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Abstract
Hsp90 is a chaperone protein that interacts with client proteins that are known to be in the cell
cycle, signaling and chromatin-remodeling pathways. Hsp90 inhibitors act additively or
synergistically with many other drugs in the treatment of both solid tumors and leukemias in
murine tumor models and humans. Hsp90 inhibitors potentiate the actions of anti-cancer drugs
that target Hsp90 client proteins, including trastuzumab (Herceptin™) which targets Her2/Erb2B,
as Hsp90 inhibition elicits the drug effects in cancer cell lines that are otherwise resistant to the
drug. A Phase II study of the Hsp90 inhibitor 17-AAG and trastuzumab showed that this
combination therapy has anticancer activity in patients with HER2-positive metastatic breast
cancer progressing on trastuzumab. In this review, we discuss the results of Hsp90 inhibitors in
combination with trastuzumab and other cancer drugs. We also discuss recent results from yeast
focused on the genetics of drug resistance when Hsp90 is inhibited and the implications that this
might have in understanding the effects of genetic variation in treating cancer in humans.
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1. INTRODUCTION
Heat shock protein 90 Hsp90, a protein of molecular weight 90 KDa that is conserved from
yeast to humans, is a molecular chaperone with over 200 identified client proteins. Hsp90 is
an especially promising target for anti-cancer drugs as many of its client proteins are present
in pathways that are often disrupted in many types of cancers [1]. A list of Hsp90 client
proteins can be found at (http://www.picard.ch/downloads/Hsp90facts.pdf). Client proteins
include apoptotic factors, protein kinases, transcription factors, and signaling proteins. Some
client proteins, like steroid receptors [2–6], epidermal growth factor receptor (EGFR) family
members [7], the MET oncogene [8, 9], Raf-1 kinases [10], AKT kinases [11], BCR-ABL
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fusion proteins in leukemia [8, 12–14], mutant p53 [15], cyclin dependent kinase 4 (CDK4)
[16–18], hypoxia-inducible factor 1α(HIF1α), matrix metalloproteinase 2 (MMP2) [19], and
chromatin-remodeling proteins such as the histone deacetylases (HDACs) [20–24] and
SMYD3 [25, 26] are often mutated in cancer cells.

While Hsp90 is required in all cells, tumor cells are especially sensitive to Hsp90 inhibitors
as they are “oncogene addicted” and require especially high levels of Hsp90 [27–31].
Genetically unstable cancer cells live under a multitude of stresses, including mutated and
amplified signaling and client proteins, chromosome and microsatellite instability and
aneuploidy, hypoxia, low pH, and low nutrient concentrations [32–36]. Cancer cells can
survive and thrive in stressed microenvironments by quickly selecting for adaptive
mutations and chromosomal rearrangements that increase their survival and proliferative
abilities.

Unfortunately, the effectiveness of anti-cancer drugs that specifically target individual
cancer promoting proteins or signaling pathways may be gradually decreased, or even totally
lost, due to the genetic and epigenetic variation in cancer cells, as they become drug
resistant. One strategy to address this problem is to identify targets, such as Hsp90, the
proteasome [37], and the autophagosome [38–40], that affect multiple signaling pathways or
the basic machinery required for cancer cells to survive under stress.

Inhibition of Hsp90 functions affects multiple oncogenic substrates simultaneously and has
shown obvious anti-cancer effects in vitro and in vivo. One Hsp90 inhibitor, 17-allylamino,
17-demethoxygeldanamycin (17- AAG), a geldanamycin analog, has completed phase II
clinical trials in a number of cancers [41–47] (see http://www.clinicaltrials.gov for a list of
many clinical trials). Geldanamycin and its derivatives, as well as structurally different
compounds like radicicol [48], are N-terminal Hsp90 inhibitors that interfere with the ATP-
binding domain of Hsp90. Many C-terminal Hsp90 inhibitors are under preclinical
development including several novobiocin- [49] and coumarin-based inhibitors [50].

Chemotherapy and radiation therapy [51] remain the most commonly used treatments for
cancer, but new and more specific anti-cancer drugs are emerging. However, due to the
rapid genetic and epigenetic changes in adaptation to stress induced by anti-cancer drugs,
cancer cells are often able to become resistant to single or multiple anti-cancer agents [52–
54]. The development of resistance is especially serious with chemotherapy and radiation
therapy, and a critical goal of cancer therapy is to more effectively combat this resistance.
Drug resistance can be induced by decreasing the uptake of water-soluble drugs, changing
the activity of cytotoxic drugs by covalent modifications, by oxidation [55–58],
glutathionylation [59], and glucuronidation [60], and by increasing the efflux of
hydrophobic drugs [52–54].

2. HSP90 AND THE EVOLUTION OF NEW PHENOTYPES
Hsp90 aids in the folding of many signaling proteins under basal conditions, and in
environmental stress, such as in cancer cells. In all eukaryotes studied, from fungi to
mammals, Hsp90 and its orthologs are among the most abundant proteins comprising 1–2%
of the total proteins under normal conditions [61]. Hsp90 is unique among the protein
chaperones as its client proteins are primarily signaling molecules, such as nuclear-hormone
receptors, tyrosine kinases, and chromatin-remodeling proteins [62–64]. It is termed a “heat
shock protein”, but actually Hsp90 has high constitutive protein levels that are induced
approximately 2 fold during environmental stress [65–68]. For example, yeast, which is
presumably similar to human cells in this respect, has 445,000 molecules of Hsp82 (stress-
induced Hsp90) per cell and upon stress this amount may be increased by two fold. This is
in comparison to many kinases and transcription factors in both yeast and human cells which
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have fewer than 10,000 molecules per cell (http://yeastgfp.yeastgenome.org/). During f
stress, Hsp90 protein levels are higher, but its chaperone activity is functionally titrated by
the increase in the level of unfolded signaling proteins, co-chaperones, and post-translational
modifications [69].

Hsp90 has been postulated to have a major role in facilitating the rapid evolution of new
traits. In Drosophila and Arabidopsis, it is viewed as a “capacitor” for morphological
evolution because reducing Hsp90 levels during early development produces a multitude of
new phenotypes by unmasking hidden phenotypic variation in adults [69–72]. It has been
proposed that the variation is unmasked because numerous signaling molecules that are
involved in morphological development are targets of Hsp90 and, consequently, have altered
activity when Hsp90 levels are reduced [71, 72]. Several generations of selection of the
unmasked new phenotype enriches the polymorphisms that contribute to the phenotype by
genetic rearrangement, ultimately leading to a stable phenotype even in the absence of stress
[71, 72].

Our laboratory has shown in Drosophila that reduction of Hsp90 activity can epigenetically
unmask new phenotypes, even in the absence of genetic variation [73]. We thus propose that
epigenetic induction of new phenotypes by stress can facilitate the genetic rearrangement
required to permanently stabilize the new phenotype in the selected population [74–77]. We
also propose that epigenetic induction of new phenotypes by stress is mutagenic and that this
can allow the stochastic induction of new mutations that can stabilize the new phenotype in
the selected population [74–77]. Recently, Gangjaraju and colleagues showed that Hsp90
reduction epigenetically activates transposons in Drosophila by inactivation of the Piwi
protein, an Argonaute-family protein that is involved in the microRNA pathway of RNA-
directed chromatin repression [78]. In other words, Hsp90 can facilitate evolution of the
organism, as well as the cancer cell, by both epigenetic and genomic mechanisms.

In 2005, Cowen and Lindquist showed that high levels of Hsp90 facilitated the evolution of
drug resistance in diverse species of fungi by altering the activities of mutated drug
resistance genes [70]. We also proposed that Hsp90 might have a similar effect in the
development of drug resistance in cancer cells [79, 80].

3. SYNERGISTIC EFFECTS OF HSP90 INHIBITORS AND OTHER ANTI-
CANCER DRUGS

Recent preclinical and clinical studies explored the effects of a combination of Hsp90
inhibitors and other anti-cancer agents in cancer therapy. Based on the different therapeutic
mechanisms of conventional anti-cancer drugs, Hsp90 inhibitors exerted different effects in
these combinational studies. Additive or synergistic effects were observed in most cases
(Table 1).

Preclinical data from different cancer cell lines and tumor xenograft models indicate that
Hsp90 inhibitors show additive or synergistic effects in killing cancer cells when combined
with most conventional cytotoxic agents (such as taxanes, cisplatin, gemcitabine and
cytarabine), proteasome inhibitors, HDAC inhibitors, and new molecular targeting agents in
schedule-and-cell-type-dependent manners (Table 1).

Combination therapies of Hsp90 inhibitors and other drugs are now in phase II clinical trials.
A recently completed phase II study of 17-AAG, an Hsp90 inhibitor, and trastuzumab,
showed that this combination therapy has significant anticancer activity in patients with
HER2-positive metastatic breast cancer progressing on trastuzumab [42]. In this study, 31
breast cancer patients progressing on trastuzumab were enrolled with a median age of 53
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years and a minimum Karnofsky performance status (KPS) of 90% [42]. The KPS attempts
to quantify cancer patients' general well-being and activities of daily life and is used in
oncological randomized controlled trials as a measure of quality of life. The KPS runs from
0% (dead) to 100% (healthy with no problems).

The exciting results with 17-AAG and trastuzumab in treating trastuzumab-resistant breast
cancer, combined with the other Hsp90 combination preclinical trials in rodents, suggests
that many more clinical trials will be attempted in the near future.

3.1. Taxanes
Paclitaxel (Taxol®) is a mitotic inhibitor used in cancer chemotherapy. It stabilizes
microtubules, thereby causing mitotic arrest and apoptosis [81]. Taxol is one of the two
clinically available taxanes and is used in against a broad range of cancers. Hsp90 inhibitors,
such as 17-AAG and geldanamycin (GA), sensitize lung and breast cancer cells to paclitaxel
induced cytotoxicity both in vitro and in vivo [82–86]. Low doses of 17-AAG enhance
paclitaxel cytotoxicity by drastic reduction of paclitaxel 50% inhibitory concentration (IC50)
values and significantly increase induction of apoptosis.

The synergistic effects of 17-AAG and other drugs are dependent on the cell type [82, 84,
85]. In cells expressing retinoblastoma (RB), or high level of ErbB2 or Akt, that are clients
of Hsp90, concurrent exposure to17-AAG and paclitaxel is required for the synergistic
activity of the two drugs. Exposure of these cells to 17-AAG causes a G1 growth arrest [82,
85, 87], whereas paclitaxel arrests the cells in mitosis. Thus, in future development of
combinational treatment strategy, the administration schedule should be considered if cell
cycle dependent changes are involved in modulating the activity of the drug.

3.2. Cisplatin
The compound cis-PtCl2(NH3)2 (cisplatin), also known as Peyrone's salt [88], is used to
treat several types of cancers, including sarcomas, carcinomas, lymphomas, and germ cell
tumors. Cisplatin crosslinks DNA and consequently trigger apoptosis [89, 90]. It has been
widely used alone or in combined regimes with other anti-cancer drugs for the therapy of a
variety of tumors and often shows synergistic anti-cancer effects in different cancer types
[91–95]. Of the 17-AAG and cisplatin combinations, synergistic anti-cancer activities were
observed in several colon cancer cell lines [91, 92], pediatric solid tumor cells cultures
(neuroblastoma and osteosarcoma) [95], and hepatoma cell cultures and xenograft models
[93].

Radicicol, another widely-used Hsp90 inhibitor, also sensitizes colon cancer cells to
cisplatin via the interaction of Hsp90 with MLH1, a protein crucial for DNA mismatch
repair [94]. It has been proposed that synergistic interactions depend on the effect exerted by
17-AAG on cisplatin-induced signaling through the JNK stress-induced and the p53 DNA-
damage-induced pathways [91, 92]. Cisplatin and Hsp90 inhibitors like 17-AAG, might be
important in inducing cytoprotective effects, thereby lowering the toxicity of
chemotherapeutic agents such as gemcitabine [96].

3.3. Proteasome Inhibitors
Bortezomib (PS-341; Velcade™) is the first proteasome inhibitor approved for the treatment
of relapsed multiple myeloma (MM) and mantle cell lymphoma (MCL). In MM, complete
responses have been obtained in patients with otherwise rapidly advancing disease [41, 97,
98]. The attributing mechanisms include increased protein misfolding, coupled to impaired
protein clearance by suppression of the chymotryptic activity of the 20S proteasome. The
marked anti-cancer activity of a combination of Hsp90-and-proteasome inhibitors might
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arise from their complementing abilities to simultaneously trigger intracellular accumulation
of unfolded proteins and preventing their cellular protection functions [41]. More
importantly, combined Hsp90-and-proteosome-inhibitors treatment overcomes the drug
resistance of primary MM cells which are resistant to cytotoxic chemotherapy and
bortezomib [41].

3.4. Death Receptor Ligands: Tumor Necrosis Factor (TNF) and Tumor Necrosis Factor-
Related Apoptosis-Inducing Ligand (TRAIL)

TRAIL binds to the death receptors DR4 (TRAIL-RI) and DR5 (TRAIL-RII) and induces
caspase-8-dependent apoptosis. It also binds the receptors DcR1, a decoy receptor and
DcR2, which contains a truncated death domain and activates NFκB. The apoptosis-
inducing “death receptor” ligands, TRAIL and TNF, are promising candidates for cancer
treatment but display variable cytotoxicity and drug resistance in different cell lines [99].
Combination of 17-AAG with “death receptor” targeting agents can synergistically increase
their anti-tumor activities and abolishes the drug resistance of TRAIL/TNF in Glioma [100].
In TRAIL/TNF-resistant cancer cell lines, such as prostate LNCaP cells, and colon HT29
and RKO cells, pre- or co-exposure to17-AAG with TRAIL/TNF induced high levels of
apoptosis. This was also observed with TNF-resistant lung H23 and H460 cells [46–48]. In
all instances, synergistic induction of apoptosis by pre- or co-exposure to17-AAG with
TRAIL/TNF was induced primarily through down regulation of NFκB or Akt cell survival
pathways [101–103]. Synergistic effects between 17-AAG and anti-TRAIL monoclonal
antibodies have also been observed [104].

3.5. Histone Deacetylase Inhibitors
HDAC) inhibitors, or more accurately “protein deacetylase inhibitors” because they often
target proteins other than histones, are a group of compounds that inhibit the deacetylation
of many proteins, including histones and Hsp90 [105, 106]. HDAC inhibitors can induce
apoptosis in cancer cell lines and some HDAC inhibitors are under clinical evaluation [107–
109]. Co-administration of 17-AAG with HDAC inhibitors, like sodium butyrate (SB),
suberoylanilide hydroxamic acid (SAHA), or LBH589, can synergistically induces apoptosis
in leukemia cells [110, 111]. Moreover, a combination treatment of 17-AAG and LBH589 is
effective in imatinib mesylate (IM)-resistant primary chromic myeloid leukemia blast crisis
(CML-BC) and acute myeloid leukemia (AML) cells [111]. The detailed mechanisms of
these synergistic effects are unclear, but they likely involve perturbations of survival
pathways and cell cycle progression. HDAC inhibitors also leads to Hsp90 hyper-acetylation
that inhibits its ATP-binding and chaperoning activities [105].

3.6. Protein Kinase Inhibitors
Several protein kinase inhibitors (PKIs) act synergistically with Hsp90 inhibitors in killing
tumor cells. Leukemic cells with FLT3 tyrosine kinase gain-of-function mutations are
synergistically and selectively sensitive to 17-AAG and FLT3 tyrosine kinase inhibitors,
midostaurin (PKC412) and GTP14564 [112, 113]. Imatinib, a BCR-ABL tyrosine kinase
inhibitor, also shows synergistic effects with 17-AAG in imatinib-resistant CML cells over-
expressing BCR-ABL and P-glycoprotein [114]. 17-AAG combined with trastuzumab, the
humanized antibody against receptor tyrosine kinase ErbB2, inhibits proliferation of
trastuzumab-resistant breast tumor cell line JIMT-1 [115].

The molecular mechanisms of these synergistic effects are the pronounced reduction in
protein level and activity of these kinases, which are all Hsp90 “client” proteins. Additional
synergistic interactions occur when 17-AAG is combined with Chk1 inhibitor UCN-01 or
PI3K inhibitor LY294002, and interference with the Akt survival pathway and cell cycle
progression are thought to contribute to the phenomenon [116, 117].
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3.7. Other Drugs and treatments
Hsp90 inhibitors also synergistically act with many other anti-cancer drugs, including
doxorubincin, topoisomerase II inhibitors, cytarabine, arsenic trioxide and compounds that
inhibit the induction of heat shock proteins, via different mechanisms [86, 118–121]. Of the
other anti-cancer treatments, such as ionizing irradiation, adding Hsp90 inhibitors also
enhances the cancer-killing effects synergistically [122–124]. Generally, treatment with 17-
AAG provides a means of reversing the drug or radiation resistance in cancer cells.

4. NATURAL VARIATION EFFECTS HSP90-DEPENDENT DRUG
RESISTANCE AND SENSITIVITY

Hsp90 … provide[s] at least two routes to the rapid evolution of new traits: (i) Acting as a
potentiator, Hsp90’s folding reservoir allows individual genetic variation to immediately
create new phenotypes; when the reservoir is compromised, the traits previously created by
the potentiated variants disappear. (ii) Acting as a capacitor, Hsp90’s excess chaperone
activity buffers the effects of other variants, storing them in a phenotypically silent form;
when the Hsp90 reservoir is compromised, the effects of these variants are released,
allowing them to create new traits. Jarosz and Lindquist (2010) [69]

In 1958, Schabel suggested that model organisms such as yeast and bacteria can be used to
understand drug resistance in cancer [125]. For the past two decades, the Lindquist
laboratory [69], the Picard laboratory [126–128], and other laboratories (e.g., [65, 129,
130]), based on Schabel’s advice have used the yeast Saccharomyces cerevisiae to
understand how Hsp90 affects resistance or sensitivity. In a previous review [80], we
discussed how the Lindquist laboratory’s Hsp90-based drug-resistance studies might apply
to drug resistance in cancer.

Natural variation Saccharomyces cerevisiae can affect the growth rate of the yeast cells [69].
Jarosz and Lindquist have reported that Hsp90 can act either as a “potentiator” or a
“capacitor” for drug resistance and considered how this might affect the rapid evolution of
new traits in general. Using recombinant inbred lines of bakers’ yeast (BY4716) and red
wine yeast (RM11-1a) in the presence of anti-fungals, osmotic stressors, and other small
molecules, they compared the growth rates in the presence or the absence of Hsp90 [69].
Hsp90 was inhibited by the Hsp90 inhibitors radicicol and geldanamycin [69]. Mechanistic
models for the Hsp90-mediated potentiation or capacitation that may explain three of the
findings described by Jarosz and Lindquist, rapamycin, hydroxyurea, and 1-chloro-2,4-
nitrobenzine (CDNB), are shown in Figure 1.

The immunosuppressant rapamycin can prolong the life of mice [131–133] and Drosophila
[134] and is also useful for treating breast and skin cancers [135–138]. Jarosz and Lindquist
found that BY4716 and RM11-1a yeast, and all recombinant inbred lines made from these
two strains, have identical growth rates in the presence of Hsp90, but RM11-1a yeast have a
~3-fold increase in growth rate in the absence of Hsp90 compared with BY4716 [69]. The
recombinant inbred lines made from BY4716 and RM11-1a indicates that the NFS1 gene
must have the RM11-1a genotype to confer rapamycin resistance (Fig. 1a). Nfs1 protein is a
cysteine desulfurase that acts as a sulfur donor in tRNA thiolation [139], and yeast mutations
in this same pathway confer rapamycin resistance [140].

Jarosz and Lindquist [69] have proposed that the Nfs1 protein is a client for Hsp90 and that
Hsp90 folds the Nfs1 into a form that makes both RM11-1a and BY4716 yeast sensitive to
rapamycin (Fig. 1a, left). However, in the absence of Hsp90, Nfs1 with the RM11-1a
genotype folds into a new conformation that is now resistant to rapamycin, but the BY4716
genotype protein remains in the rapamycin-sensitive conformation (Fig. 1a, right). In other
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words, Hsp90 functions as a capacitor for the rapamycin resistant phenotype in the RM11-1a
strain but not the BY4716 strain. In the absence of Hsp90, such as during stress, the
previously hidden phenotype of rapamycin resistance is revealed by the new of the Nfs1-
resistant (NFS1R) conformation in the RM11-1a strain (Fig.1a).

Hydroxyurea is used to treat a variety of cancers, from leukemia to breast cancer [141–144].
It is also used in combination with other drugs to treat head and neck cancer [145]. One
mechanism of action is thought to be through the inhibition of deoxyribonucleotide
synthesis [146, 147]. Jarosz and Lindquist found that RM11-1a yeast are more resistant to
hydroxyurea than BY4716 yeast in the presence of Hsp90, but that both BY4716 and
RM11-1a yeast are resistant to hydroxyurea in the absence of Hsp90 [69]. Analyses of the
RM11-1a and BY4716 recombinant inbred lines indicate that the MEC1 gene from BY4716
confers the sensitivity to hydroxyurea (Fig. 1b, left). Mec1 is a component of several
checkpoint and DNA repair pathways in yeast [148–151], and therefore likely repairs the
DNA damage induced by hydroxyurea.

Jarosz and Lindquist [69] further propose that Hsp90 functions as a capacitor in BY4716
yeast to make the Mec1 protein sensitive to hydroxyurea. However, according to their
model, Hsp90 is not a chaperone for the Mec1 protein from RM11-1a yeast, but is a
chaperone for Mec1 protein in BY4716 yeast (Fig. 1b). In the absence of Hsp90, such as in
stressful environments, the Mec1 protein in BY4716 yeast folds into a different
conformation that is now more resistant to hydroxyurea (Fig. 1b, right). Since the Mec1
protein in RM11-1a yeast is not a client for Hsp90, according to their model, it confers
resistance to hydroxyurea regardless of whether Hsp90 is present or not (Fig. 1b, right). This
result is important because it suggests that what might be a client protein for Hsp90 in one
genetic background might not be a client in another genetic background. If this is true in
humans, which is likely, this would suggest a possible reason why Hsp90 inhibitors are
more effective in some cancer patients than others when used in combination with other
drugs (Fig. 1b).

CDNB, a.k.a., DNCB (2,4-dinitro-1-chlorobenzine), is a redox cycling quinone that
produces superoxide anions in its free radical state [152]. Paper were published in the 1970s
and 1980s [153–157] that attempted to correlate skin-hypersensitivity caused by CDNB
administration with cancer prognosis, with the concept of cancer being an autoimmune
disease. We could not find any citations after 1987 in this regard. When exposed to CDNB,
RM11-1a yeast show a remarkable 1500-fold increase in growth rate as compared to
BY4716 yeast in the absence of Hsp90, and a 1500-fold increase in growth rate compared
with both RM11-1a and BY4716 yeast in the presence of Hsp90 [69]. This example is
illustrative for two reasons, the first being the causative genetic polymorphism maps to the
3’ untranslated region of the NDI1 gene (Fig. 1c, bottom left). The Ndi1 protein encodes an
NADH-quinone (Q) oxidoreductase that protects against oxidative stress [158–160]. CDNB
produces oxidative stress both by directly producing free radicals, when in its free radical
form, and by titrating GSH levels [161–169]. Interestingly, overexpression of Ndi1 increases
lifespan in Drosophila [170], which is consistent with the free-radical theory of aging [171].
The second reason is that it suggests that Hsp90 functions to regulate NDI1 expression in an
indirect rather than a direct manner.

How might Hsp90 affect expression of NDI1 in RM11-1a yeast but not BY4716 yeast? We
propose that Hsp90 is a chaperone for a hypothetical 3’UTR binding protein that binds to the
NDI1 3’UTR when it has either the RM11-1a or the BY4716 genotype (Fig. 1c, left). In the
absence of Hsp90, according to our model, the 3’UTR binding protein folds into a different
conformation (a circle) that no longer binds to the NDI1 3’UTR with the RM11-1a
genotype, but it can still bind to the NDI1 3’UTR with the BY4716 genotype (Fig. 1c, right).
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We propose that the 3’UTR binding protein is a translational repressor that also decreases
the NDI1 mRNA levels when it is bound. Therefore, the NDI1 gene has much higher
expression in RM11-1a yeast compared with BY4716 yeast (Fig. 1c, right, thick arrow).
This model would explain why CDNB resistance maps to the 3’UTR of the NDI1 gene and
not the hypothetical 3’UTR binding protein.

A fascinating finding of Jarosz and Lindquist is that the clustering of the genotype and the
phenotype in 11 different yeast strains is improved in the absence of Hsp90 [69]. Genetic
clustering was done by comparing the whole genome sequences of the 11 yeast strains. In
the presence of Hsp90, there was no significant clustering of the phenotypes for resistance to
100 different growth conditions, including alternative carbon sources, oxidative stressors,
antifungal drugs, small molecule drugs, and DNA damaging agents. However, in the
absence of Hsp90, the phenotypes cluster as well as the genotypes. They conclude, “It is
difficult to imagine how environmental stress in general, and Hsp90 in particular, could have
such as strong impact on genotype-phenotype correlations unless it acted through the
evolutionary history of these strains to influence the retention of a broad swath of genetic
variation” [69]. In other words, this is the best evidence to suggest that Hsp90 plays a
critical role as a capacitor for phenotypic variation, such as in drug resistance in yeast, and
probably also drug resistance in cancer. We predict that cancer cell phenotypes, such as
growth rates in drug containing media, will cluster with the genotypes better when Hsp90 is
inhibited. Understanding this relationship will be needed for facilitating personalized
medicine approaches to treating cancer in humans with Hsp90 inhibitors used in
combination with other drugs.

5. SUMMARY AND FUTURE STUDIES
Hsp90 has a unique role in evolution by maintaining the activity of mutant proteins and
serving as a capacitor to buffer phenotypic variation [69, 71, 73, 172, 173]. The role of
Hsp90 in evolution of drug resistance requires study in greater detail. This review collates
numerous studies that show that Hsp90 often acts synergistically with other anti-cancer
drugs.

Phase II clinical trials of 17-AAG and trastuzumab have shown very promising results [42].
Since Hsp90 has over 200 client proteins, many of which are targeting in treating cancer, it
is likely that 17-AAG will be used in combination with many other drugs in future human
clinical studies. The classical mechanism for Hsp90 inhibitor function is that the inhibitor
causes the degradation of its client proteins. For example, many HER2 positive breast
cancers have an over expression of HER2 by gene amplification. In the absence of Hsp90,
HER2 cannot be folded properly and is subject to ubiquitin-mediated proteolysis. If there is
less HER2, than drugs that target HER2, such as the breast cancer drug trastuzumab is much
more effective.

However, the classical mechanism for studying the synergistic action of Hsp90 inhibitors
does not take into account the natural genetic variation in the human population. Studies of
drug resistance in yeast, which are summarized here, have shown that several anti-cancer
drugs are made either more or less potent when in combination with Hsp90 inhibitors,
depending on the genetic variation in the yeast. Future studies in humans will need to be
done to understand how genetic variation affects drug resistance, and will indicate which
drugs will be most effective when used in combination with Hsp90 inhibitors.
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Figure 1. Hsp90 and drug resistance in yeast
A, RM11-1a yeast are resistant to rapamycin in the absence of Hsp90. We propose that both
BY4716 and RM11-1a Nfs1 proteins are clients for Hsp90 which helps it maintain a
rapamycin sensitive phenotype (hexagon), but Nfs1 protein forms a rapamycin-resistant
structure (circle) in the absence of Hsp90.
B, BY4716 yeast are sensitive to hydroxyurea in the presence of Hsp90. We propose that the
BY4716 Mec1 protein is a client for Hsp90 and it forms a structure that confers hydroxyurea
sensitivity (hexagon), but the RM11-1a Mec1 protein is not a client for Hsp90 and forms a
structure that confers resistance to hydroxyurea (circle). In the absence of Hsp90, we
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propose that the BY4716 Mec1 protein folds into a structure that confers resistance to
hydroxyurea (circle).
C, RM11-1a yeast are resistant to oxidative stress (CDNB) in the absence of Hsp90. The
BY4716 and RM11-1a NDI1 genes have a SNP in the 3’UTR that affects binding to a
hypothetical 3’UTR binding protein in the absence of Hsp90 (circle), but not in the presence
of Hsp90 (hexagon). See text for more details. (see [69]).
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