotype.

4.2. Preclinical data
As in clinical studies, the effect of p53 status on response to antitumor agents has also been
determined in tumor panels of various disease types. The cytotoxic data from head and neck
squamous cell carcinoma (HNSCC), RCC, and ovarian cancer after exposure to cisplatin or
paclitaxel have been reported in subgroups of mutant/null p53 or wild-type p53 models
[40,205–207] and are listed in Table 3A. In these examples, the cytotoxicity is relatively
lower (that is, the drug concentration that inhibits cell proliferation by 50% [IC50] is higher,
or the resistance is higher) when p53 is wild-type. Interestingly, the degree of increased
resistance with wild-type p53 was significant, and the ratio of IC50 between wild-type p53
and mutant/null p53 ranged from 2 to 77. More importantly, these data demonstrate the
presence of additional drug resistance in wild-type p53 tumor models over and above that
displayed in mutant p53 cancers.

Additional data to support the wild-type p53 gain-of-resistance phenotype have been
garnered from studies in isogenic systems after disruption of p53 with dominant-negative
mutant p53, p53 knockout, or p53 knockdown by siRNA. Thus, if wild-type p53 indeed
contributes to gain of resistance, then disruption of p53 should lower resistance. This is
analogous to the studies with the p53 gain-of-function mutant, where the higher level of
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resistance to antitumor agents, such as cisplatin, was reduced by p53 siRNA [108]. Indeed,
cell lines derived from gliomas, colon cancers, or breast cancers that were exposed to DNA
damaging agents from three different structural classes displayed reduced IC50 (decreased
resistance) by 2-fold to >400-fold after disruption of p53 by any of the three established
procedures (Table 3B) [208–211]. The cell lines MCF-7 and HCT-116 have generally been
considered to have a drug-sensitive phenotype, but reports indicate that they harbor a defect
in apoptosis [210,211] and therefore may carry some intrinsic resistance that is reduced
when wild-type p53 is disrupted. Sensitization of tumor cells to cisplatin by knockdown of
wild-type p53 with siRNA has also been observed in Bcr/Abl-transformed murine
hematopoietic cells [212]. In an alternative approach, these cells were transfected with
temperature-sensitive p53, and resistance to cisplatin was found to be higher in cells
expressing wild-type p53 at the permissive temperature of 32°C than in cells expressing
mutant p53 at 37°C. A limitation of these data is the difficulty in ascertaining the level of
resistance in mutant/null p53 versus wild-type p53 cell lines relative to a standard sensitive
model. This limitation can be partially addressed using our previous findings in an ovarian
tumor panel [40,213], which are shown in Figure 2. Compared with established cisplatin-
sensitive A2780 cells, which harbor wild-type p53 and have intact checkpoint responses, all
other models shown in the figure were resistant to cisplatin (had higher IC50 values),
irrespective of their p53 status. However, it is notable that models harboring wild-type p53
had greater resistance than those harboring mutant p53.

The underlying basis of chemotherapy is that normal cells with wild-type p53 must have
relatively greater resistance to DNA damaging drugs than tumor cells have. This is amply
demonstrated by the report that the resistance of normal human foreskin fibroblasts to
cisplatin, carboplatin, and paclitaxel is reduced 6- to 12-fold when wild-type p53 is
disrupted by ectopic expression of the HPV-16 E6 oncogene [214]. Taken together, these
findings are consistent with the premise that wild-type p53 tumor cells can indeed
demonstrate supra-resistance, not unlike that in normal cells, and that wild-type p53
contributes to the greater resistance.

4.3. Underlying basis for wild-type p53 gain-of-resistance phenotype
Although the data presented here support the concept of a wild-type p53 gain-of-resistance
phenotype in specific tumor systems, the underlying mechanisms are not known. However,
the mechanism requires the presence of wild-type p53 because its knockdown reduces drug
resistance in these systems. Thus, mechanisms that promote degradation may be eliminated
from consideration. Indeed, such gain-of-resistance model systems do not necessarily
demonstrate increased expression of Mdm2, Mdm4, or p14ARF. From an analysis of the
available data, it is likely that defects in post-translational mechanisms play a role. This
possibility is based in part on data from RCC, where wild-type p53 transactivation functions
failed when tumor cells were exposed to antitumor agents even though levels of Mdm2,
Mdm4, and p14ARF remained normal [162]. Further support comes from the demonstration
that resistance to structurally distinct platinum drugs cisplatin and the trinuclear analog
BBR3464 is associated with the inability of DNA damage to induce p21 expression in wild-
type p53 models [151,215]. However, normal p21 expression could be restored if cells
resistant to cisplatin were exposed to 1R,2R-diaminocyclohexane(trans-diacetato)
(dichloro)platinum(IV) (DAP) or if cells resistant to BBR3464 were exposed to cisplatin;
that is, the signal transduction pathways induced by BBR3464 and DAP are distinct from
those induced by cisplatin. This is well demonstrated with DAP, which fails to
phosphorylate p53 at Ser392; in contrast, cisplatin is very effective in modifying this site
[215]. Moreover, in the ovarian panel shown in Figure 2, DAP was demonstrated to be
highly effective against the wild-type p53 supra-resistant models but was not effective
against the mutant/null models [40,213]. Therefore, it can be concluded that, at least for
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platinum-based drugs, there is a minimum of two parallel upstream pathways that
independently converge on wild-type p53 to activate the tumor suppressor, and when one
becomes defective and induces supra-resistance, the alternative intact pathway can be
activated to bypass the defect and restore p53-dependent drug sensitivity. Furthermore, the
transactivation of p21, the anti-proliferative activity of wild-type p53, and the cytotoxicity of
antitumor drugs appear to be more dependent on phosphorylation of p53 at Ser15, Thr18,
and Ser20 [175,216–218]. This finding supports post-translational defects as a likely cause
of a failure to activate p53 and a likely mechanism of the greater resistance observed in
tumor cells harboring the wild-type p53 genotype.

As discussed here, part of the evidence supporting the gain-of-resistance phenotype comes
from p53 knockdown studies. This phenotype is analogous to the increase in resistance that
results from p53 gain-of-function mutants, where sensitivity to antitumor agents is increased
after knockdown of the p53 mutant [108]. The supra-resistance associated with wild-type
p53 is strongly suggestive of additional functions acquired by p53, although direct evidence
for this conjecture is lacking at this stage. Hypothetically, if post-translational defects are
indeed involved, as may be envisaged in the absence of ATM, Chk2, or HIPK2 activity, then
wild-type p53 may assume a conformation not unlike that of p53 gain-of-function mutants.
Whether the specific mechanism involved in the gain-of-resistance phenotype is indeed a
result of gain-of-function effects is a question that must await rigorous studies, which are
desperately needed not only for the rational design of novel drugs, but also for the clinical
application of traditional antitumor agents.

5. Conclusions and future directions
From the limited available data presented in this review, it is evident that drug resistance can
be significant, particularly when resistant tumor cells harbor wild-type p53. This indeed
represents a paradox as it deviates from the established role of this genotype in facile
antitumor drug response. Moreover, the resistance in tumor cells expressing wild-type p53
can be much greater than that in tumor cells expressing mutant p53, leading to the
recognition of a wild-type p53 gain-of-resistance phenotype, and it is tempting to speculate
that this resistance may be a result of gain-of-function effects associated with wild-type p53.
It could be argued that the clinical and preclinical data discussed here represent an increase
in the sensitivity of mutant/null p53 cancers to a specific drug through the phenomenon of
synthetic lethality, rather than an increase in the resistance of wild-type p53 tumors. A
concerted effort by the research community will be required to unravel this question and to
define the underlying mechanism for the supra-resistance of wild-type p53 cancers. Such
data will be of paramount importance to change the treatment paradigm and to increase
responses and cure rates in wild-type p53 gain-of-resistance cancers. Effective prototypical
small-molecule drugs (e.g., DAP) already exist and provide evidence that activity against
such cancers is possible, but recognition of this gain-of-resistance phenotype in cancer is the
first step toward defining the mechanisms involved and thus laying the foundation for
rational-based therapies. Such a progression is vital to ultimately achieve success at the
clinical level against resistant cancers harboring wild-type p53.
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Abbreviations

ALL acute lymphocytic leukemia

APAF-1 apoptotic protease-activating factor 1

AIF apoptosis-inducing factor

ATM ataxia telangiectasia mutated

ATR ataxia telangiectasia and Rad3-related

CBP cAMP-response element-binding protein-binding protein

Cdk cyclin-dependent kinase

CLL chronic lymphocytic leukemia

DAP 1R,2R-diaminocyclohexane(trans-diacetato)(dichloro)platinum(IV)

DISC death-inducing signaling complex

DSBs DNA double-strand breaks

FADD Fas-associated death domain

5-FU 5-fluorouracil

HIPK2 homeodomain-interacting protein kinase 2

HNSCC head and neck squamous cell carcinoma

HPV-16 human papillomavirus type 16

IC50 drug concentration that inhibits cell proliferation by 50%

MEF mouse embryonic fibroblasts

MRN Mre11/Rad50/NBS1 complex

NSCLC non-small cell lung cancer

RCC renal cell carcinoma

TNF-R tumor necrosis factor receptor
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Fig. 1.
Deregulation of pathways attenuating p53-dependent drug response.
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Fig. 2.
Cisplatin resistance in an ovarian tumor panel according to p53 status. The A2780 cell line
is the sensitive tumor model. The resistant models are grouped into mutant (mu)/null p53 (N
= 4) and wild-type p53 (N = 6); the 2780CP cell line was developed in tissue culture from
A2780 cells, whereas all others were established directly from patients’ biopsies. The IC50
value is the concentration of cisplatin that inhibits cell proliferation by 50% and is expressed
as μM. Adapted from Hagopian et al. [40] and Siddik et al. [213].
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Table 1

Cytotoxic drug response of tumor cell lines transfected with p53 gain-of-function mutant.

p53-Null tumor model [Ref.] p53 Mutation Treatment

IC50 (μM)

Control Mutant p53

H1299 [90] R175H Etoposide <10 >10

R175H Cisplatin <8 >8

R273H Etoposide >10 <10

R273H Cisplatin <8 >8

Saos-2 [107] R273H Methotrexate 0.012 0.025

R273H Doxorubicin 0.03 >0.2

Abbreviation: IC50, drug concentration that inhibits cell proliferation by 50%.
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Table 2

Clinical response of cancers harboring wild-type p53 to chemotherapy.

Cancer type [Ref.] Treatment Incidence (%) Response rate (%) 5-Year survival rate (%)

Bladder [123] Various 49 Not given 45

Breast [85] Paclitaxel 67 45 Not given

Choroid plexus [84] Various 50 Not given 100

CLL [87] Chl/flu/cyc 92 83 59

Germ cell [88,113] Platinum ~100 ~90 ~90

Mesothelioma [117–121] Various ~90 5–33 0–14

NSCLC [114,115,125] Various 68 6–43 0–13

Ovarian [116,124] Paclitaxel/platinum 40 47 43

RCC [122,126,127] Various ~90 Not given ~30

Abbreviations: Chl/flu/cyc, chlorambucil/fludarabine/cyclophosphamide; CLL, chronic lymphocytic leukemia; NSCLC, non-small cell lung
cancer; RCC, renal cell carcinoma.
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